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Abstract Scalable storage architectures enable digital li-
braries and archives for the addition or removal of storage
devices to increase storage capacity and bandwidth or retire
older devices. Past work in this area have mainly focused on
statically scaling homogeneous storage devices. However,
heterogeneous devices are quickly being adopted for stor-
age scaling since they are usually faster, larger, more widely
available, and more cost-effective. We propose BroadScale,
an algorithm based on Random Disk Labeling, to dynam-
ically scale heterogeneous storage systems by distributing
data objects according to their device weights. Assuming
a random placement of objects across a group of hetero-
geneous storage devices, our optimization objectives when
scaling are to ensure a uniform distribution of objects, re-
distribute a minimum number of objects, and maintain fast
data access with low computational complexity. We show
through experimentation that BroadScale achieves these re-
quirements when scaling heterogeneous storage.

Keywords Scalable storage systems · Random data
placement · Load balancing · Heterogeneous disk scaling

1 Introduction

Computer applications typically require ever-increasing
storage capacity to meet the demands of their expanding
data sets. Because storage requirements oftentimes exhibit
varying growth rates, current storage systems may not re-
serve a sufficient amount of excess space for future growth.
Meanwhile, large up-front costs should not be incurred for
a storage system that might only be fully utilized in the dis-
tant future. Therefore, a storage system that accommodates
incremental growth would have major cost benefits. Incre-
mental growth translates into a highly scalable storage sys-
tem where the amount of overall storage space and through-
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put can dynamically expand according to the growth rate of
its content data and/or application performance needs.

Our proposed scalable storage algorithms are general-
ized solutions for mapping a set of data objects to a group of
storage units. Furthermore, the objects are striped indepen-
dently of each other across all of the storage units for load-
balancing purposes, that is, any object can be accessed with
almost equal probability. This group of storage units has the
quality that more units can be either added or removed, in
which case the striped objects need to be redistributed to
maintain a balanced load.

Scientific digital archives, distributed file systems, Web
proxy servers, and continuous media (CM) servers are each
examples of storage systems found in digital libraries. These
systems experience growing data content and can benefit
from a generalized and scalable storage solution. The Scien-
tific Archive Management (SAM) system developed at the
Pacific Northwest National Laboratory stores a very large,
increasing amount of data generated from scientific experi-
ments [21]. SAM relies on metadata and a virtual file sys-
tem on its storage farms to allow scientists to store their
data without worrying about the underlying data locality
even when data is relocated due to system scale-up. Lustre1

is an example of a highly scalable cluster file system that
could benefit from efficient data redistribution techniques
when adding more cluster nodes. A low-cost scaling tech-
nique is crucial for Lustre since it aims to scale up to tens
of thousands of nodes. Distributed CM servers provide real-
time access to libraries of digital media where the media files
are declustered across a large set of disks. We assume CM
servers in our discussions and use the terms “disk” and “file
block” (i.e., of a file object) in place of “storage unit” and
“data object,” respectively, throughout this paper. Finally,
other familiar examples of exponentially growing data stores
with high-scalability requirements are the Google2 search

1 http://www.lustre.org/
2 http://www.google.com/
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engine and the Internet Archive3 library of digitized histori-
cal collections.

Our technique to achieve a highly scalable CM server
begins with the placement of data on storage devices such as
magnetic disk drives [11, 17]. More specifically, we break
CM files (e.g., video or audio) into individual fixed-size
blocks and apply a random placement [12] of these blocks
across a group of homogeneous disks. Since any block can
be accessed with an almost equal probability the random
striping scheme allows the disks to be load balanced where
their aggregate bandwidth and capacity (e.g., in bits/second
and bytes, respectively) are maximized when accessing CM
files. We actually use a pseudo-randomized placement of file
object blocks, as in [6, 17], so that blocks have roughly equal
probabilities of residing on each disk. With pseudo-random
distribution, blocks are placed onto disks in a random, but
reproducible, sequence.

The placement of block i is determined by its signature
Xi , which is simply an unsigned integer computed from a
pseudo-random number generator, p_r . p_r must produce
repeatable sequences for a given seed. One way to derive
the seed is from (StrToL4(filename) + i), which is used to
initialize the pseudo-random function to compute Xi .

The storage system of a CM server requires that disks
be scaled (i.e., added or removed) in which case the striped
objects need to be redistributed to maintain a balanced load.
Disks can be added to the system to increase overall band-
width and capacity or removed due to failure or space con-
servation. We use the notion of disk group as a group of disks
that is added or removed during a scaling operation. With-
out loss of generality, a scaling operation on a storage system
with D disks either adds or removes one disk group. Scaling
up will increase the total number of disks and will require a
fraction of all blocks to be moved onto the added disks in or-
der to maintain load balancing across disks. Likewise, when
scaling down, all blocks on a removed disk should be ran-
domly distributed across remaining disks to maintain load
balancing. These block moves are the minimum needed to
maintain an even load. Note that disk removals are only used
for scaling down a system and conserving space. A disk re-
moval and a disk failure are different in that data must be
moved off of a disk before it is removed. With disk failures,
data cannot be moved off a priori so a fault tolerance tech-
nique such as RAID-5 can be used in conjunction with RDL
to prevent data loss. Our work is orthogonal to fault toler-
ance techniques such as RAID-5 since, in our scenario, each
disk represents a logical storage unit and can potentially be
a RAID device itself. Thus, our focus in this paper is on the
issue of storage scalability.

We have previously developed the Random Disk Label-
ing algorithm to assign blocks to homogeneous disks using
block signatures [23]. However, a homogeneous disk group
may not be available at the time of scaling due to advance-
ments in storage technology [7]. Thus, larger, faster, and
more cost-effective heterogeneous disks must be used when

3 http://www.archive.org/
4 StrToL is a C function that converts a string into a long integer.

scaling to increase the overall bandwidth and capacity char-
acteristics of the storage system. The number of blocks on
each disk should be proportional to both these characteris-
tics. Load balancing according to just bandwidth may over-
flow some disks earlier than others since a disk with twice
the bandwidth may not necessarily have twice the capacity.

In this paper, we propose the BroadScale algorithm for
the disk assignment and scaling of heterogeneous disks. In
addition to a block signature, a disk weight is assigned to
each disk depending on its capacity and bandwidth. We will
show that the system is load balanced after blocks are allo-
cated according to both block signatures and disk weights.

As disks are added to and removed from the system, the
location of a block may change. Our objective of course is to
quickly compute the current location of a block, regardless
of how many scaling operations have been performed. More-
over, we must ensure an even load on the disks and minimal
block movement during a scaling operation. We summarize
the requirements more clearly as follows.

Requirement 1 (even load): If there are B blocks stored
on D disks, maintain the load so that the expected number
of blocks on disk d is approximately wd∑D−1

j=0 w j
× B where wd

is the weight of disk d .
Requirement 2 (minimal data movement): During the ad-

dition of n disks on a system with D disks storing B blocks,

the expected number of block moves is
∑D+n−1

j=D w j
∑D+n−1

j=0 w j
× B. Dur-

ing the removal of n disks,

∑
w j ∈R w j

∑D−1
j=0 w j

×B blocks are expected

to move where R is the set of disk weights of disks to be re-
moved.

Requirement 3 (fast access): The location of a block is
computed by an algorithm with space and time complexity
of at most O(D) and requiring no disk I/O. Furthermore,
the algorithm is independent of the number of scaling oper-
ations.

We will show that the proposed BroadScale algorithm
solves the problem of scaling heterogeneous disks while
upholding Requirements 1, 2, and 3. With BroadScale, ac-
curately computing disk weights could result in fractional
weight values. Since BroadScale operates on integer weight
values, the fractional portions, termed weight fragments,
are wasted and cause load imbalance. For example, a disk
weight of 3.5 has a wasted weight of .5. These weight frag-
ments can be reclaimed through two techniques, disk clus-
tering and fragment clustering. These techniques lead to less
weight fragmentation even though additional block moves
are incurred when scaling disks. However, we show through
experimentation that this additional movement is marginal.

The remainder of this paper is organized as follows.
Sect. 2 gives background on our Random Disk Labeling al-
gorithm which is the basis for BroadScale. In Sect. 3, we de-
scribe our BroadScale algorithm. In Sect. 4, we introduce the
concept of disk clustering and how they reduce inefficien-
cies in BroadScale. In Sect. 5, we describe another technique
called fragment clustering. Section 6 describes related work.
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In Sect. 7, we describe our experiments. Finally, Sect. 8 con-
cludes this paper and Sect. 9 discusses future research.

2 Random Disk Labeling (RDL)

In this section, we provide background on our Random Disk
Labeling (RDL) algorithm [23] for the scaling of homoge-
neous disks. Then, we give an initial attempt of using RDL
for the scaling of heterogeneous disks.

2.1 Scaling with homogeneous disks

We adapt a hashing technique called double hashing to solve
our problem of efficient redistribution of data blocks dur-
ing disk scaling. Generally speaking, double hashing ap-
plies to hash tables where keys are inserted into buckets. We
view this hash table as an address space, that is, a memory-
resident index table used to store a collection of slots. Each
slot can either be assigned a disk or be empty. Some slots are
left empty to allow for room to add new disks. We can think
of block IDs as keys and slots as buckets.

We design our address space for P slots (labeled
0, . . . , P − 1) and D disks where P is a prime number, D is
the current number of disks, and D ≤ P . For this approach,
we use a random allocation of disks where we randomly
place D disks among the P slots. We can simply think of
D disks which are labeled with random slots in the range
0, . . . , P −1, but we use the concept of disk occupying slots
to help visualize our algorithm.

As explained in Sect. 1, each block has a signature, Xi ,
generated by a pseudo-random number function, p_r1. To
determine the initial placement of blocks, we use a block’s
signature, Xi , as the seed to a second function, p_r2, to
compute a random start position, sp, and a random step
length, sl, for each block. We want to probe slots until a
slot containing a disk is found. The sp value, in the range
0, . . . , P − 1, indicates the first slot to be probed. The sl
value, in the range 1, . . . , P −1, is the slot distance between
the current slot and the next slot to be probed. We probe by
the same amount, sl, in order to guarantee that we search all
slots in at most P probes. As long as P is relatively prime
to sl, this holds true [10]. Since P is a prime number, we
can guarantee at most P probes. The first slot in the probe
sequence that contains a disk becomes the address for that
block.

Example 1 In Fig. 1, assume we have 5 disks randomly as-
signed to 101 slots (D = 5, P = 101). Using the blocks’

0 100193

Block
sp=3, sl=76

Block
sp=46, sl=20

46 66 865
P-1

0 1

10

53 71

Fig. 1 Placement of two blocks. Block 0 initially hits and block 1 ini-
tially misses (D = 5, P = 101)

63 8710 34 58 825

Block i with
sp=63, sl=24

New disk added
to Slot 10

Block i
is moved

41 48 69 97

Fig. 2 Probe sequence of block i before and after a disk add operation
j . Block i moves from disk 5 to disk 10 after disk 10 is added

signature Xi , we compute sp and sl for blocks 0 and 1. For
block 0, sp = 3 and sl = 76. Slot 3 has a disk so this be-
comes the address for block 0. For block 1, sp = 46 and
sl = 20. Slot 46 does not contain a disk so we traverse
block 1’s probe sequence, probing by 20 slots and wrapping
around if necessary, until we arrive at slot 5.

For an addition operation, n disks are added to n ran-
domly chosen empty slots. Then each block is considered
in sequence (0, . . . , B − 1) and, without actually access-
ing the blocks, we compute Xi , sp, sl, and the new loca-
tion for block i . If the new location is an old disk, then the
block must already lie on this disk so no moving is neces-
sary. Clearly in this case, the probe length remains the same
as before. However, if the new location is a new disk, then
we continue with the probe sequence to find the block at its
current location in order to move it to the new disk. In this
case, the probe length becomes shorter since, before this add
operation, this new location was also probed but was empty
so probing continued.

Example 2 Figure 2 shows an example of adding a new disk
to a set of 5 disks. The disk is added to the randomly chosen
slot 10. Here, sp = 63 and sl = 24 so the probe sequence
is 63, 87, 10, 34, 58, 82, 5 and block i belongs to the disk in
slot 5. After scaling operation j , a disk is added to slot 10
and block i moves from the disk in slot 5 to the disk in slot
10 since slot 10 appears earlier in the probe sequence. The
resulting probe sequence is 63, 87, 10.

Without loss of generality, disks are randomly chosen
for removal. For removal operations, we first mark the disks
which will be removed. Then, for each block stored on these
disks, we continue with its probe sequence until we hit an
unmarked disk to which we move the block. The probe
length is now longer (but no longer than P trials) to find
the new location. This can be illustrated as the reverse of
Example 2. We reiterate that disk removals and disk failures
are different and that our scalability techniques are orthogo-
nal to fault tolerance techniques.

In all cases of operations, the probe sequence of each
block stays the same. It is the probe length that changes
depending on whether the block moves or not after a scal-
ing operation. Hence, the scaling operation and the exis-
tence of disks will dictate where along the probe sequence
a block will reside. After any scaling operation, the block
distribution will be identical to what the distribution would
have been if the disks were initially placed that way. The
amount of block movement is minimized since blocks only
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move from old disks to new disks. For any sequence of scal-
ing operations, RDL will result in a uniform distribution of
blocks across homogeneous disks since blocks have an equal
chance of falling into any slot. Also, blocks are quickly ac-
cessible since locating blocks only requires a maximum of
P probes within the memory-resident address space.

Finally, there is a trade-off between large and small P
values [23]. We want to set P to a large enough value to
allow for more scale-up room since the maximum number
of disks that the storage system can scale up to is P . How-
ever, large P’s require more probing since there are more
empty slots to probe. Ideally, the growth rate of the storage
system should be gauged beforehand to determine a good
P . A system administrator could estimate the growth rate of
the system and chose a P value which is effective for a cer-
tain amount of time. Once the number of disks reaches P
(i.e., the slots are exhausted), a complete reorganization of
the data blocks is required in order for P to be increased to
allow for further scale-up.

2.2 Scaling with heterogeneous disks

In a heterogeneous disk system with different capacities and
bandwidths, certain disks will tend to be favored more than
others. If a disk has, for example, twice the bandwidth and
capacity of the others, we want twice the amount of blocks
hitting it. This means that the block assignments will not be
uniform and must follow some weighting function, where
each disk has an associated weight. We can achieve this by
applying the filter method to RDL so that blocks do not end
up on the first disk they hit in their probe sequence. Instead,
they probe disks one-by-one until the filter method finds a
target disk, based on the disk weight. The higher the weight,
the more likely its corresponding disk will be a hit. We de-
scribe this method below as well as discuss its main draw-
back of extra block moves.

Given any block i , let the following denote its probe se-
quence: P = {d0, d1, . . . , dD−1} where d j is a disk and is

0

f = 1/20

1

f = 11

Probe sequence

f = 1/30

0

f = 1/21

Probe sequence

1

f = 12

0

f = 1/30 f = 1/21

Probe sequence

1

f = 12

2

When adding a disk 
to a position other 
than the front of 
the probe sequence 
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Block that 
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be evenly 
distributed
between 
disks 2 and 1.
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1

0
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c.

2

Fig. 3 Figure 3a shows an initial group of two disks. Disk 2 is added to the front of the probe sequence in Fig. 3b and to the middle in Fig. 3c

unique within the probe sequence. Moreover, disk weights
are assigned based on their bandwidth and capacity. We give
details on determining disk weights in Sect. 3. The corre-
sponding weights for the disks that are probed are given by:
W = {w0, w1, . . . , wD−1}.

We now use the filter method for placing block i on a
disk along its probe sequence. We define a filter value for
each of block i’s probes: F = { f0, f1, . . . , fD−1} where:

f j = w j
∑D−1

k= j wk
(1)

It is easy to see that 0 < f j ≤ 1 for all j and fD−1 = 1.
In order to determine which disk this particular block be-
longs to, we use its signature Xi and the disk identifier, d j ,
as seeds to a multi-seeded pseudo-random number function
to generate a pseudo-random number r j between 0 and 1.
Starting with j = 0 to D − 1, we find the first disk d j of P ,
where r j ≤ f j , to put block i .

We can now easily apply the filter method directly to
RDL with varying disk weights by using filter values com-
puted from Eq. 1. However, block movement after scaling
will not be minimized in this way. The movement can only
be minimized (moving only from old to new disks) if disks
are added to or removed from the front of the probe se-
quence. Since every block has a different probe sequence,
this will not be possible so some blocks will move from old
disks to other old disks.

Thus, this characteristic of the filter method is undesir-
able and violates Requirement 2 (minimal data movement).
Example 3 illustrates the additional amount of block move-
ment when disks are not added to the front of the probe se-
quence using the filter method with RDL.

Example 3 Consider a homogeneous case of the filter
method with RDL where initially D = 2. In Fig. 3a,
P = {0, 1}, W = {1, 1}, and F = {0.5, 1}. Using Xi and
d0 = 0 as seeds, we compute a pseudo-random number, r0.
If r0 ≤ 0.5 we place block i on disk 0, or disk 1 otherwise.
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In Fig. 3b, we add disk 2 to the front of the probe sequence.
Here, P = {2, 0, 1}, W = {1, 1, 1}, and F = {0.33, 0.5, 1}.
We recompute r0 using Xi and d0 = 2 as seeds. If r0 ≤ 0.33
we place it on disk 2, otherwise we compute r1 using Xi and
d1 = 0 as seeds. Now if r1 ≤ 0.5 block i is placed on disk
0, or disk 1 otherwise. In this case, if block i moves, it only
moves from an old disk to a new disk. However, in Fig. 3c,
if disk 2 is added between disk 0 and 1, then block i could
move from disk 0 to disk 1, old disk to old disk.

Even though the filter method does not work directly
with RDL for heterogeneous disks, we will use a similar
filter method as a component of our BroadScale algorithm
described later in Sects. 4 and 5. In Sect. 3, we introduce
BroadScale, an algorithm similar to RDL, which maps mul-
tiple slots to a single disk to support heterogeneous disks.

3 Disk weights

We have shown how RDL [23] can scale the size of a multi-
disk system consisting of homogeneous disks using a ran-
dom placement of the data. With the introduction of hetero-
geneous disks, a uniform distribution of blocks from RDL
will not enable the disks to be fully utilized, assuming that all
blocks are equally popular. In general, larger and faster disks
should hold more blocks. Using the filter method with RDL
attempts to achieve this, as described in Sect. 2.2, but leads
to an undesirable characteristic of additional block moves.

In this section, we will describe our technique called
BroadScale which extends RDL for the support of hetero-
geneous disks. BroadScale is based on RDL but the main
difference is that each disk can be mapped to multiple slots
depending on the weight value of the disk. In Sect. 3.1, we
describe how to compute disk weights assuming a static
group of disks that have different bandwidth to space ra-
tios (BSR). In Sect. 3.2, we describe how to compute disk
weights for a dynamically growing group of disks.

3.1 Disk weights for a static disk group

Instead of using the filter method directly with RDL, Broad-
Scale assigns multiple slots to a single disk. The more slots
assigned to a disk, the more blocks this disk will contain.
We call the number of slots assigned to a particular disk the
weight of the disk. Each disk may or may not have a different
weight depending on its two characteristics: bandwidth5 and
capacity, measured in bits/second and bytes, respectively.
Computing the weight from a combination of bandwidth and
capacity is also described in [8]. Clearly, a disk of weight 10
will have twice as many blocks assigned to it than a disk of
weight 5.

The weight of disk d is unitless and is computed by
its normalized bandwidth Bd/BMAX or normalized capacity

5 For simplicity, we use the average bandwidth since multi-zoned
disks have various bandwidth characteristics.

Cd/CMAX or a combination of both. When both bandwidth
and capacity are considered, a system administrator could
optionally set the weight to w′

d according to:

w′
d = Bd

BMAX
× β + Cd

CMAX
× (1 − β) (2)

where β is the percentage of bandwidth contribution to w′
d .

β is a tuning mechanism for the system administrator to ad-
just between the priorities of bandwidth and capacity. BMAX
and CMAX can be set to estimated future maximum band-
width and capacity values. Since w′

d ’s could be fractional
numbers, we can divide them by wG , which is the greatest
common factor (GCF)6 of the w′

d ’s, to obtain integer values
for the weights. Hence, the disk weight, wd , is computed
using:

wd = w′
d

wG
(3)

Note that this assumption of wd being an integer
value may change when new disks are added resulting in
weight fragmentation. Later, we reduce this fragmentation
in Sects. 4 and 5.

Example 4 Suppose we have 2 disks where B0 = 10 MB/s,
C0 = 20 GB, B1 = 20 MB/s, and C1 = 40 GB. If the
disk weights should only depend on bandwidth (β = 1) and
BMAX = 40 then wG = 0.25, w0 = 1, and w1 = 2.

When computing disk weights, inefficiencies arise when
the bandwidth to space ratio (BSR) of the disks are not all
identical. If β = 1 then the number of blocks on disks de-
pends solely on their bandwidth where wd = Bd/wG . The
storage capacity utilized on each disk will be equivalent to
the capacity of the disk with the highest BSR. Thus, some
capacity will be left unused on those disks with lower BSRs.
However, a restriction may occur on disks with higher BSRs.
These disks will fill up more quickly than other disks since
they have proportionally less capacity. In this case, the band-
width of these disks will not be fully utilized. To create more
room on these disks, more disks need to be added.

In Fig. 4a, wd = 1 for d = 0, 1, 2 so each disk is as-
signed to one slot and receives an equal number of blocks.
Disks 0 and 1 have under-utilized storage capacities because
β = 1, indicating that the aggregate bandwidth should be
fully-utilized. Hence, the maximum aggregate amount of
useful storage is the capacity of the disk with the highest
BSR multiplied by D.

On the other hand, if β = 0 then the amount of blocks
on disks depends solely on their capacity so larger disks
will contain more blocks, even if they have little bandwidth.
Here, wd = Cd/wG . The bandwidth of disks with lower
BSRs will be more stressed since they have proportionally
less bandwidth than disks with higher BSRs. In this case,
disks are restricted by their bandwidths since they might

6 Since GCFs are traditionally integers, we can multiply the w′
d val-

ues by 10x (where x is a user-defined precision value), truncate them
to a whole number, and find the GCFs for these values instead.
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BSR = 0.31

BSR = 0.61
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0

C  =
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C  =
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1

β = 1 BSR = 0.31

BSR = 0.61

BSR = 1.23

Slots

C  =
148 GB

0

C  =
37 GB

2

C  =
74 GB

1

β = 0w  = 1d

w  = 1d

w  = 1d

w  = 4d

w  = 2d

w  = 1d

a. b.

Disk 0 Disk 1 Disk 2 Disk 0 Disk 1 Disk 2

Fig. 4 Figure 4a shows unused capacity in disk 0 and 1 when β = 1. Figure 4b shows potential bottlenecks at disk 0 and 1 when β = 0.
Bd = 45.5 MB/s for all disks

be slowed considerably. Figure 4b shows an example of
this case where disks 0 and 1 contain more blocks than
disk 2 but all have the same bandwidth. Since all blocks
have an equal chance of being accessed, more block re-
quests will be delivered to disks 0 and 1, creating potential
bottlenecks.

Therefore, we can determine the weight of disk d using
Eq. 3 to obtain an integer weight value that can map slots to
disks. Next, we explore how to determine disk weights for a
dynamically growing disk group.

3.2 Disk weights for a dynamic disk group

Since we allocate slots (and therefore blocks) to disks ac-
cording to the weight of each disk, dividing the weight by a
factor will have the effect of changing the number of slots
allocated to the disk. Let’s use w′

F to denote the dividing
factor in general. The trade-off is that small w′

F values lead
to larger wd values, which tend to make any fractional value
of the weight relatively insignificant but will require more
slots. Having more slots increases the storage requirements
of the address space, but more significantly, increases the to-
tal amount of probing to locate blocks [23]. On the other
hand, larger w′

F values lead to smaller wd values which
could result in under-utilized disk resources due to the more
significant fractional value of the weight.

Trend reports, such as [7], of the growth rate of magnetic
disk technology allow us to estimate the characteristics of
disks that will be manufactured in the near-future. We can
use these estimations to help us determine w′

F . For example,
if a system administrator anticipates adding new disks one
year from now, w′

F can be computed from estimations of
these disks’ characteristics given the current trend of tech-
nology.

However, when disks are added to the system much
later in the far-future, estimations of their characteristics
(and therefore w′

F values) are more inaccurate. This in-
accuracy could lead to fractional weight values and cause
under-utilization of new disks. Higher disk utilization can
be achieved by updating w′

F , however, this will impose high
data reorganization costs.

We can better utilize unpredictable far-future disks with-
out using an over-abundance of slots by using an estimation
of w′

F which we call the estimated common factor (ECF) of
the total weight, or w′

E,α . The w′
E,α of a new disk group is

computed such that the combined bandwidth and capacity
usage will be at least α percent. w′

E,α is computed by Eq. 4:

∑D−1
j=0 (w′

j mod w′
E,α)

∑D−1
j=0 w′

j

= 1 − α

100
(4)

where D is the total number of disks in the new group
and the numerator adds up all the fractional portions of the
weights.

Therefore, w′
E,90 gives the ECF of the aggregate weights

such that the utilization is at least 90%. Figure 5 shows the
largest value of w′

E,90 that still achieves at least 90% uti-
lization. Since far-future adds most likely involve disks with
higher bandwidth and larger capacity, the weights of the
new disks will be larger, thus the fractional weight portion
will be smaller. For the rest of this paper, we refer to frac-
tional weight values as the weight fragmentation of a group
of disks. Fragmented weights, caused by the shaded regions
in Fig. 5, lead to an under-utilization, or waste, of the disk
weight (e.g., a weight of 3.5 has .5 of wasted weight).

We arrive at Eq. 5 which maintains at least an α percent
of utilization for near- and far-future scaling operations.

wd = w′
d

w′
E,α

(5)

ECF

ECF

ECF

ECF ECF

ECF

ECF

ECF

ECF

Total shaded
region is 10%
of total disk
bandwidth.

Total unshaded
region is 90%
of total disk
bandwidth.

ECF

Fig. 5 Total bandwidth of four disks. In this case, w′
E,90 is the ECF
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Note that wd may not be an integer value when a hetero-
geneous disk d is added. This is a problem since wd is the
number of slots assigned to disk d , which of course cannot
be fractional. In Sects. 4 and 5, we describe two approaches
for reducing the waste associated with weight fragmenta-
tion.

4 Disk clustering

The disk weights, as described in the previous section, might
be fragmented and hence cannot be mapped directly to an
integer number of slots in RDL’s address space. In this sec-
tion, we explore how to map fragmented disk weights to
slots using disk clustering where clusters have almost inte-
ger weights. For example, a disk weight of 1.5 cannot be
mapped to 1.5 slots, but it can be clustered with another disk
of weight 2.5 and mapped together to four slots. The idea is
to try to reduce the fractional portion of the aggregated disk
weights in each cluster as much as possible. Then each clus-
ter is assigned to one or more slots instead of each disk being
assigned to slots. Actually, now the slots have no knowledge
of the disks at all. The higher the cluster weight, the more
slots it is assigned to and the more blocks that will be as-
signed to the cluster. A question that remains is that after a
block is assigned to a cluster, which disk should it reside on
within the cluster?

For the rest of this section, we first describe the simple
case of clusters with only one disk. Then we show that us-
ing multiple disks per cluster can reduce the waste of disk
resources. Finally, we describe how to locate a disk within a
disk cluster for block assignment. We are not concerned with
the terms disk bandwidth and capacity in our discussions in
Sects. 4 and 5 since they have both been translated into the
concept of disk weights.

4.1 Single disk clusters

One method to accommodate disks with fragmented weights
is to simply use �wd� as the weight of disk d . Effectively,
this method uses disk clusters that each contain only one
disk. For each cluster, the maximum amount of waste would
then be less than one unit of weight.

If the weights of new disks are relatively high then the
percentage of waste may not be significant. However, some
low disk weights may actually be less than 1 in which case
they cannot be mapped to any slots and are, in effect, unus-
able. The single-disk cluster solution may suffice for steady
or increasing disk weights as disks are added, but is clearly
inadequate for fragmented, low disk weights.

4.2 Multiple disk clusters

By logically clustering multiple disks together, we can re-
claim the fractional portions of the disk weights and re-
duce the amount of waste. Instead of using individual disk

weights, cluster weights map a cluster of one or more disks
to the appropriate number of randomly chosen slots.

The fragmentation of a cluster’s weight can decrease as
disks are added to the cluster. The cluster’s weight is the sum
of its disks’ weights. The objective is for the cluster weight,
wc, of cluster c to be as close to �wc� as possible. Since it
may be hard for wc to be exactly equal to �wc�, the cluster
is said to be full when (wc − �wc�) ≤ (1 − ε). ε is specified
by the user to indicate when a cluster is full (i.e., ε × 100
percent full). Thus, when ε = 0.95, a cluster is full when the
fractional portion of wc is less than 0.05. A new disk, d , is
either added to an existing non-full cluster or it is added to
a new empty cluster by itself. The disk is added to a cluster
such that the fractional portion of wc is reduced after the
inclusion of wd . In other words, disk d is added in such a
way that the overall waste of the storage system is reduced.

To decide where a new disk is added, we can generalize
our problem to the classical bin packing [4] problem. The
objective of bin packing is to pack variable-sized items in as
few bins as possible thus, each bin becomes as full as possi-
ble. Our main objective is also to pack each cluster as full as
possible with disks. For our problem, we will only consider
the fractional portion of the disk and cluster weights. Disks
are items and clusters are bins, but the fractional portion of
the disk weights are the item sizes and the clusters (bins) are
of size 1. A slight difference to traditional bin packing is that
a disk can only be packed into a cluster if it reduces the frac-
tional portion of the sum of the disk sizes in that cluster. An
easy way to translate this back to traditional bin packing is
to use Eq. 6 to compute disk sizes:

s(wd) = 1 − (wd − �wd�) (6)

where wd is a disk weight and s(wd) is the disk size. Hence,
by packing disks into clusters of size 1, the weight fragmen-
tation of clusters is reduced.

With traditional bin packing, all items (disks) are known
beforehand so an optimal packing arrangement does exist
even though it cannot be found in polynomial time (an NP-
hard problem). However, since we have no prior knowledge
of how many future disks there are, we must optimally rear-
range the entire packing for each new disk, requiring most
blocks to be moved each time. Obviously, this solution is in-
feasible. Therefore, we use a heuristic such as the Best Fit [4]
algorithm to optimize the placement of just the next disk to
be added. Using Best Fit, disk d should be placed in a cluster
that has current size closest to, but not exceeding, 1−s(wd).
If this results in multiple clusters then the one with the low-
est index is chosen as the tiebreaker. If disk d does not “fit”
into any of the clusters, a new cluster is created with disk d .
Thus, Best Fit searches all the clusters and picks the best one
to which the disk should be added.

Large-scale storage systems may have on the order of
10, 000 disks (e.g., Lustre) so an exhaustive search to find
the best cluster to place a disk may be computationally inten-
sive. In these cases, the First Fit [4] algorithm may be more
appropriate since it simply picks the first cluster in which the
disk fits. First Fit and Best Fit are both good approximations
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Fig. 6 Four clusters of disks. Each cluster is mapped to one or more
slots. The disks are heterogeneous but do not appear so in order to
simplify the figure

to the optimal solution of traditional bin packing since they
require at most 70% more bins than the optimal number of
bins [4].

After disk d is added to cluster c, the number of slots
assigned to the cluster is �wc�. If this represents an increase
in slots, then more empty slots are randomly assigned to the
cluster. Figure 6 shows four clusters of disks, each mapped
to one or more slots. Without loss of generality, removing a
disk from cluster c reduces wc and slots are randomly cho-
sen to be unassigned to this cluster. Using RDL and the con-
cept of disk clusters, blocks are uniformly distributed across
the slots and are thus proportionally distributed across the
clusters based on �wc�. Now we can find which cluster a
particular block belongs to using the slot to cluster mapping.
In the next section, we describe how to find a particular disk
within a cluster for the block.

4.3 Locating a disk within a cluster

Once a disk cluster is found for a block using RDL, we must
locate a disk within the cluster for the block to reside. The
likelihood that a block will land on disk d within a cluster c
is wd/wc since this is the percentage of weight of this disk
among all the disks in the cluster. To achieve this distribu-
tion, we use the filter method described in Sect. 2.2 except
that the probe sequence is only of the disks within the clus-
ter with the first disk of the sequence being the most recently
added one. More importantly, the probe sequence is now the
same for all blocks.

To locate a disk, first we logically arrange the disks
within the cluster in decreasing order of their disk identi-
fiers, d . Note that these disk numbers may not be contiguous
within a cluster since new disks could have been added to
different clusters at different times. Then, for each disk in
this sequence starting with the first disk (the one with the
highest disk identifier), we use the signature, Xi , of block i
and the disk identifier, d , as seeds to a pseudo-random num-
ber function to generate a random value, r0, in the range
0 . . . 1. One example of a well-performing function,7 as sug-
gested by [20], is:

srand(d)
srand(rand()^X)
r = rand()/R

7 There are other types of pseudo-random number functions to con-
sider, but finding a good one is hard [13].
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Fig. 7 After disk 8 is added, a new slot is mapped to cluster 3 since w3
increases. Some blocks in clusters 0, 1, 2 are moved to disks 8, 6, and
4

where R is the range of rand(). Next, if r0 is less than or
equal to the filter value, f0, then block i should reside on the
0th disk of cluster c’s probe sequence. If r0 > f0 then we
compare r1 and f1 to determine if the block should reside on
the 1st disk, and so on. This filter value is computed using
Eq. 7, similar to Eq. 1.

f j = w j
∑Dc−1

k= j wk

(7)

where Dc is the number of disks in cluster c and w j is the
weight of the j-th disk in the cluster’s probe sequence.

Since new disks are always added to the front of the
probe sequence for cluster c, we can guarantee that blocks
will only move from the old disks to the new disks within
the cluster. However, some blocks from outside the cluster
may move to the old disks within the cluster as shown in
Fig. 7. This occurs when adding a disk to a cluster increases
the cluster weight, wc, by more than 1 and causes an in-
crease in slots that are mapped to the cluster. Thus, RDL
will move some blocks from every old slot to the new slots.
Blocks that are assigned to the new slots all have a chance
of landing on any disk in the cluster, so some blocks may
end up on an old disk of the cluster. We will show in Sect. 7
that the amount of this additional movement is not signifi-
cant. Note that the movement from old disks to old disks will
not cause any unevenness in the block distribution, only the
consumption of additional disk bandwidth and possibly ad-
ditional network bandwidth if the disks are separated across
a network. We will also explain in Sect. 7 that having larger
clusters requires more computation to locate disks within a
cluster. Thus, the trade-off is between less computation or
less wasted disk weight.

Finally, disk removals are handled in a similar reverse
fashion as disk additions. If a disk is removed from a clus-
ter and the new �wc� is less than the previous �wc�, then
this cluster should be mapped to fewer slots. In this case,
slots are randomly chosen to be unmapped from the cluster
and blocks are moved off of the cluster accordingly. A small
amount of block reorganization will occur within the clus-
ter if the removed disk is not the first disk in the probe se-
quence of the cluster since we are using the filter method to
locate blocks within the cluster. However, since the number
of these old disk to old disk block moves is small and oc-
curs only within one cluster, the amount of these additional
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moves is insignificant compared to the overall number of
moves.

5 Fragment clustering

As described in the previous section, disk clustering is a way
to reduce the overall weight fragmentation by selectively
adding disks to clusters, thereby reducing cluster weight
fragmentation. Another approach to reducing weight frag-
mentation is fragment clustering where only the fractional
portions of the disk weights are clustered together. With
fragment clustering, physical disks are mapped to 1 or more
randomly chosen slots. Then the fractional disk weight por-
tions are grouped together into unit-sized logical disks and
each logical disk is mapped to 1 randomly chosen slot. The
details of this approach are described as follows.

When a new heterogeneous disk d is added to the storage
system, it is mapped to �wd� randomly chosen slots in the
virtual address space. If the fractional portion of wd , namely
wd − �wd�, is greater than 0, its fractional value, along with
a pointer to disk d , is appended as an entry in the unit-sized
Pending Logical Disk (PLD). Figure 8 shows an example
of mapping a disk of weight 3.5 to 3 slots with the frac-
tional weight .5 appended as an entry in the PLD. The frag-
ment clustering algorithm maintains only one PLD, which
stores the currently unutilized weight fragments. The PLD
becomes full when the sum of its fractional values is greater
than or equal to 1.0. Once this sum is greater than 1.0, the
PLD becomes an Active Logical Disk (ALD), and the excess
value of the sum (i.e., sum − 1.0), along with a pointer to d ,
is stored as an entry in a newly allocated PLD. This ALD is
now mapped to a randomly chosen slot. Of course, the num-
ber of ALDs increases as more disks are added, whereas we
only maintain one PLD.

Once the disks are mapped to slots in the manner just
described, data blocks can be assigned to disks using RDL
as normal by probing the slots. Figure 9 illustrates the place-
ment of block 1 directly onto a physical disk and block 2
onto a physical disk via a logical disk (i.e., an ALD). When
a slot mapped to a physical disk is probed, that block is
assigned to the disk. However, when a slot mapped to an
ALD is probed, further computation must be done to deter-
mine which physical disk this block eventually resides on.
To accomplish this, we use the filter method from Sects. 2.2

3.0

Slots

3.5

.5

PLD

Fig. 8 A disk of weight 3.5 is mapped to three slots. The .5 fractional
value along with a pointer to the disk is stored as an entry in the PLD.
The PLD is activated into an ALD when it is full

3.0 2.0 3.0 .5 .5 .4 .6 .2ALD ALD

PLD

3.5 2.9 3.8

1 2

Physical Disks

not yet
active

Fig. 9 Block 1 probes slots using RDL until it lands on the disk with
weight 3.5. Block 2 probes slots and lands on an ALD. Within the
ALD, the filter method determines Block 2 to hit the entry with value
.6 and is forwarded to the disk with weight 3.8. Note that the pointer
of the entry in the PLD is not yet active since the PLD is not yet full

and 4.3 on the ALD, which contains entries of fractional val-
ues summing up to 1.0. Once an entry is found using the fil-
ter method, the pointer within that entry is followed to the
physical disk where the block should be placed.

Since adding new disks will never cause updates to en-
tries in the ALDs (but do cause PLD updates), we do not
need a specific initial ordering (i.e., least recently added to
most recently added) of the entries. However, once an ini-
tial entry ordering is decided from the construction of the
PLD, this ordering must remain the same after conversion to
ALDs.

With disk removals, there will be a small amount of ad-
ditional block moves incurred due to the removal of entries
within ALDs. When a disk is removed, the entry containing
the fractional portion of its weight is also removed causing
an ALD to have a weight of less than one. The remaining
entries in the ALD can be combined with any entries in the
PLD to become a full ALD and/or a partially filled PLD.
Additional block moves will result when some blocks are
moved from non-removed disks to other disks. This will oc-
cur during disk removals since removing an entry in an ALD
will unmap it from a slot and cause blocks in the remain-
ing entries to be relocated. However, these additional block
moves are also a small percentage of the overall moves.

Intuitively, using fragment clustering, the overall amount
of weight fragmentation at any given time will always be less
than 1.0. This fragmentation will only be contributed by the
fractional values in the PLD. When the PLD fills to capacity
(i.e., 1.0), it becomes active and its weight fragments are
utilized. We show that this is true in Sect. 7.

In sum, BroadScale is a technique which first involves
computing a weight for each disk based on bandwidth and/or
capacity as described in Sect. 3. If these weights are not in-
teger values, then we have weight fragmentation and wasted
disk resources will arise. BroadScale reduces weight frag-
mentation through two approaches, disk clustering and frag-
ment clustering. Disk clustering strategically clusters disks
together using either the Best Fit algorithm or the First Fit
algorithm to reduce fragmentation. Fragment clustering is
another approach where the fractional portion of the weights
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are grouped as logical disks. A comparison of disk cluster-
ing with fragment clustering is discussed in Sect. 7 along
with benefits and drawbacks of each.

6 Related work

We describe related work on two categories of applications
to which we can apply our BroadScale algorithm. These cat-
egories are redistributing CM blocks on CM server disks and
remapping Web objects on Web proxy servers.

Previous literature on CM servers have discussed ar-
eas such as distributed architectures and retrieval schedul-
ing [11, 17]. The topic of homogeneous and heterogeneous
disk scaling in CM servers has been the focus of a few past
studies. One study mixes popular (hot) and unpopular (cold)
CM data objects together on heterogeneous disks with dif-
ferent BSRs [3]. Their objective is to maximize the utiliza-
tion of both bandwidth and capacity while maintaining the
load balance. However, the popularity of the objects need to
be known ahead of time to be properly placed. Moreover,
their popularity might change over time (e.g., new movies
tend to be accessed more frequently) so the objects may
need to be moved depending on their current popularity.
Other techniques stripe fixed-size object blocks, described
below, as opposed to storing them in their entirety.

Disk scaling with round-robin data striping is discussed
in [5]. With round-robin, almost all blocks need to be relo-
cated when scaling. The overhead of such block movement
may be amortized over a period of time but it is, never-
theless, significant and wasteful. Wang and Du [22] de-
scribe a technique which assigns weights to disks based
on bandwidth and capacity. However, they also distribute
data blocks in a round-robin fashion, requiring large block
movement overhead when scaling. Another technique called
Disk Merging [24] merges a static group of heterogeneous
physical disks into homogeneous logical disks to maximize
bandwidth and capacity for striped data. This technique is
not intended for dynamic scaling since the system must be
taken off-line and reconfigured, potentially reshuffling many
blocks.

While traditional constrained placement techniques such
as round-robin placement allow for deterministic service
guarantees, random placement techniques are modeled sta-
tistically. The RIO project demonstrated the advantages of
random data placement such as single access patterns and
asynchronous access cycles to reduce disk idleness [12].
However, they did not consider the dynamic rearrangement
of data due to disk scaling. Although they do not require
prior knowledge of object popularity for full utilization of
heterogeneous disks’ aggregate bandwidth, their solution re-
quires data replication for short- and long-term load balanc-
ing [15]. In one scenario, they require at least 34% block
replication for 100% bandwidth utilization. Another study
focused on the trade-off between striping and replication
for load balancing [2]. For large systems, the extra stor-
age needed for replication becomes more significant. In gen-

eral, random placement, or pseudo-random in our case, in-
creases the flexibility to support various applications while
maintaining a competitive performance [16]. We developed
a prior technique called SCADDAR that redistributes data
blocks after homogeneous disk scaling in a CM server by
mapping the block signatures to a new set of signatures for
an even, randomized distribution [6]. SCADDAR supports
disk additions just as well as disk removals. SCADDAR ad-
heres to the requirements of Sect. 1 except that the com-
putation of block locations become incrementally more ex-
pensive. Finding a block’s location requires the computation
of that block’s location for every past scaling operation, so a
history log of operations must be maintained. In comparison,
our RDL and BroadScale algorithms are fast in computation
even though they are limited by the total number of disks
(i.e., P).

Another technique to scale heterogeneous disks is de-
scribed in [8]. This technique attempts to achieve similar
requirements in load balancing, minimal block moves, and
fast data access. However, its major drawback is that is does
not allow disk removal scaling operations. Our SCADDAR,
RDL, and BroadScale algorithms support both additions and
removals of homogeneous and heterogeneous storage de-
vices.

Several past works have considered mapping Web ob-
jects to proxy servers using requirements similar to those
described in Sect. 1. Below we describe two relevant tech-
niques called highest random weight (HRW) and consistent
hashing along with their drawbacks.

HRW was developed to map Web objects to a group of
proxy servers [20]. Using the object name and the server
names, each server is assigned a random weight. The ob-
ject is then mapped to the highest weighted server. After
adding or removing servers, objects must be moved if they
are no longer on the highest weighted server. The drawback
here is that the redistribution of objects after server scaling
requires B × D random weight function calls where B is
the total number of objects and D is the total number of
proxy servers. A simple heterogeneous extension to HRW is
described in [14], but suffers from the same computational
complexity. We show in [23] that in some cases HRW is sev-
eral orders of magnitude slower than our RDL technique. An
optimization technique for HRW involves storing the ran-
dom weights in a directory, but the directory size will in-
crease as B and D increase causing the algorithm to become
impractical.

Consistent hashing is another technique used to map
Web objects to proxy servers [9]. Here objects are only
moved from two old servers to the newly added server. A
variant of consistent hashing used in a peer-to-peer lookup
server, Chord, only moves objects from one old server to the
new server [19]. In both cases, the result is that objects may
not be uniformly distributed across the servers after server
scaling since objects are not moved from all old servers to
the new server. With Chord, a uniform distribution can be
achieved by using virtual servers, but this requires a consid-
erable amount of routing meta-data [1].
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7 Experiments

In this section, we describe our simulation experiments to
validate our BroadScale algorithm. First, we show that data
blocks are distributed across the disks according to the disk
weights. The higher the weight, the more blocks will reside
on the corresponding disk. Next, we measured the amount
of weight fragmentation from disk clustering and fragment
clustering. With disk clustering, varying the size of the clus-
ters affects the amount of fragmentation. Then, we show that
the additional amount of block movement using disk clus-
tering is not significant compared to the overall number of
moves. This movement is even lower with fragment cluster-
ing. Finally, the average and maximum number of probes is
shown for disk and fragment clustering.

For all of our experiments, we distributed approximately
750, 000 blocks across 10 initial disks, which is a realistic
starting point. We set the total number of slots to 1, 511
(i.e., P = 1, 511) because we need room to add disks and
multiple slots are mapped to each disk depending on the disk
weight. We computed disk weights for a dynamic disk group
using Eq. 5 by setting β = 1, where the number of blocks on
disks depends solely on disk bandwidth. We set α = 90%
so that at least 90% of the aggregated disk weight is uti-
lized to determined the number of blocks per disk. When
simulating disk scaling, we assume a 10-disk add operation
is performed every 6 months. For this time period, industry
trends suggest that disk bandwidth increases 1.122× in [7],
and disk capacity increases 1.26× following Moore’s Law.
Our added disks follow these trends.

The disk weights are used to indicate how many blocks
should reside on a disk relative to other disks. Since the
number of slots assigned to a disk is roughly equal to the
disk weight, more slots assigned to the disk will result in
more blocks for the disk. Figure 10 shows blocks distributed
across 10 disks by BroadScale. For illustration purposes,
these disks vary widely in bandwidth and, therefore, in
weight. After distributing the blocks, the trend of the amount
of blocks per disk follows the trend of the disk weights. The
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Fig. 10 The number of blocks per disk follows the same trend as the
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blocks per disk (w.r.t. the left axis) and the disk weights
(w.r.t. the right axis) are overlaid together on the same fig-
ure to show their similarity. Moreover, as expected, Fig. 10
shows that the normalized curve (w.r.t. the left axis) is quite
uniform across disks. The normalized curve is computed as
(blocks on disk d/weight of disk d).

We assume that all data blocks have a similar probabil-
ity of being accessed. However, the block access will be load
balanced even for skewed access distributions, such as a Zipf
distribution, when storing a large number of files using ran-
dom block placement. If certain files are more popular than
others, the blocks in these popular files will be randomly dis-
tributed across all the disks just as the blocks in unpopular
files. In this case, the number of popular blocks on each disk
is similar. Furthermore, certain blocks within a file may be
more popular than other blocks within that file. Again, ran-
domly distributing all blocks will result in a similar number
of popular blocks on each disk.

Disk clustering and fragment clustering were two tech-
niques introduced in Sects. 4 and 5. The purpose of cluster-
ing is to reduce the fragmentation of the disk weights, thus
reducing the waste, so that each disk will hold a more ac-
curate number of blocks. Figure 11 shows the aggregated
waste of disk weights using both techniques as the storage
system is scaled by adding 10 disks at a time with 10 ini-
tial disks. For disk clustering, we want to show that the to-
tal amount of unutilized disk weight decreases as clusters
increase in size. When the maximum cluster size, KMAX,
is 1, the effect is that there is no clustering. Here, disk d
is assigned to �wd� slots and the amount of wasted disk
weight is significant. However, increasing KMAX to 2 gives
us much better weight utilization since the clusters are com-
bining fragmented weights. Furthermore, setting KMAX = 3
leads to even greater improvement. We found that disk clus-
ters became full at 3 disks, which is the expected value
of the cluster size, so increasing KMAX beyond 3 gave no
improvement.
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Using the Best Fit algorithm for disk clustering, the ex-
pected value, E(Dc), of the number of disks on cluster c can
be determined by analyzing the fractional part of the disk
weights. Given a disk weight, the expected value of the frac-
tional portion is .5. The second weight must reduce the frac-
tional portion when summed with the first, so the expected
value becomes .25. Each time a weight is added in this way,
the expected fractional value is halved so we have:

0.5E(Dc) = 1 − p (8)

where p is the precision of E(Dc) since 0.5E(Dc) will never
equal 0. For example, with a precision of 0.94, E(Dc) = 4
disks. Solving for E(Dc), we arrive at the following:

E(Dc) = log0.5(1 − p) (9)

Fragment clustering demonstrates the best performance
since the maximum amount of total fragmentation is always
less than a weight of 1.0. This is attributed to the fractional
values stored in the PLD. However, with fragment cluster-
ing, newly added disks are almost never fully utilized since
the PLD contains weight fragments only from these recently
added disks. Nevertheless, this may become insignificant as
the disk weights increase.

There exists a trade-off between low computation and
low weight fragmentation for disk clustering since finding
which disk within a cluster a block resides requires less com-
putation for smaller clusters. To find a block located in clus-
ter c using the filter method, on average, the pseudo-random
function is invoked for half of the disks in c. Hence, finding a
disk within small clusters requires less computation, but re-
sults in more weight fragmentation. However, since the ex-
pected number of disks per cluster, from Eq. 9, is low and
we observe low weight fragmentation in Fig. 11 with small
clusters (of size 3), high computation is not required. For
fragment clustering, we cannot change the size of the PLD,
but the number of PLD entries is low so finding a particular
entry using the filter method is not costly. Below, we observe
the overall amount of block movement of disk and fragment
clustering.

In Sect. 4.3, we explained that adding disks could cause
more blocks to be moved than the minimum that is re-
quired to fill the new disks. This is true of both clustering
approaches. With disk clustering, the additional moves de-
pends on the cluster size. If a disk is added to a new empty
cluster, no extra moves are incurred. If a disk is added to
a non-empty cluster, some blocks will be moved to the old
disks in that cluster in addition to the new disks. Similarly,
fragment clustering will result in these redundant moves
when adding a disk causes the conversion of a PLD to an
ALD. Since the PLD contains fractional entries from old
disks, activating the PLD to an ALD will redistribute data
from old disks to these old entries. However, the amount of
these data moves is low since one ALD is a small component
of the entire storage system.

Figure 12 shows the total amount of block movement
when scaling disks 10 at a time with 10 initial disks. Here
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β = 1 so disk weights only represent the disk bandwidth,
which grows 1.122× every scaling operation. We observe
that the percentage of block moves from an old disk to an-
other old disk is on average 13% of the total moves for
disk clustering. Since cluster sizes tend to be small, from
Eq. 9, and using small clusters is effective, the additional
movement will not be a significant percentage of the total.
We notice a decreasing trend in total block moves since the
10 disks that are added each time require fewer and fewer
blocks to fill them, assuming the number of blocks is con-
stant. A similar test on fragment clustering results in only
around 3% redundant moves since a new ALD is small com-
pared to the actual added disks.

Figure 12 employs the industry growth rate of disk band-
width. For other growth rates, the percentage of old disk to
old disk block movement decreases as higher growth rate
disks are added for both clustering techniques. This is due
to the fractional weight portion being proportionally smaller
than the whole weight of these growing disks. Figure 13
shows the percentage of this redundant block movement

0

2

4

6

8

10

12

14

16

5 10 15 20 25 30 35 40 45

Rate of bandwidth growth per scaling operation (%)

%
 o

f o
ld

 d
is

k 
to

 o
ld

 d
is

k 
bl

oc
k 

m
ov

em
en

t

Disk Clustering

Fragment Clustering

Fig. 13 The average percentage of redundant block movement for var-
ious growth rates



BroadScale: Efficient scaling of heterogeneous storage systems

0

20

40

60

80

100

120

140

160

10 20 30 40 50 60 70 80 90 100

# of disks

A
ve

ra
ge

 p
ro

be
s

5%

25%

45%

0

200

400

600

800

1000

1200

1400

1600

1800

10 20 30 40 50 60 70 80 90 100

# of disks

M
ax

im
um

 p
ro

be
s

5%

25%

45%

Fig. 14 Average and maximum probes for bandwidth growth rates of 5, 25, and 45% (P = 10, 000)

with respect to the growth rate. For each growth rate value,
the average percentage of redundant movement is measured
as disks are scaled. The average percentage is calculated
from 25 trials of each growth rate value with each trial using
a different randomness factor to slightly vary the disk char-
acteristics. From Fig. 13, fragment clustering exhibits less
redundant movement than disk clustering. Redundant moves
results from blocks being redistributed into old disks of a
cluster and old fractional entries of an ALD in disk and frag-
ment clustering, respectively. Fragment clustering has fewer
redundant moves since it isolates these moves to just one
ALD whereas disk clustering isolates these moves across an
entire disk cluster.

Lastly, a higher growth rate when scaling disks should
lead to less probing. The reason is that disks with larger
weights will require more slots. This causes probing to be
more successful in general since there are fewer empty slots
and misses will be less frequent. Figure 14 shows the aver-
age and maximum number of total probes as disks are scaled
10 at a time beginning with 10 disks. The probing results of
disk clustering and fragment clustering are similar and indis-
tinguishable in the figure since the number of cluster group-
ings in each technique are similar. Figure 14a shows that the
average number of probes is lower when scaling disks at a
bandwidth growth rate of 45% than at a growth rate of 5%.
Similar results are shown in Fig. 14b for the maximum num-
ber of probes.

Fragment clustering appears to be superior to disk clus-
tering in weight fragmentation and redundant block moves.
However, one drawback of fragment clustering is the addi-
tional bookkeeping required for the ALD entry pointers to
physical disks. Moreover, within the ALDs and the PLD, the
fractional values must be stored with these pointers. Another
drawback is that newly added disks may not be fully utilized
since their fractional weight portions are stored in the PLD
and not yet activated.

8 Conclusions

BroadScale is a storage scaling algorithm that can benefit
the storage systems of digital libraries and archives. Broad-
Scale allows additions or removals of heterogeneous disks

in a storage system where weights are assigned to disks
depending on their bandwidth and capacity characteristics.
Blocks are distributed among the disks proportional to these
weights. Since only the integer portions of the weight values
can be used to direct block placement, the fractional por-
tions are wasted. However, these wasted portions, or weight
fragments, can be strategically combined using either our
disk clustering or fragment clustering approaches. Broad-
Scale satisfies our scaling requirements of an even load ac-
cording to disk weights, a minimum amount data movement
when scaling disks, and the fast retrieval of data before and
after scaling.

We have shown through experimentation that blocks are
distributed proportionally to the disk weights using Broad-
Scale. Disk scaling could lead to wasted disk weight (i.e.,
weight fragmentation), but can be substantially reduced
through clustering. We observed significant improvement
using larger cluster sizes in disk clustering. However, our
fragment clustering technique is superior in overall weight
fragmentation as well as average percentage of redundant
block moves with a few minor drawbacks such as some ex-
tra bookkeeping. Although fragment clustering outperforms
disk clustering, the additional block moves in either case was
not significant compared to the total moves.

9 Future work

For future work, BroadScale can be extended to allow for
scaling beyond P number of total disks by using an algo-
rithm such as our previous algorithm SCADDAR [6]. For
heterogeneous scaling with SCADDAR, we could use a sim-
ilar weight function and assign disk d to �wd� slots.

We believe BroadScale can be generalized to map any
set of objects to a group of scalable storage units. These ob-
jects might also require a redistribution scheme to maintain a
balanced load. Examples of other applications include Web
proxy servers and extent-based file systems. Scalability in
integrated file systems that support heterogeneous applica-
tions [18] may also benefit from BroadScale.

Furthermore, we wish to integrate fault tolerance mech-
anisms with our scaling techniques. Each RDL slot is a stor-
age unit which we assume to be a single disk drive. However,
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this storage unit can also represent a entire RAID device. So
when scaling, a RAID device can be either added to or re-
moved from a slot. Another more integrated approach is to
keep primary block copies on the first disk of that block’s
probe sequence as usual and to add block replicas to the sec-
ond disk of the probe sequence. We have shown that disks
appear exactly once on every probe sequence so replicas are
guaranteed to never be placed on the same disk as the pri-
mary copies.

Finally, we wish to investigate how BroadScale could be
applied to storage systems that need to efficiently store a
high influx of data streams such as those generated by large-
scale sensor networks. We also want to explore data retrieval
in large, scalable peer-to-peer systems or distributed hash
tables. This requires a distributed implementation of Broad-
Scale on top of these peer-to-peer search techniques.
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