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Abstract—Distributed continuous media server (DCMS) architectures are proposed to minimize the communication-storage cost for
those continuous media applications that serve a large number of geographically distributed clients. Typically, a DCMS is designed as
a pure hierarchy (tree) of centralized continuous media servers. In an earlier work, we proposed a redundant hierarchical topology for
DCMS networks, termed RedHi, which can potentially result in higher utilization and better reliability over pure hierarchy. In this paper,
we focus on the design of a resource management system for RedHi that can exploit the resources of its DCMS network to achieve
these performance objectives. Our proposed resource management system is based on a fully decentralized approach to achieve
optimal scalability and robustness. In general, the major drawback of a fully decentralized design is the increase in latency time and
communication overhead to locate the requested object. However, as compared to the typically long duration and high resource/
bandwidth requirements of continuous media objects, the extra latency and overhead of a decentralized resource management
approach become negligible. Moreover, our resource management system collapses three management tasks, 1) object
location, 2) path selection, and 3) resource reservation, into one fully decentralized object delivery mechanism, reducing the
latency even further. In sum, decentralization of the resource management satisfies our scalability and robustness objectives,
whereas collapsing the management tasks helps alleviate the latency and overhead constraints. To achieve a high resource
utilization, the object delivery scheme uses our proposed cost function, as well as various object location and resource
reservation policies to select and allocate the best streaming path to serve each request. The object delivery scheme is designed
as an application layer resource management middleware for the DCMS architecture to be independent of the underlying
telecommunication infrastructure. Our experiments show that our resource management system is successful in realization of the
higher resource utilization for the DCMS networks with the RedHi topology.

Index Terms—Distributed continuous media servers, decentralized resource management, distributed multimedia systems, content
delivery networks, distributed information systems, video-on-demand.
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INTRODUCTION

THE advent of broadband access network technology that
supports high-bandwidth connectivity for diversified
end-user devices (e.g., PCs, wireless hand-held devices, set-
top boxes, etc.) on the one hand and introduction of
effective encoding techniques, such as MPEG-4, that allow
streaming of continuous media (e.g., video and audio) with
reasonably low bandwidth requirements on the other hand
enabled the emergence of an enormous number of multi-
media applications such as video-on-demand (VOD) [1],
[2], [3], teleconferencing [4], distance learning [5], and
interactive TV [6]. Researchers in academia and industry
have been struggling for more than a decade to design high-
performance centralized continuous media servers
(CCMSs) [7], [8], [9], [10] and provide facilities to support
specific QOS requirements of continuous media commu-
nications on the network [11], [12], [13], [14], all motivated
by a desire to realize wide-spread use of these applications.

Distributed continuous media applications (e.g. VOD) are
expected to provide service to a large number of clients
often geographically dispersed on a metropolitan, country-
wide, or even global area. With a naive design, employing
only one large CCMS to support these distributed clients
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results in inefficient resource allocations that renders the
design virtually impractical. For instance, the overall
bandwidth requirement to implement an interactive
VOD system with such a design is estimated to be as
high as 1.54 Pb/s for the continental United States [15].
The full economic potential of such applications will not
be realized unless cost-effective solutions are achieved.
To address this problem, one group of researchers has
focused on various techniques to either reduce bandwidth
requirements of individual continuous media streams, with
methods such as smoothing [16], staging [17], and bandwidth
renegotiation [18], or reduce overall bandwidth requirements
of multiple streams via aggregation (or statistical multi-
plexing), for example, with batching and multicasting [19],
[20]. As an orthogonal solution, other researchers have
proposed distribution of the service to manage dispersed-
ness of clients, i.e., employing a number of CCMSs each to
serve clients located in a certain locality and interconnecting
them via a high-speed network infrastructure to be able
to share/exchange the continuous media objects (it is
important to note that, although serving clients locally
will result in a dramatic reduction in the total commu-
nication bandwidth requirement of the system, unless
servers are able to share the objects, the huge aggregated
storage capacity requirement of the servers will render the
no-sharing approach impractical, too). Systems designed
based on this approach [21], [22], termed distributed
continuous media servers (DCMSs), are shown to be able
to provide the optimal solution, i.e., the minimum commu-
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nication-storage cost for distributed continuous media
streaming applications [23], [24].

In this paper, we focus on developing a novel object
delivery scheme as one of the components of a DCMS
architecture. In the remainder of this section, first we
describe the components of a typical DCMS architecture.
Second, we briefly review those components of our proposed
DCMS architecture, introduced in our previous work [25],
in order to provide the context. Finally, we highlight the
contributions of this paper by enumerating the character-
istics of our object delivery scheme, the component of focus
in this paper.

1.1 A Typical DCMS Architecture

A distributed VOD system' can usually be considered a rich
repository of continuous media objects with a large set of
dispersed clients. Objects should be served/streamed to the
clients on demand. Generally, a DCMS that realizes such a
VOD system is designed as a network with hierarchical (or
tree) topology, with individual CCMSs as the nodes, and
network links as the edges of the hierarchy. Nodes are
assumed to be able to store a limited number of continuous
media objects and stream a finite number of continuous
media objects. Meanwhile, network links are expected to
guarantee the specific QOS requirements of continuous
media communications. Currently, there are two alternative
underlying telecommunication infrastructures that can
provide such guaranteed services: 1) circuit-switching
networks, such as SONET, which provide dedicated physical
and/or logical links, and 2) packet-switching networks that
support specific guaranteed services (such as the “Inte-
grated Services” [26] or the “Differentiated Services” [27]
for IP-based networks, e.g., the Internet, or CBR and VBR
services for ATM networks [28]) to emulate characteristics
of the dedicated links by enforcing statistical and/or
deterministic guarantees.

The nodes at the leaves of the hierarchy, termed head-
ends, are points of access to the system. In practice, clients
are connected to the head-ends (usually located in local
central offices or COs) via broadband local-access networks,
e.g., XDSL or cable network. When a request for an object
arrives at a head-end, if the object is available in its local
storage, the head-end serves the client per se, else the
request will be forwarded to the higher levels of the
hierarchy and, eventually, some other node that has the
object stored locally will serve the client by streaming the
object through the hierarchy and, finally, via the head-end
to the client. As this brief description of the system structure
and functionality conveys, a DCMS network should also
consist of a middleware component for resource manage-
ment. The middleware is supposed to address two different
orthogonal issues:

1. Object Placement. Static and/or dynamic mapping of
objects onto the DCMS network nodes (the storage
space) so that the overall communication-storage
cost of the system is optimal. Many researchers have

1. In this paper, we consider VOD, as one of the most promising
continuous media streaming applications, for discussion purposes. How-
ever, the discussion can be extended to cover other continuous media
streaming applications as well.
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addressed this problem, also known as the Media
Asset Mapping Problem (MAMP), by introducing
analytical models that consider user access pat-
terns [29] in addition to communication and
storage constraints to obtain optimized object
distribution and replication (or caching) policies
[30], [31], [32], [33].

2. Object Delivery. On client demand and in real time,
locating the replicas of the objects within the
DCMS network and selecting the appropriate
replica and allocating system streaming resources
(i.e.,, node and link bandwidth) for object delivery
so that high resource utilization is achieved. The
focus of this paper is on object delivery; we discuss
this problem in more detail in the subsequent
sections.

1.2 DCMS Architecture—Previous Work

As far as a CCMS can support the required storage and
streaming capabilities, choosing CCMS for the network
nodes does not affect the DCMS design. Similarly, if the
middleware is implemented at the application layer, as far
as the links (either physical or logical, dedicated genuinely
or by emulation) provide the required guaranteed service,
the DCMS design will be independent of the underlying
telecommunication infrastructure. Therefore, the network
topology and the resource management middleware are the two
main components that characterize a DCMS architecture. In
[25], we studied the former by extending the pure hierarchy
to a new topology termed Redundant Hierarchy or, briefly,
RedHi (see Fig. 1b). RedHi relaxes the hard degree-1 parent
connectivity restriction with pure hierarchy to be degree-2
or more.” Consequently, there is a higher potential for load-
balancing among nodes and links of the DCMS network
(both in the absence and presence of node and/or link
failures), hence, higher streaming resource utilization and
cost-efficiency. The redundancy in RedHi is not of
bandwidth, but of number of links. In other words, the
aggregated bandwidth of the links connecting a node to its
parents can be the same as the bandwidth of the link
connecting the node to its single parent in a pure hierarchy.
Therefore, RedHi does not impose higher bandwidth
requirements, but only requires higher connectivity. In fact,
even if we are restricted to using dedicated physical links
for DCMS network, RedHi structure is quite compatible
with redundant hierarchical organization of the current
telecommunication networks, such as the Internet, because
COs (Central Offices), POPs (Points of Presence), and ISPs
(Internet Service Providers), which are best potential
locations for DCMS nodes, are usually redundantly
connected to several larger parent nodes in the hierarchy
[34], [35]. In [25], we also explored some object placement/
replication schemes to address the MAMP problem.

In order to complete our proposed DCMS architecture
and, particularly, its resource management middleware, in
this paper, we introduce an object delivery scheme that
exploits the characteristics of the RedHi topology to realize

2. We include the formal definition of the RedHi topology in the
Appendix for ease of reference.
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Fig. 1. (a) Pure hierarchy vs. (b) redundant hierarchy.

its potential advantage, i.e., higher utilization of streaming
resources.

1.3 Contributions

Consider a set of shared continuous media objects dis-
tributed among nodes of a DCMS network based on an
object placement scheme.’ Several replicas of an object may
exist in the network at a time, and replicas may dynamically
be inserted and/or deleted according to some object
replication (or caching) policy. As a client request arrives
to read an object, an “object delivery scheme” is required to
locate replica(s) of the object and select and allocate the best
path within the DCMS network (sourcing in one of the
object replicas) to deliver the object to the client. This
resource management scheme should select the best path so
that the overall utilization of the streaming resources (i.e.,
node and link bandwidth) of the DCMS network is high.
Many distributed object processing applications are not
latency and/or overhead-tolerant. In such systems, full
decentralization of the resource management is ineffica-
cious and impractical. However, with continuous media
applications, the additional start-up latency and resource
management overhead (attributed to decentralization) is
negligible as compared to the duration and resource require-
ments of continuous media objects, e.g., less than 2 seconds of
start-up latency for a 1-hour movie or 10b/s of communica-
tion overhead for a 1Mb/s bandwidth movie (or, equiva-
lently, less than 5KB of total communication overhead for
a 0.5GB storage-size movie). On the other hand, one can
achieve optimal robustness and scalability with decentra-
lization of the management. In this paper, assuming the
RedHi topology and a fixed object replication scheme, we
introduce an object delivery scheme that collapses three
mechanisms, namely, object location, path selection, and
resource reservation, into one fully decentralized delivery
mechanism. Decentralization of the resource management
meets our scalability and robustness objectives optimally,
whereas collapse of the mechanisms helps to satisfy the
start-up latency and overhead constraints. To achieve high
resource utilization, the object delivery scheme selects and
allocates the best streaming path to serve each request
based on our proposed cost function, which considers 1) the
overall amount of the streaming resources engaged by

3. Here, we assume objects are not decomposable; hence, object is the
grain size for distribution.

selecting each streaming path and 2) the relative loads of
the paths. The object delivery scheme also comprises
various optional object location and resource reservation
policies. Finally, this scheme is designed as an application
layer resource management middleware for the DCMS
architecture to be independent of the underlying telecom-
munication infrastructure.

We have extended the NS (Network Simulator) network-
ing event simulator [36] to incorporate our object delivery
scheme. We conducted several experiments via simulation
to evaluate performances of the proposed optional policies
and to verify that our object delivery scheme meets our
objectives. Results of our experiments show that our
delivery scheme with a RedHi DCMS network can achieve
up to 50 percent improvement in resource utilization over a
pure hierarchy.

The remainder of this paper is organized as follows: In
Section 2, we discuss the design objectives of the object
delivery scheme. Section 3 explains our design approach to
meet the required objectives. In Section 4, we define the
functionality of our object delivery scheme. Our simulation
model and the results of our experiments are discussed in
Section 5. We delay the survey of the related work until
Section 6. Finally, Section 7 concludes the paper and
discusses our future directions.

2 DEeSIGN OBJECTIVES

Optimization of resource utilization is the main objective of
an object delivery scheme. In addition to resource utiliza-
tion optimization, the mechanisms used for object delivery
should meet some other objectives, the most important of
which are scalability, robustness, minimum start-up
latency, and minimum resource management overhead.
We believe that, unlike many other parallel/distributed
object processing applications [37], such as distributed
object programming models (e.g.,, CORBA), PRAMs (Paral-
lel Random Access Machines) [38], and mobile object
tracking systems [39], which must strive to minimize the
latency and/or resource management overhead of access to
the objects as their highest priority objectives, with object
streaming applications, due to often large duration and
high resource requirements of continuous media objects,
these two objectives are generally less important. For
instance, with a VOD system, the user reneging behavior
due to intolerable start-up latency is often modeled by
distributions with expected values estimated as high as
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several minutes [40], [41], [42], e.g., in [42], the user
reneging behavior is modeled by a normal distribution
with expected value p=5min and standard deviation
o = /3. Thus, any start-up latency in the order of seconds
will result in a negligible user reneging rate. Besides, as
compared to the high demands of continuous media objects
for system resources (i.e., memory, CPU-time, and band-
width), the amount of resources used for resource manage-
ment purposes is relatively small. Therefore, since our
object delivery scheme is designed for a DCMS network, we
consider these two objectives, namely minimum start-up
latency and minimum resource management overhead, as
the least important ones. Below, we order the required
objectives based on their importance and provide a more
detailed definition for each objective:

1. Resource Utilization Optimization. The object delivery
scheme should realize the higher streaming resource
utilization advantage of the RedHi topology, which
is considerable both in the absence and presence of
node and/or link failures. We evaluate the utiliza-
tion by the conventional client blocking ratio (or
simply blocking) measure; the less the blocking, the
higher the resource utilization. Of course, with low
blocking and high resource utilization, the media
server system is more cost-effective/profitable.

2. Scalability. The object delivery scheme should
remain practical for large-scale applications; parti-
cularly, resource management performance bottle-
necks should be avoided to allow extending the
DCMS network by adding nodes and links as
required.

3. Robustness. The object delivery scheme should be
tolerant toward the failures of the resource
management system components. Particularly, if
the resource management scheme is designed to
run on top of the same DCMS network used to
deliver the actual continuous media objects, fail-
ures of the network components, i.e., nodes and
links, should have the least possible impact on the
performance of the resource management system.

4. Start-Up Latency Alleviation. The object delivery
scheme should decrease the object streaming start-
up latency to the point that the client reneging rate
due to latency is negligible.

5. Resource Management Overhead Alleviation. Memory,
CPU-time, and bandwidth requirements of the
resource management imposed as overhead to the
DCMS system should be negligible as compared to
requirements of the actual content of the system, i.e.,
continuous media objects.

As we discuss in Section 3, this ordering of the objectives
has an important impact on the main decision with the
design of the object delivery scheme, i.e., positioning
strategy (centralized or decentralized) for the control data
that are used for resource management purposes.

3 DESIGN APPROACH

For resource management tasks, such as object location,
path cost evaluation, and resource allocation/reservation,

the object delivery scheme should maintain a set of static
and/or dynamic state data, termed metadata, about system
resources (i.e., objects, nodes, and links). The metadata
can be either maintained at a central location in the
DCMS network or distributed among the network nodes.
At one extreme case, the metadata are fully distributed
(or decentralized) so that each node only stores the metadata
relevant to the local resources (i.e., the node itself, the
adjacent links, and the objects stored at that node). At the
other extreme, the central management point becomes both
a performance bottleneck and a single point of failure.
However, full decentralization of the metadata results in
optimal scalability and robustness for the object delivery
scheme. This is because the management load is shared to
the extreme and the impact of each failure is reduced to the
minimum (only metadata relevant to the locality of a certain
failed node or link may be unavailable). Meanwhile, with
decentralization, management of the metadata, on its own,
may add to the response-time and resource requirements of
the resource management system; hence, metadata decen-
tralization possibly results in higher start-up latency and
resource management overhead (particularly, CPU-time
and bandwidth overhead, but not memory overhead).
However, the increase in start-up latency and resource
management overhead attributed to the decentralization of
metadata is negligible as compared to the duration and
resource requirements of continuous media objects (see
Section 2). Therefore, we design our delivery scheme
assuming fully decentralized metadata maintenance to
achieve optimal scalability and robustness. In this case,
each node executes a set of three distributed algorithms to
perform object location, path selection, and resource
reservation tasks. To meet the other two (less important)
objectives, namely start-up latency and resource manage-
ment overhead, many distributed resource management
systems allow replication of the metadata besides decen-
tralization, i.e., there might be several replicas of the same
metadata located in various positions in the system.
Replication potentially facilitates access to the metadata;
hence, it decreases overall response-time and resource
requirements of the resource management system. How-
ever, since metadata may be dynamically updated, replica-
tion introduces the consistency issue, which either
decreases the accuracy of the resource management system
or, if addressed, results in additional overhead. With our
design, we use task collapsion instead of metadata replica-
tion. Our object delivery scheme collapses the three tasks
required for object delivery into a single delivery mechan-
ism that performs the tasks integrated. As compared to
serial execution of the three distributed algorithms, inte-
grated execution helps minimize the start-up latency.
Moreover, the collapsion mechanism uses multipurpose
communication (e.g., single packet sent for object location
and path cost evaluation at the same time) to reduce the
resource management overhead (particularly CPU-time and
bandwidth overhead due to decentralization). In brief,
decentralization of the mechanism meets the higher priority
scalability and robustness objectives optimally, whereas
collapsion of the tasks helps satisfy the start-up latency and
resource management overhead constraints. In Section 4, we
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Fig. 2. Protocol stack at a DCMS node.

focus on describing the functionality of the object delivery
mechanism developed based on this approach and explain
how it achieves its main objective, ie., high resource
utilization.

4 MECHANISM

Our object delivery scheme runs as an application layer
middleware on a DCMS network. The comprehensive set of
assumptions that we make with respect to the DCMS
network is as follows:

e The DCMS network has a RedHi topology.

e Nodes of the DCMS network are CCMSs (possibly
heterogeneous), each with limited streaming band-
width and storage space (to cache some continuous
media objects locally) known to the middleware.
Nodes execute both the resource management
middleware and the stream server.

e Links of the DCMS network (logical, physical, or
both) are provided by some underlying telecommu-
nication infrastructure that guarantees availability of
a fixed limited bandwidth known to the middle-
ware. Resource management control traffic and
continuous media object streams share the links.
Streaming resources are reserved for media streams,
but control traffic is served based on the best-effort
service model.* The middleware considers the links
as point-to-point connections for duplex commu-
nication between adjacent pairs of nodes.

e We assume a simple object distribution and caching
policy: The entire set of objects are located at the
root(s) of the network when DCMS is initiated; as an
object is served through a path from an object server
node to a head-end, the object is cached at all
intermediate nodes on the path based on the LRU
(Least Recently Used) caching policy [43].

Our middleware consists of a set of peer resource
management agents mapped one-to-one onto the DCMS
network nodes. Each agent is comprised of a protocol stack

4. Since our object delivery mechanism uses soft-state (for the control
state of the mechanism and not the metadata state of the resources) it does
not necessarily assume guaranteed service without lost/delayed packets on
the communication links. Therefore, optionally, the resource management
mechanism can use best-effort service for communication between nodes to
eliminate resource management communication overhead on the DCMS
network.

on top of the network links (see Fig. 2), which makes the
middleware independent of the nature of the links: the
network layer supports source routing, the transport layer
executes a UDP-like protocol with minimum required
functionality, and the application layer implements the
actual delivery mechanism. Here, we focus on the function-
ality of the application layer, which is the main contribution
of this paper. Implementation of other layers is trivial and
based on the standard approaches.”

The agent associated with each node exclusively main-
tains the local metadata relevant to the node resources, i.e.,
objects stored in local storage, available bandwidth of the
node, and available bandwidth of the links that connect the
node to its child nodes. As the agent running on a head-end
receives a request from a client for streaming an object, the
agents running on the network nodes collectively execute a
distributed mechanism to 1) locate all nodes of the DCMS
network that have the object stored locally, 2) select one of
those nodes as the object server and select the “best” path
through the DCMS network for streaming the object from
the object server to the head-end so that overall
utilization of the streaming resources of the network
(i.e., nodes and links bandwidth) is optimized by load
balancing, and 3) reserve required streaming resources
along the selected path so that the server can start
streaming the object to the client. Below, first we provide
an overview on the life cycle of a request as served by this
object delivery mechanism. Subsequently, we focus on the
particular characteristics of each of the three tasks
collapsed into the mechanism.

4.1 Request Life Cycle

As a head-end receives a request from a client to read an
object (e.g., as an RTSP request [44]), its agent generates a
query packet and propagates/floods it to the network.
Propagation of the query packet is performed by selective
flooding based on a propagation policy that determines the
coverage of the propagation (see Section 4.2 for various
propagation policies). Instances of the flooded query packet
traverse different paths and incrementally evaluate the cost
of the paths as they are forwarded from agent to agent (see
Section 4.3 for the definition of the path cost). Some query
packets reach the nodes that store a replica of the requested
object locally. Those nodes send response packets back along
the same path traversed by the corresponding query
packets to report availability of the object replica as well
as the cost of the path to reach the replica. The agents along
the path compare the responses to select and reserve the
best path and to filter out the rest of the responses so that,
finally, the head-end receives the response that indicates the
best path. The path is already reserved and the selected
object server starts streaming the requested object as soon as
it receives a start packet from the head-end.

Agents use four types of packets to communicate and to
execute the object delivery algorithm: query packet,
response packet, release packet, and start packet. Data
fields included in these packets are illustrated in Table 1. As
indicated in the table, the combination of the two fields

5. Our source code that implements these protocols is available at ftp://
zahedaan.usc.edu/GMeN/simulation.
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TABLE 1
Data Fields of the Packets

Data Field Definition Packet Type
type packet type all
headend ID ID of the head-end which receives the request all
sequenceno unique sequence number assigned to the request by the head-end all
path path all
object_ID  ID of the requested object all
response  result of the object location query (REJECT, FOUND, or NOT-FOUND)  response

local_segno
path_length
path_freeBW

local sequence number assigned to the query packets replicated at a node
path length (number of nodes traversed in the path)
amount of free streaming resources of the path

query, response
query, response
query, response

while (1lifetime > 0) {
ReceiveQuery (new_query);

if (request is already RESPONDED)

else {

}

reserve_count++;

else {

reserve_count-+-+;

ResetResponseTimeout();

}

PurgeQueryState();

SendResponse(new_query, REJECT);
else if (path_length > 2x network diameter)
SendResponse(new_query, REJECT);
else if (the requested object is available in local storage)
if (do not have enough local streaming resources to stream the object)
SendResponse(new_query, REJECT);

SendResponse(new_query, FOUND);

if ((reserve_count ==0) {
ReserveLocal Resources(object_ID);
reserve_status = RESERVED;

else // the requested object is not available in local storage
if ((cannot forward the query to any other agent) OR
(have already received a query packet from a path that costs less))
SendResponse(new_query, REJECT);

if (not the first privileged query)
SendResponse(old_query, REJECT);
if ((reserve_count ==0) AND
(RESERVATION MODE == ERP)) {
ReserveLocal Resources(object_ID);
reserve_status = RESERVED;

UpdateQueryState(new_query);
ForwardQuery(new_query);

Fig. 3. Processing of a query packet at an agent.

sequence no and headend_ID, existing at all types of the
packets, uniquely identifies the packets generated in
response to the same object request.® Below, we summarize
functionality of the delivery algorithm by discussing how
packets are processed at an agent.

6. We use a lollipop sequence number space [45]. The space is large
enough so that the sequence number does not wrap around during the
lifetime of a request.

Fig. 3 shows how an agent processes a query packet
received from a neighbor. The agent creates and maintains a
query state for each request as it receives the first query
packet (see Table 2 for the contents of the query state). The
agent may receive several query packets about the same
request from different paths at different times. It only
updates the query state if the received query has traversed
the path with the minimum cost up to the current time; such
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TABLE 2
Data Fields of the Query State
Data Field Definition
headend_ID ID of the head-end which initiated the query
sequence_no unique sequence number assigned to the request by the head-end

querier_ID
querier_localseqgno
path_length
path_freeBW
reserve_count
reserve_status
status
lifetime

ID of the neighbor agent that has forwarded the privileged query

local sequence number assigned to the query packet by the querier (the neighbor)
path length (number of nodes traversed by the query packet)

amount of free streaming resources of the path traversed by the query packet)
number of paths for which the node resources are reserved (reserved once only)

if local resources are reserved for this request (RESERVED or NOT-RESERVED)
state of the request (RESPONDED or NOT-RESPONDED)

time-out to purge the query state

a query is termed the current privileged query. Other queries
are immediately rejected. A query is interpreted as: “What
is the best path to reach a replica of the requested object
through you (the agent)?” As a new privileged query is
received, if a replica of the requested object is available
locally and local resources are also enough to stream the
object, the agent sends a response packet in reply to the
query to report 1) the path between the head-end and the
local node, and 2) the total cost of the path. Otherwise, it
replicates the privileged query, updates the path para-
meters in the replicated packet (i.e., path, path_length, and
path_freeBW), and selectively floods it to other neighbors,
querying them for the same object. The forwarded query
packets are marked with a local sequence number,
local_seqno, which increases each time the query state is
updated with a new privileged packet. Therefore, in case
multiple queries have already been forwarded, the response
packets received are identifiable. Eventually, when a
privileged query is replied to by sending a response packet
to the querier, status of the request is set to RESPONDED
(see Fig. 4). Those query packets received while the query
state is in RESPONDED mode are rejected. Also note that,
to damp possible lost packets, if the length of the path
traversed by the received query packet is more than two
times the network diameter, the query is rejected. The query
state will be maintained for a duration indicated with
lifetime, which is long enough for the delivery algorithm
to end (with our experiments, we set lifetime to the
streaming duration of the requested object).

Fig. 4 illustrates how an agent processes the response
packets received from neighbors. As an agent receives the
first query packet and forwards it to its neighbors, it
generates a response state to keep track of the responses from
neighbors (see Table 3 for the contents of the response
state). The agent waits to receive the response packets in
reply to its query, at most for an amount of time equal to
time_out. Hence, in a way, the response state is a soft state
and failure to receive responses from some neighbors does
not confuse the algorithm. The time_out value is set to two
times the maximum RTT between the agent and a root
node. If the received response packets report finding
replicas of the requested object, the agent generates a
response packet containing the path to reach a replica with
the minimum cost, sets the local_seqno filed of the packet
to querier_localseqno, and sends it back to the querier of

the current privileged query. If a new privileged query is
received and forwarded before the response is sent to the
last privileged query, the response state will be reset and
the agent will wait to receive responses for the new current
privileged query. In such a case, responses to the old
forwarded queries are ignored because those queries are
rejected as the new privileged query arrives (see Fig. 3). As
mentioned before, when the current privileged query is
responded, the query state of the request is set to
RESPONDED mode and the response state of the request
is purged. Agents ignore the responses relevant to a request
for which they do not have a response state.

With recursive execution of the processes that we have
just described, agents can cumulatively locate the replicas of
the requested object and select the best path to reach a
replica. Using release packets, reservation of the best path is
also performed integrated with the other two tasks. Since
there are two options for the implementation of reservation,
we delay discussion of this part of the mechanism until
Section 4.4. As the head-end agent receives responses from
its neighbors, similarly to regular agents it processes the
response packets to select the best path (see Fig. 4).
Successively, it sends a source-routed start packet to the
selected object server and requests for streaming the object
through the selected path. Finally, when streaming of the
object is terminated, head-end sends a release packet to the
object sever through the same path. All agents along the
path release the streaming resources reserved for the object
as they receive and forward the release packet.

4.2 Object Location

As a routing mechanism, flooding is well known for
1) tremendous robustness, by taking every possible path
in parallel, 2) ability for concurrent communication with all
nodes of a network, which is particularly useful in
distributed applications, and 3) minimum delay, by taking
the path with minimum delay among other paths. All these
characteristics are highly desirable for object location. Of
course, the overhead imposed by flooding is a prohibitive
disadvantage that restricts its use with most distributed
object processing applications. However, as we explained is
Section 1.3, continuous media applications are overhead-
tolerant.

Since, with our application, object location is integrated
with other tasks, we need to modify the typical flooding
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while (time out > 0) AND

Receive Response(new_respnse);

(response ! = REJECT) AND
// ignore REJECT responses
(response ! = NOT — FOUND) AN D
// ignore NOT — FOUND responses

// ignore non-optimal paths

Update ResponseState(new_response);

SendRelease(new_response);

}

SendResponse(NOT — FOUND);

if (RESERVATION MODE == ERP) {
ReleaseLocal Resources(object ID);
reserve_status = NOT — RESERVED;
reserver_count = 0;

} else {
if (RESERVATION MODE == EROQ)

SendRelease(new_response);

}

status = RESPONDED;

PurgeResponseState();

(response to the current privileged query is not received from all addressees)) {

if ((local sequence number of response packet is equal to local_seqno in response state) AND
// ignore the responses to the old privileged queries; they have already been rejected

(cost of the path advertised in the response packet is less than minimum cost)

if ((local sequence number of response packet is not equal to local_seqno in response state) OR

(cost of the path advertised in the response packet is more than minimum cost)

// sending the aggregated response to the current privileged query packet
if (have not received any FOUND response for the current privileged query) {

if (do not have enough local streaming resources to stream the object) {

SendResponse(REJECT);

}

else {
ReserveLocal Resources(object_ID);
reserve_status = RESERVED;
reserve_count++;

}

else // RESERVATION MODE == ERP
SendResponse(FOUND);

Fig. 4. Processing of a response packet at an agent.

algorithm to adapt it for our delivery mechanism. Typically,
flooding is used to inform/update nodes of a network with
some piece of information. Therefore, as soon as one replica
of the flooded packet is received by a node, the node can
ignore other replicas. Since, with our delivery mechanism,
replicas of the flooded query packet evaluate the cost of the
paths that they traverse in addition to querying the nodes
for the requested object, the nodes must differentiate the
replicas based on their paths. As we described in Section 4.1
(see Fig. 3), when a node receives new privileged queries, it
resets its query state and repeats the query process by
forwarding the new query to its neighbors, even though it
might have already received and forwarded query packets

for the same request but from more costly paths. Recur-
sively, this approach allows other nodes to reevaluate their
queries based on the cost of the path introduced by the new
query packet so that, progressively, the cost of the selected
path is optimized.

Moreover, we introduce several propagation policies for
selective flooding to be able to control the coverage of the
object location and study its effect on the resulting
utilization. The wider the coverage, the nearer the resource
utilization to the optimal case because more paths and
object servers are investigated. On the other hand, wide-
spread object location results in higher start-up latency and
resource management overhead. The three choices of
propagation policy are as follow:
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TABLE 3
Data Fields of the Response State
Data Field Definition
headend_ID ID of the head-end which initiated the query
sequence._no unique sequence number assigned to the request by the head-end

addressee_IDs
local_segno
path
path_length
path_freeBW
time_out

IDs of the neighbor nodes that receive the forwarded query

local sequence number assigned to the current privileged query packet

path to reach the replica advertised in the response packet

length of the path to reach the replica advertised in the response packet

amount of free streaming resources of the path to reach the replica advertised in response
time-out for receiving response packets (soft-state to consider possible failures)

(b)

Fig. 5. Coverage of the propagation policies. (a) Parent-only. (b) Inclusive. (c) Sibling.

1. Parent-Only. With this propagation policy, nodes
only forward the queries to their parents. Therefore,
the coverage of the object location is limited to the
the ancestors of the head-end that receives the
request for the object (see Fig. 5a).

2. Inclusive. This propagation policy is equivalent to
nonselective flooding, i.e., nodes forward the query
packets to all their neighbors except the one from
which the query is received. Therefore, all replicas of
the requested object are located by covering the
entire network (see Fig. 5b).

3. Sibling. This propagation policy is an extension of
the parent-only policy. With this policy, a node that
receives a query from one of its children forwards it
to 1) the siblings of the child from which the query is
received and 2) its own parents. However, if a node
receives the query from one of its parents, it does not
forward the query at all (see Fig. 5¢). Sibling policy is
simply one logical intermediate case, with wider
coverage for object location as compared to the
parent-only policy, but not as wide as the full
coverage of the inclusive policy.

Our experiments show that the sibling policy (as
compared to the inclusive policy) results in near-optimal
utilization while it imposes much less overhead and
latency with its limited coverage (see Section 5.2.2 and
Section 5.2.3).

4.3 Path Selection

As discussed in Section 4.1, the query packets incrementally
evaluate the cost of the path that they traverse as they are
forwarded from agent to agent. Evaluation of the path cost
during propagation of the query packets allows the nodes
to select the best path from the head-end to the node and
damp the query packets that have not traversed the best
path (see Fig. 3 for query processing). On the other hand,

the response packets sent in reply to the queries also contain
path cost values that enable the node to select the best path
from the node to a replica (see Fig. 4 for response
processing). Therefore, in this way, cumulatively, nodes
converge on selecting the best path from the head-end to a
replica.

Our cost function evaluates a path based on two para-
meters: 1) length of the path (path_length) and 2) amount of
the free streaming resources available along the path
(path_freeBW). To contrast the costs of two paths, first they
are compared on the total amount of streaming resources
required to stream an object through the paths. This value is
proportional to the length of the path”; hence, we use
path_length as the measure for this comparison. Second, if
the paths have the same length, the cost function breaks the
tie condition based on the amount of free streaming
resources of the paths; the more free resources are available
along a path, the less cost is associated to the path so that
we can avoid blocking fairly loaded paths and balance the
load among the parallel paths. We propose two measures
to assess the amount of free streaming resources in a
path: 1) bottleneck, i.e., minimum amount of free band-
width available among the components (nodes and links)
of a path, and 2) average, i.e., average amount of free
bandwidth available at those components. The two para-
meters representing the cost of a path, P, are formally
defined as follows:

Definition 1 Cost
P=NUL, wheréd®

Function Parameters. Assuming

N ={n | nis a node of the DCMS network, n € P}
L ={l|lis alink of the DCMS network, | € P}

7. Particularly, it is equal to B x (2n — 1), where B is the bandwidth of
the object and n = path_length.

8. Similar to the bandwidth of a link, the bandwidth of a node is defined
as the total number of bits of information that a node can serve per time unit.
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then

path_length =||N||
pat h_fre eBwb()ttleneck

path_freeBW =< or
path_freeBW

average,

where

path_freeBW, i imec = Min({FreeBandwidth(i) | i € P})
> iep FreeBandwidth (i)

path_freeBW =
121l

average

With this cost function, we never select longer paths over
available shorter paths. Since, in DCMS networks with
leveled topologies (such as RedHi or pure hierarchy), head-
ends are the leaves at the lowest level, any path sourcing in
higher levels should go through the lower levels to reach a
head-end; therefore, sharing loads of the short paths with
long paths does not necessarily result in better overall
utilization. We try load balancing by considering the path
traffic only when the possible path options have the same
length. Our cost function can be used to evaluate the cost of
the paths incrementally. As the query packet is forwarded
from agent to agent, each agent updates the cost parameters
of the path by considering the effect of appending the local
link and node to the path. Finally, it is important to note
that our resource management system, as an application
layer middleware, applies the cost function to optimize
utilization of the streaming resources. Therefore, the cost
function does not need to consider the network level costs,
such as link delay, or the actual financial cost of the
resources along the path.

Since 1) with flooding we evaluate all possible paths
restricted to the DCMS nodes explored during object
location (i.e., all paths within the subnet of the network
that is covered by the particular propagation policy
applied) and 2) with our cost function we are able to
minimize the resources allocated to respond to each request
(by selecting the shorter paths as well as balancing the load
among the paths with the same length), we expect our path
selection approach can realize the higher utilization of the
RedHi topology. Our experiments verify our expectations.
We have also performed experiments to compare perfor-
mance of path_freeBWi,enccr With path_freeBWyyerqge (S€€
Section 5.2.1).

4.4 Resource Reservation

Reservation of the streaming resources by the application
layer middleware is a bookkeeping task required to ensure
load balancing as well as uninterrupted streaming. Reser-
vation and release of the resources are performed by
updating the metadata maintained locally. Generally, there
are two alternative approaches for resource reservation:
1) pessimistic: to prereserve all resources that might possibly
be required for the selected path during the path selection
process and to release the extra resources only after the path
is actually selected and 2) optimistic: to start reserving the
required resources after path selection is finalized, hoping
the resources are still available. With the pessimistic

approach, prereservation guarantees availability of the
required resources when the path is selected. However,
with prereservation, since the selected path is not known
yet, resources are over-reserved. Therefore, concurrent
requests underestimate the available streaming resources,
which might result in selecting inappropriate paths. On the
other hand, with the optimistic approach resources are not
over-reserved, but the resources required for the selected
path might have been preallocated to other concurrent
requests.

The extreme pessimistic and optimistic approaches are
not appropriate for our mechanism. The extreme pessi-
mistic approach results in high blocking ratio. Meanwhile,
with the extreme optimistic approach, reservation cannot
collapse into the mechanism, but it should be performed
in serial with other delivery tasks. We propose two
moderated policies for resource reservation: Early Release
Pessimistic (ERP) and Early Reserve Optimistic (ERO).
With ERP, resources are still prereserved during query
propagation, but, unlike the extreme pessimistic approach,
the extra resources are released early during the path
selection process (and not after path is selected), as soon as
they are disqualified from being in the best path. With ERO,
resources are reserved early during response processing,
before path selection is finalized. Both of these policies
suggest prereservation, but ERP is still more pessimistic as
compared to ERO because, with ERP, reservation is
performed during query propagation while ERO reserves
resources during response processing.

Agents decide on prereserving the local resources as they
receive query packets (with ERP policy) or response packets
(with ERO policy). Release packets are used to release the
extra resources afterward. Fig. 6 shows how an agent
processes a release packet. A release packet is source-routed
from a node toward an agent that has found a replica of the
requested object stored locally and has sent a FOUND
response in reply to an earlier query. The release packet
releases all resources reserved for the corresponding
request along the path. The agents that are included in
several reserved paths reserve the resources only once and
release the resources only if they receive release packets for
all the paths. The reservation process is performed based on
either ERP or ERO policy as follows (see Figs. 3 and 4):

1. Early Release Pessimistic (ERP). With ERP, an agent
reserves the required local sources as it receives the
first query packet about the request. As response
packets in reply to the forwarded queries are
received, the node sends release packets back along
all paths from which FOUND responses are received
except the best path selected at the node. If the agent
does not receive any FOUND response, it releases
the local resources reserved for the request and
rejects the query.

2. Early Reserve Optimistic (ERO). With ERO, an agent
does not reserve local resources until it receives
FOUND responses in reply to its queries. Thus, the
resources are only reserved when the agent actually
finds a path to reach a replica of the requested object,
although the path might not be selected as the best
path at last. Releasing the extra resources is
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ReceiveRelease(new release);

reserve_count——;

}

if (reserve_status == RESERVED) {

if (reserve_count ==0) {
ReleaseLocal Resources(object_ID);
reserve_status = NOT — RESERVED;

if (not the last hop in the path included in the release packet)
ForwardRelease(new_release);

Fig. 6. Processing of a release packet at an agent.

TABLE 4
Pure Hierarchy Configuration
Level(l) | CCMSs [ Links to higher level |
| Nodes (Viever) | Bandwidth(Mb/s) [ Storage(GB) | Edges [ Bandwidth(Mb/s) |
T 10} 100 250 0 B
2 {1,2,3} 300 160 {(#,4) [¢ € Va2, j EVi} 300
3 {4,..12} 200 40 {(&.5) i€ Vs, 5 € V2, 200
j=(—-1)/3}
T 113,..,39} 700 0 {(. /) [i € Va, j € Vs, 100
i=0G-1)/3}
TABLE 5
RedHi Configuration
Level(l) | CCMSs [ Links to higher level |
| Nodes (Vicver) [ Bandwidth(Mb/s) [ Storage(GB) | Edges [ Bandwidth(Mb/s) |
1 {0,410} 200 250 0 -
p) {123} 300 160 {7V i€ V2, ] €E Vi) 150
3 {4, 12} 200 10 {G,5) [i€ Vs, j € Va, 100
j=(i—1)/30rj=(i—1)/341,if j > 3 then j =1}
1 {13,.,39} 100 10 {Z, 1) |1 € Va,] € Vs, 50
j=(—-1)/30rj=(i—1)/3+1,if j > 12 then j =4}

performed similarly to ERP by sending release
packets in reply to all FOUND responses but the

one that advertises the path with minimum cost. If

the agent does not find enough local resources to
reserve for the requested object, it releases the
resources on the selected path and rejects the query.

Our experiments show that ERO results in lower
blocking ratio, hence, higher utilization (see Section 5.2.1).

5 PERFORMANCE EVALUATION

We have extended the NS (Network Simulator) networking
event simulator to incorporate our object delivery
scheme.” We conducted several experiments via simula-
tion to 1) evaluate performances of our proposed optional
object location policies, cost functions, and resource
reservation policies and 2) verify that our object delivery
scheme meets our objectives.

5.1 Simulation Model

With our experiments, we simulated a 4-level 3-ary pure
hierarchy and a 4-level redundant hierarchy (RedHi) with
d=2 as its degree of redundancy (i.e., the number of

9. The source code for our extension of NS is available at ftp://
zahedaan.usc.edu/GMeN/simulation.

parents for each node). The detailed setup and configura-
tion parameters of these hierarchies are shown in Table 4
and Table 5, respectively. The configuration parameters are
selected to estimate the capabilities of the products
available in the market. Particularly, head-ends are
assumed to have storage capacity and streaming bandwidth
of 10 GB and 100 Mb/s, respectively, both of which are
compatible with off-the-shelf PCs used as CCMS [46]. Since
head-ends are numerous, to reduce the cost of the DCMS, in
practice, low-cost nodes are used as head-ends. At higher
levels (i.e., levels with less [), which have fewer number of
nodes, available resources per node are scaled up. The links
of the hierarchies have bandwidth x-multiple of 50 Mb/s to
estimate SONET OC-x carriers. Fan-in of each node (total
bandwidth of the links to parents) is equal to bandwidth of
the node itself. Total link/node bandwidth available at each
level decreases in higher levels of the hierarchies because
we presume more resources are required to stream the
objects cached at lower levels of the hierarchies. The total
amounts of streaming resources assigned to the two
hierarchies are identical; RedHi redundancy is in connec-
tivity rather than streaming resources. Our simulator
assumes delay with normal distribution' for links of the
hierarchies. Considering the propagation delay of typical

10. f(x) — ”;me—(xrfu)l/znz.
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TABLE 6
Simulation Parameters
| Parameter H Definition ‘ Value ‘
T Duration of an object 1 hours
S Storage size of an object 0.5 GB (MPEG-4 compressed)
By Bandwidth requirement of an object 1 Mb/s
Ny Number of head-ends 27
By Bandwidth of a head-end 100 Mb/s
Ts Duration of each simulation execution (virtual) 100 hours

terrestrial long-haul links, the normal distribution is
defined with expected value p=70ms and standard
deviation o = p/5.

A static population of 500 objects (e.g., movies) is
assumed. All objects are initially stored at the root node(s)
of the hierarchies, from which they are distributed through
the DCMS network and replicated at other nodes. We do
not exclude statistics collected during the warm-up period
of object distribution from experiment results; we presume
the possible impact of warm-up is the same for all
simulation executions. To capture the popularity profile of
the objects, we assume Zipf distribution!! with skew factor
0 =0.271. It is shown that this distribution accurately
models the popularity of rental movies [47]. All the objects
are assumed to have identical specifications (see Table 6).

In an ideal case, optimistically, a hierarchy can serve up
to Ly, requests during a simulation execution:

By Ts
Lma:v BU X TA] x N H-
To emulate a percent load (i.e., 1i5 X Lmas requests) for a
hierarchy, the ith head-end generates requests by discrete
simulation of Poisson distribution'? with ), as the expected
number of requests generated during the simulation
execution. )\; parameters are randomly selected so that:

(6%
wNN = —
100

For each execution of the simulation, we evaluate
resource utilization in the hierarchies based on the blocking
ratio of the requests, B:

X LTIL[L’L' .

Number of rejected requests during T

= x 100.
Total number of requests generated during T,

A request is rejected if DCMS cannot find any path with

enough streaming resources to serve the request. Also, we

define I as the improvement of the blocking ratio in RedHi

as compared to the pure hierarchy:

Ip = Bpure — BReani-

With our experiments reported in Section 5.2, we used
inclusive propagation with RedHi and parent-only propaga-
tion with the pure hierarchy; also, we used path_freeBWqc qge
as the cost function and ERO as the reservation policy, unless

11. With a Zipf distribution, if the objects are sorted according to the
access frequency, then the access frequency for the ith movie is given by
fi =ﬂ%, where 0 is the skew factor of the distribution and C is the
normalization constant. .

12. Pr[k requests arrive in time interval Ts| = %B’A’, where \; = uTs and
i is the mean arrival rate in request per time unit.

stated otherwise. Besides, since the results of our experi-
ments are often quite consistent (standard deviation is
always less than 5 percent of the average value), we only
report on the average values of the resulting quantities
and exclude higher moments.

5.2 Experimental Results

5.2.1 Performance of Optional Policies and Cost
Functions

In Section 4, we proposed three propagation policies for
object location, two variations of a cost function to evaluate
the load of the streaming paths, and two policies for
resource reservation. We conducted some comparative
experiments to assess relative performance of these techni-
ques under various loads. We delay discussing the
propagation policies until Section 5.2.2, where we study
their impact on resource utilization.

path_freeBWyyieneck and path_freeBWyyeqe, the two
variations of our cost function, are used for load balancing
between paths with identical lengths (see Section 4.3).
path_freeBWyouenecr Only considers the load on the bottle-
neck of a path, whereas path freeBWycrqp €valuates the
load of the entire path. Fig. 7a shows that path_freeBWaycrage
marginally outperforms path_freeBWi,encer Dy capturing
more data about the available resources along the path.

In Section 4.4, we discussed two pessimistic (ERP) and
optimistic (ERO) resource reservation policies. Fig. 7b
depicts the relative performance of these policies. Since,
with ERP, resources are vastly over-reserved at all nodes
that receive at least one privileged query packet, total
available resources of the DCMS network are under-
estimated by the object delivery mechanism. As a result of
this underestimation of resources, more requests are
rejected when ERP is used for reservation, hence, higher
blocking ratio. Although ERO outperforms ERP under the
entire range of the load sinc, with higher loads, DCMS
resources exhaust, as load increases, relative advantage of
ERO over ERP decreases.

5.2.2 Resource Utilization: RedHi vs. Pure Hierarchy

In Section 5.2.2a and Section 5.2.2b, we report on the relative
resource utilization of the hierarchies assuming 1) no link
failures or 2) possible link failures, respectively.

5.2.2a Without Link Failures. Fig. 8a depicts the blocking
ratio of several hierarchy-setups under various loads: the
pure hierarchy with parent-only propagation policy as
compared to RedHi with parent-only, sibling, and inclusive
propagation policies. As expected, the blocking ratio is an
increasing function of the load in all cases. The number of
rejected requests depends on both the load (proportionally)
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Fig. 8. Resource utilization (without link failures). (a) Various hierarchy-setups. (b) RedHi utilization improvement over the pure hierarchy.

and the available resources of the system (reciprocally).
However, as the load increases, available system resources
decrease. Therefore, the number of rejected requests grows
faster than the load, hence, increasing blocking ratio (see
the definition of B in Section 5.1).

The blocking ratio of the pure hierarchy has the highest
growth rate. As the capability of resource sharing increases
by 1) employing a highly-connected topology (RedHi) and
2) applying propagation policies with wider coverage, due
to statistical multiplexing of the resources, the growth rate
of the blocking ratio decreases, hence, a large improvement
on B with the average loads. On the other hand, with higher
loads, since system resources are close to exhaustion,
resource sharing is less beneficial. Therefore, while the
pure hierarchy is already saturated, the blocking ratio with
other setups grows rapidly. As a result, the offset between
setups decreases such that, at L,,,,, the offset is marginal. If
we increase the load further (of course, any additional load
is certainly rejected), all systems will asymptotically
converge to B = 100%.

Fig. 8b depicts the relative improvement of the blocking
ratio at RedHi with various propagation policies as
compared to the pure hierarchy (with the parent-only
propagation policy). On the one hand, this figure shows the

benefit of using the RedHi topology to achieve higher
resource utilization (RedHi/parent-only setup vs. the pure
hierarchy/parent-only setup). On the other hand, the
advantage of applying the propagation policies with wider
coverage is illustrated by observing the relative increase in
improvement of B with RedHi/parent-only, RedHi/sibling,
and RedHi/inclusive setups. Particularly, it is important to
note that, although the sibling policy has much less
coverage as compared to the inclusive policy, applying this
propagation policy results in fairly high improvement in B.

5.2.2b With Link Failures. Since the RedHi topology has
a higher connectivity as compared to the pure hierarchy, we
expect even higher improvement in B when some of the
network links fail. Assuming links of the DCMS network
are physical links (i.e., logical and physical topologies of the
DCMS network are the same'®), we simulate the link
failures by disabling the links selected randomly with a
Poisson arrival time distribution with A =10 as the
expected number of link failures diring Ts (i.e., MTBF =
Is — 10 hours) Therefore, on average, nearly 25 percent of
the links in the pure hierarchy and 12.5 percent of the links

>

13. In the case of the DCMS networks with logical links, a single physical
link failure may result in multiple logical link failures.
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communication overhead.

in RedHi fail during the simulation. The MTTR for each
link is set to two hours.

Fig. 9a depicts the blocking ratio of the RedHi/inclusive
setup as compared to the pure hierarchy/parent-only setup,
both under the failure condition. The behavior of the two
setups is similar to the no-failure condition (see Fig. 8a)
with an expected relative increase in B for both setups.
However, as illustrated in Fig. 9b, the improvement in B
due to using RedHi/inclusive (instead of the pure
hierarchy/parent-only) is more under the failure condition
as compared to the no-failure condition. This growth in
improvement of B can be attributed to the higher con-
nectivity of the RedHi that results in less probability for
node isolation.

5.2.3 Latency and Communication Overhead

We conducted some experiments to verify that the start-up
latency and the communication overhead with our pro-
posed delivery mechanism is acceptable.

Fig. 10a depicts the average start-up latency for each
request in various hierarchy setups. The start-up latency for
a request is the duration of the time period between the
arrival time of the request and the starting time of the
streaming. The average latency is calculated over all

requests arrived during Ts and served successfully. As
illustrated in the figure, the start-up latency reasonably
grows as connectivity of the topology (from the pure
hierarchy to RedHi) and the coverage of propagation
policy increase. However, even for the RedHi/inclusive
setup, the latency is still less than two seconds, which as
compared to the five-minute expected user reneging time
is negligible (see Section 2).

Fig. 10b shows the total amount of the control data
exchanged between the resource management agents in
various hierarchy setups during the entire simulation (7).
Similarly, the greater the network connectivity and the
propagation coverage, the greater the communication over-
head. Obviously, the RedHi/inclusive setup involves more
communication between the network agents and results in
the largest amount of overhead. With the RedHi/inclusive
setup, the communication overhead per each successfully
served request amounts to:

350 x 100 x 8 350 x 10 x 8

Linar X (1 —Zhaeey 27 x 10 x (1~ 0.7)

~ 35Kb.

Considering a one-hour duration of the objects of our

simulation model, this overhead is equivalent to 3250 ~ 105/ s
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per request, which is certainly negligible for a 1Mb/s
bandwidth object. Even if we need to consider the bursty
nature of the overhead, the worst-case 35Kb communication
overhead per request is negligible as compared to the size
of the typical continuous media objects. If the size of the
objects were of the same order of the size of this
overhead, we would prefer to use File Transfer (e.g., ftp)
to serve the objects rather than serving them continuously.

6 RELATED WORK

In this section, we review some related studies that
investigate one or more of the three tasks we support with
our object delivery scheme. The object location problem has
been studied in various but closely related contexts such as
tracking mobile users [39], locating objects for distributed
object programming [48], locating nearby copies of repli-
cated servers [49], and resource discovery [50]. Directory
service is a common mechanism often used for object
location and many resource management systems include
centralized directory servers [51], [52]. These servers
usually comprise object state databases and query servers
for object location. All client requests for objects are
redirected to the directory server, where the replicas of
the requested object are located, via object state database
and, usually, a particular cost function is used to select the
most appropriate object server to respond the request. To
enhance both scalability and robustness of the object
location mechanisms (particularly for those used with large,
distributed, and usually interconnected systems that carry
many objects), many researchers have introduced various
distributed (and possibly replicated) directory structures
that maintain states of the objects in a distributed fashion
among multiple directory servers. As discussed in Section 3,
decentralization of the service can cause an increase in the
response-time and resource management overhead of such
systems. To address this problem, besides replication, these
systems usually exploit the locality characteristic of user
access patterns and map a hierarchy of regional directories
to the network (i.e., the system carrying the objects) so that
most read and update accesses to the object states within a
region are responded to by the regional directory server
[53]. Consequently, response-time and overhead of resource
management are drastically reduced. For instance, Awer-
buch and Peleg [39] introduce a distributed directory server
that is able to locate migrating objects with a communica-
tion overhead within a polylogarithmic factor of the lower
bound; however, their directory service does not support
replicated objects. Bartal et al. [54] also propose a
distributed directory service and a “competitive” access
algorithm with optimal communication cost for mesh and
pure tree network topologies. The hierarchy of directory
servers developed by Steen et al. [48] considers the
“stability” of objects in each region and dynamically adapts
to object migrations, but, as far as resource utilization
optimization is concerned, it cannot distinguish the most
appropriate replica of an object to be served. Plaxton et al.
[49] use a virtual tree of object location agents that maps
one-to-one into the network to locate replicas of an object.
For each object, there is a separate tree and each node of the
tree keeps track of the object replicas located at the entire

subtree rooted at the node. On a request for an object, if a
node does not find any replica of the object at its subtree, it
forwards the request to its parent and this process repeats
until a replica of the object is located. Due to the limited
“view” of each agent, this approach does not guarantee
locating the most appropriate object replica (i.e., the one
that results in optimal resource utilization). This drawback
might not be important in a system with small objects that
are served with a low amount of resources and a good
response-time requirement, however, for streaming appli-
cations with continuous media objects, which have inten-
sive resource requirements and longer tolerable start-up
latency, it will result in low resource utilization.

Our object delivery scheme can be considered as an
extreme case distributed directory service to achieve
optimal scalability and robustness. As compared to a
normal distributed directory service, as far as response-
time and resource management overhead are concerned
this approach minimizes the overhead of the update to the
states (updates local metadata only), while it results in
increase in the read access overhead. As discussed in
Section 3, we alleviate the overhead of the read access to
negligible level by collapsion of the object delivery tasks. It
is important to note that almost all distributed directory
structures assume a pure tree or a mesh topology for the
network that contain the objects, whereas our scheme
assumes a RedHi topology for the DCMS network. Besides,
some systems rely on specific capabilities of the underlying
telecommunication infrastructures, such as anycasting and
multicasting, as the main means for object location [55]. This
approach makes these systems network dependent. Our
application layer scheme does not assume any of these
specific capabilities for the underlying infrastructure of the
DCMS network rather than point-to-point communication
between adjacent nodes. A hybrid system in which both
normal unicast and multicast communications can be
used for object location was recently introduced by
Cranor et al. [56].

The path selection problem is well studied with dynamic
routing algorithms such as distance vector (RIP) [57] and
link state (OSPF) [58]. These algorithms enable each node of
a network to find the “best” path between itself and other
nodes of the network. A cost function (e.g., hop count) is
usually defined to evaluate the costs of all paths between
two nodes and to select the best path (i.e., the path with
minimum cost) among them. Our path selection algorithm
is supposed to find the best path among the paths between
a single node, a head-end, and multiple potential object
server nodes of the DCMS network, which are located by
the object location algorithm. With multiple object servers,
each probably having multiple paths to the head-end in the
RedHi redundant topology, a simple cost function such as
hop count cannot resolve the highly probable tie conditions
in the costs of the paths efficiently so that it results in low
resource utilization. To achieve high resource utilization,
our cost function considers load balancing by breaking the
ties based on the current traffic load of the paths. Moreover,
our path selection algorithm runs at the application layer
on the DCMS network, whereas normal routing algo-
rithms run at the network layer within the underlying
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telecommunication infrastructures. Therefore, our cost
measures relate to streaming resources rather than
networking resources, e.g., we consider CCMS available
bandwidth rather than link propagation delay as a cost
measure.

Finally, the resource reservation problem is also studied
under protocols such as RSVP [59] and ST-2 [60], which
intend to provide communication links with guaranteed
service by reserving resources across the network. These
protocols assume the communicating peers are already
known and describe the procedure to reserve the required
resources across a path between the peers, whereas, since,
with our approach, reservation is integrated into object
location and path selection, the peers (particularly the
selected object server) and the selected path between peers
are not known in advance. Our resource reservation
algorithm runs at the application layer to reserve resources
in the DCMS network, whereas the reservation protocols
mentioned above run at the network layer within the
underlying telecommunication infrastructures. Cao et al.
[61] and Huang et al. [62] propose two typical application
layer centralized and semidistributed resource reservation
schemes, respectively. Our object delivery scheme supports
fully distributed resource reservation.

7 ConcLusioN AND FUTURE WORK

In this study, we developed an object delivery scheme for a
DCMS network assuming the RedHi topology. The unique
characteristics of this scheme are as follows:

e Given the unique features of continuous media
objects, our object delivery scheme is designed as a
fully decentralized resource management system that
guarantees scalability and robustness as well as
negligible start-up latency and resource manage-
ment overhead.

e Our object delivery scheme collapses three different
resource management tasks into one distributed
mechanism that executes all tasks integrated.

e Our object delivery scheme is designed as an
application layer resource management middleware
that is independent of the underlying telecommuni-
cation infrastructure of the DCMS network. It does
not assume any specific capabilities (e.g., multi-
casting and anycasting) for the telecommunication
infrastructure except for providing point-to-point
communication between adjacent nodes of the
DCMS network.

With our object delivery scheme, we introduced a cost
function as well as various object location and path
reservation policies. We performed extensive experiments
via simulation to evaluate performances of these policies as
well as overall performance of our object delivery scheme.
Results of our experiments show that:

o Inclusive, path freeBWyerqqe, and ERO outperform
other propagation, cost evaluation, and reservation
techniques, respectively.

e Our delivery scheme with a RedHi DCMS network
can achieve up to 50 percent improvement in
resource utilization over a pure hierarchy.

e The start-up latency and the communication over-
head per each request can be as low as two seconds
and 10b/s, respectively.

We intend to extend this study in several ways. First, we
would like to extend the object delivery mechanism to
support VCR functions for interactive object delivery.
Second, we also intend to merge the bandwidth renegotia-
tion idea into our object delivery scheme to provide a
hybrid solution for distributed continuous media applica-
tions. Finally, we are investigating techniques to incorpo-
rate self-configuration/warm-expansion capabilities into
resource management.

APPENDIX

Definition 2 (Leveled Graph). “Leveled Graph” G = (V, €, n)
is a graph (with V as the set of nodes and & as the set of edges)
that satisfies the following two conditions:

1. There exists a partition {V;|i € 1l.m, n>1} of V
such that Ve € &, if e = (u,w), 3j € 2..n such that
uw€ Vi and w e V;. In such a case, u is a parent
node of w, and w is a child node of u.

2. Yve Vy,3dee & such that e = (v,w) and v is a
parent node of w. Moreover, Yv € Vico.,, Je €&
such that e = (u,v) and v is a child node of u.

The number n is the number of levels (i.e., partition
members) in the leveled graph G. If v € V1, v is a root node of
G. Nodes that have no children are termed head-ends or
leaves of G.

Definition 3 (Pure Hierarchy). A “Pure Hierarchy” is a
leveled graph in which:

1. There is one and only one root and
2. Every node, except the root, has one and only one
parent node.

Definition 4 (Redundant Hierarchy (RedHi)). A “Redun-
dant Hierarchy” is a leveled graph in which:

1. There are at least two roots and
2. Every node, except the roots, have at least two parent
nodes.
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