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ABSTRACT
The problem of point-to-point shortest path computation in spatial
networks is extensively studied with many approaches proposed to
speed-up the computation. Most of the existing approaches make
the simplifying assumption that weights (e.g., travel-time) of the
network edges are constant. However, with real-world spatial net-
works the edge travel-times are time-dependent, where the arrival-
time to an edge determines the actual travel-time of the edge. With
this paper, we study the applicability of existing shortest path algo-
rithms to real-world large time-dependent spatial networks. In ad-
dition, we evaluate the importance of considering time-dependent
edge travel-times for route planning in spatial networks. We show
that time-dependent shortest path computation can reduce the travel-
time by 36% on average as compared to the static shortest path
computation that assumes constant edge travel-times.
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1. INTRODUCTION
With the ever-growing popularity of online map applications and

their wide deployment in mobile devices and car-navigation sys-
tems, an increasing number of users search for point-to-point short-
est paths. Accordingly, in the recent years there has been consider-
able interest by the research community to develop efficient algo-
rithms to compute the optimum-path and the corresponding travel-
time between a given source and destination in large road networks
(e.g., [14, 11, 18, 15, 16]). All these studies as well as many ex-
isting commercial products make the simplifying assumption that
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the travel-time for each edge of the road network is fixed (e.g., pro-
portional to the length of the edge). However, in real-world the
actual travel-time on a road segment heavily depends on the cur-
rent traffic congestion and, therefore, is a function of time (i.e.,
time-dependent).

To illustrate the difference between shortest path computation
with static and time-dependent road networks, we show a sim-
ple example in Figure 1 where a spatial network is modeled as
a graph and edge weights (i.e., travel-times) are time-dependent.
Consider the snapshot of the network (i.e., a static network) with
edge weights correspond to travel-time values at t=0. With clas-
sic shortest path computation approaches that disregard travel-time
time-dependency, the shortest path from s to d goes through v1, v2, v4
with a cost of 13 time units. However, by the time when v2 is
reached (i.e., at t=5), the cost of edge e(v2, v4) changes from 8 to
12 time units, and hence reaching d through v2 takes 17 time units
instead of 13 as it was anticipated at t=0. In contrast, if the time-
dependency of edge travel-times are considered and hence path go-
ing through v3 was taken, the total travel-cost would have been 15
units which is the actual optimal shortest path. We call this short-
coming of the classic shortest path computation techniques as no-
lookahead problem. Unfortunately, most of the existing online map
applications suffer from the no-lookahead shortcoming and, hence,
their shortest path recommendation a unique path regardless of the
time the query is received. We remark that time-dependent shortest
path computation [7] returns different optimum-paths for different
departure-times from the source.

Meanwhile, we witness an increasing number of navigation ser-
vice providers (such as Navteq [12] and TeleAtlas [17]) have started
releasing their time-dependent travel-time datasets for road net-
works at high-resolution temporal granularity as fine as one sam-
ple for every five minutes. Considering the availability of high-
resolution time-dependent travel-time data for road networks on
the one hand, and the importance of time-dependency for accurate
and useful route planning on the other hand, the need for efficient
approaches to enable online computation of shortest paths in time-
dependent networks is apparent and immediate. There are handful
of studies [7, 1, 4, 5] that focus on efficient computation of time-
dependent shortest path problem. With this paper, we study the ap-
plicability of these studies to online computation of time-dependent
shortest path in real-world large road networks with time-varying
travel-times. In addition, for the first time we show the importance
of considering time-dependent edge travel-times in route planning
as it improves the travel-time accuracy 36% on average as com-
pared to the shortest path computation that assumes constant edge
travel-times (see Section 5.2).

The remainder of this paper is organized as follows. In Sec-



tion 2, we review the related work on time-dependent shortest path
algorithms. In Section 3, we define the time-dependent shortest
path problem in spatial networks. In Section 4, we analyze the im-
portance of time-dependency and the feasibility of existing time-
dependent shortest path algorithms. In Section 5, we present the
results of our experiments with a variety of spatial networks with
real-world time-dependent edge weights. Finally, in Section 6, we
conclude and discuss our future work.

2. RELATED WORK
In the last decade, numerous efficient shortest path algorithms

with precomputation methods have been proposed (see [16] and
[14] for an overview). However, there are a few studies that focus
on efficient computation of time-dependent shortest path problem.

Cooke and Halsey [2] first studied the time-dependent shortest
path (TDSP) problem where they solved the problem by formu-
lating it in discrete-time and using Dynamic Programming. An-
other discrete-time solution to TDSP is to utilize time-expanded
networks [10]. In general, time-expanded network approaches as-
sume that the edge weight functions are defined over a finite dis-
crete window of time t ∈ t0, t1, .., tn, where tn is determined by
the total duration of time interval under consideration. Therefore,
the problem is reduced to the problem of computing, for each time
window, minimum-weight paths through the static network where
one can apply any of the well-known shortest path algorithms. Al-
though these algorithms are easy to design and implement, they
have numerous shortcomings. First, time-expanded models need
to create a separate instance of network for each time instance
hence leading substantial amount of storage. Second, such ap-
proaches can only provide approximate results because the model
misses the state of the network between any two discrete-time in-
stants. Finally, it is very hard to decide on the effective choice of
discrete-time intervals for real-world applications. In [9], George
and Shekhar proposed time-aggregated graph approach where the
time-dependent travel-times of each edge are aggregated into time
series. Even though this model requires less space than that of time-
expanded networks, the results are still approximate.

In [7], Dreyfus showed that the time-dependent shortest prob-
lem can be solved by a generalization of Dijkstra’s method as effi-
ciently as for static shortest path problems. However, Halpern [8]
proved that the generalization of Dijkstra’s algorithm is only true
for FIFO networks. If the FIFO property does not hold in a time-
dependent network, then the problem is NP-Hard. In [13], Orda and
Rom introduced a time-dependent shortest path approach based on
Bellman-Ford algorithm. With their approach, they determine the
path toward destination by refining the arrival-time functions on
each node in the whole time interval T . In [9], Kanoulas et al. in-
troduced Time-Interval All Fastest Path (allFP) approach in which
they maintain a priority queue of all paths to be expanded instead
of sorting the priority queue by scalar values. Therefore, they enu-
merate all the paths from the source to a destination node which
incurs exponential running time in the worst case.

The ALT algorithm was proposed to accelerate shortest path com-
putation in static road networks. With ALT, a set of nodes called
landmarks are chosen and then the shortest distances between all
the nodes in the network and all the landmarks are computed and
stored. ALT employs triangle inequality based on distances to the
landmarks to obtain heuristic function to be used in A* search. The
time-dependent variant of ALT is studied in [5] where heuristic
function is computed w.r.t lower-bound graph. The Contraction
Hierarchies (CH) [1] and SHARC [4] methods (also developed for
static networks) were augmented to time dependent road networks.
We discuss the shortcomings of these approaches in Section 4.1.

Figure 1: Time-dependent graph

3. PROBLEM DEFINITION
With our study we model the road network as a time-dependent

weighted graph where the non-negative edge weights (i.e., travel-
times) are time-varying. We assume that the time-dependent travel-
times are provided as a piecewise linear functions (see Figure 1)
which capture the typical congestion pattern for each road segment.

DEFINITION 1. Time-dependent Graph. A Time-dependent
Graph is defined as G(V,E, T ) where V = {vi} is a set of nodes
and E ⊆ V × V is a set of edges representing the network seg-
ments each connecting two nodes. For every edge e(vi, vj) ∈
E, andvi 6= vj , there is a cost function cvi,vj (t), where t is the
time variable in time domain T . An edge cost function cvi,vj (t)
specifies the travel-time from vi to vj starting at time t.

DEFINITION 2. Time-dependent Travel Cost. Let
{s = v1, v2, ..., vk = d} denotes a path which contains a sequence
of nodes where e(vi, vi+1) ∈ E and i = 1, ..., k − 1. Given a
G(V,E, T ), a path (s  d) from source s to destination d, and
a departure-time at the source ts, the time-dependent travel cost
TT (s  d, ts) is the travel-time it takes to travel the path. Since
the travel-time of an edge varies depending on the arrival-time to
that edge, the travel-time of a path is computed as follows:

TT (s  d, ts) =

k−1∑
i=1

cvi,vi+1(ti) where t1 = ts, ti+1 = ti +

c(vi,vi+1)(ti), i = 1, .., k.

DEFINITION 3. Time-dependent Shortest Path (TDSP). Given
a
G(V,E, T ), s, d, and ts, the time-dependent shortest path
TDSP (s, d, ts) is a path with the minimum travel-time among all
paths from s to d.

In the rest of this paper, we assume that G(V,E, T ) satisfies the
First-In-First-Out (FIFO) property. We also assume that objects
do not wait at any node. In most real-world applications, waiting
at a node is not realistic as it means that the moving object must
interrupts its travel by getting out of the road (e.g., exit freeway)
and finding a place to park and wait.

4. ANALYSIS OF TDSP
In this section, we analyze the time-dependent shortest path com-

putation with respect to two categories. In particular, we i) discuss
the applicability of existing algorithms for online computation of
time-dependent shortest path in real-world large spatial networks,
and ii) assess the importance of time-dependent shortest path by
analyzing how much time-dependent planning improves the total
travel-time as compared to static shortest path planning.



4.1 Online Computation of TDSP
The time-dependent shortest path problem was first shown by

Dreyfus [7] to be polynomially solvable in FIFO networks by a
trivial modification to any label-setting (e.g., Dijkstra) or label-
correcting (e.g., Bellman Ford) shortest path algorithm. The FIFO
property, which typically holds for many networks including road
networks, suggests that moving objects exit from an edge in the
same order they entered the edge 1. However, the modified ver-
sions of the standard shortest path computation algorithms are far
too slow for online applications which are usually deployed on very
large networks. For example, answering a time-dependent shortest
path query based on the modified Dijkstra algorithm typically takes
about 6 seconds for relatively large distances in California road net-
work. Meanwhile, there are many efficient approaches that rely on
precomputation to enable answering queries in real-time for online
applications (e.g., [14]). These approaches are originally designed
for static road networks and it is infeasible to extend them to time-
dependent networks mainly due to very large storage and prepro-
cessing requirements. This is because the input size (i.e., the num-
ber of shortest paths) increases drastically in time-dependent net-
works. In particular, since the length of a s-d path changes depend-
ing on the departure-time from s, the shortest path is not unique for
any pair of nodes in time-dependent networks. It has been conjec-
tured in [3] that the number of shortest paths between any pair of
nodes in time-dependent road networks can be super-polynomial.
Hence, an algorithm which precomputes the every possible path for
any pair of nodes in large time-dependent networks and stores the
corresponding path selections would suffer from exponential time
and storage complexity. For example, the time-dependent exten-
sion of Contraction Hierarchies (CH) [1] and SHARC [4] speed-
up techniques (which are proved to be very efficient for static net-
works) suffer from impractical precomputation times and intolera-
ble storage complexity. Specifically, the main idea behind CH and
SHARC is to remove unimportant nodes from the graph without
changing the shortest path distances between the remaining (more
important) nodes. However, unlike the static networks, the impor-
tance of a node can change throughout the time under considera-
tion in time-dependent road networks, hence the importance of the
nodes are time varying. Considering the super-polynomial input
sizes with time-dependent networks [3], the main shortcomings of
these approaches are impractical preprocessing times and exten-
sive space consumption. For example, the precomputation time for
SHARC in time-dependent road networks takes more than 2-3 days
for relatively small road networks (e.g. Germany). While CH also
suffers from slow preprocessing times, the space consumption for
CH is 1000 bytes per node for relatively less varied edge-weights.
Hence, CH cannot be used in real-world large networks with high
traffic (i.e., large variation in edge-weights). On the other hand,
the time-dependent ALT approach is more efficient than the time-
dependent CH and SHARC in terms of preprocessing time and stor-
age. However, with ALT, the landmark selection is very difficult
(relies on heuristics) and the size of the search space and storage is
severely affected by the choice of landmarks.

We conclude that the prohibitively high storage and preprocess-
ing times make the existing time dependent shortest path algo-
rithms impractical to be deployed on real-world large spatial net-
works (e.g., North America road network with approximately 15
million nodes).

1The shortest path computation problem is shown to be NP-hard
in non-FIFO networks [8].Violation of the FIFO property rarely
happens in real-world and hence is not the focus of this study.

4.2 Importance of TDSP
As we discussed there are handful of studies that focus on effi-

cient computation of time-dependent shortest path. However, none
of these studies investigate the practicality of time-dependent plan-
ning in real-world road networks. With our study, for the first
time we assess the importance and the practical usefulness of time-
dependent planning by comparing the results of time-independent
shortest computation on a real-world spatial network with real time-
varying edge travel-times. To this end, we focus on answering two
specific questions: i) how much does time-dependent path planing
reduce the travel-time as compared to static path planning, and ii)
how different are the time-dependent shortest path and the static
shortest path for a given source and destination. We answer these
question in the following section based on our experimental evalu-
ation with real-world datasets.

5. EXPERIMENTAL EVALUATION

5.1 Experimental Setup
We conducted extensive experiments with different spatial net-

works to evaluate the practical usefulness of TDSP. As of our dataset,
wee used California (CA) and Los Angeles (LA) road network data
[12] with approximately 1,965,300 and 304,162 respectively. We
conducted our experiments on a workstation with 2.7 GHz Pentium
Core Duo processor with 12GB RAM memory.

In our lab, we maintain large-scale and high resolution (both
spatially and temporally) traffic sensor (i.e., loop detector) dataset
collected from the entire Los Angeles County highways and ar-
terial streets. This dataset includes both inventory and real-time
data (with update rate as high as every 1 minute) for 6300 traf-
fic sensors covering approximately 3000 miles. The sampling rate
of the streaming data is 1 reading/sensor/min. We have been con-
tinuously collecting and archiving the traffic sensor data past two
years. We use this real-world dataset create time varying edge
weights, we spatially and temporally aggregate sensor data by as-
signing interpolation points (for each 5 minutes) that depict the
travel-times on the network segments. Based on our observation,
all roads are un-congested between 9PM and 6AM, and hence we
assume static edge weights between those times. In order to create
time-dependent edge weights for the local streets in LA as well as
the entire CA road network, we developed a traffic modeling ap-
proach (based on our observations from LA dataset) that synthet-
ically generates edge travel-time profiles [6]. Our approach uses
spatial (e.g., locality, connectivity) and temporal (e.g., rush hour,
weekday) characteristics to generate travel-time of network edges
that does not have readily available sensor data.

5.2 Results
In this section we report our experimental results from our shor-

est path queries in which we determine the source s and destination
d nodes uniformly at random. We also pick our departure time ran-
domly and uniformly distributed in time domain T . The average
results are derived from 1000 random s-d queries.

With our experiment we investigate how much TDSP improves
the total travel-time as compared to static shorest path (SP). We use
Dreyfus’s algorithm [7] to compute time-dependent shortest path
for a given s and d. To compute static shortest path (with Dijkstra’s
algorithm), we use the maximum attainable speed (hence mini-
mum travel-time) on the network edges. We conduct our experi-
ments with the following settings. Given s-d path and for each 5
minutes from 6AM to 9PM, we first determine the time-dependent
P ∗ = ({n1, ..., nl}, t) and time-independent P = {n′1, ..., n′k}
optimum paths as well as their corresponding travel-times to d,



(a) TDSP vs SP (b) Standard deviation

Figure 2: TDSP and SP Comparison

i.e., At
P∗(t) and AP (t), respectively. Next, we compute the ac-

tual time-dependent travel-time At
P (t) of time-independent path

P . Specifically, we take P = {n′1, ..., n′k} and determine ac-
tual time-dependent cost of travel along P departing from n′1 for
a given t. Figure 2(a) plots the improvement gained by the TDSP
over its static counter part for which we measure the relative per-
centage increase of SP’s travel-time over that of TDSP computed
as At

P (t)/A
t
P∗(t) − 1. As shown,the cost of the path found by

the TDSP is on average 36% better than that of SP and the differ-
ence is more significant (i.e., 68%, 43% ) during rush hours (i.e.,
7-9:30AM, 4-6PM). The reason for significant difference during
rush hours is that the edge weights change rapidly especially at the
boundaries of the traffic peak periods and hence causing an overall
increase in the cost of SP. However, TDSP avoids the congestion by
selecting alternative segments and hence yields better travel-times.
As expected, the paths found by TDSP and SP is often same before
6AM and after 9PM. Figure 2(b) depicts the standard deviation (in
minutes) of At

P (t)−At
P∗(t). As illustrated, the standard deviation

is also more significant during rush hours.
We also compared the path similarity (number of identical edges

in P ∗ and P ) of TDSP and SP. Our results showed that the path
found by the TDSP deviates on average 28% with maximum recorded
deviation of 87% (where TDSP finds almost completely different
path than that of SP) from SP. One interesting observation from this
experiment is that although different departure times return differ-
ent optimum paths, there exists only a limited number of different
paths during a day for a given s and d. In particular, we used 180
different departure times, and on average the number of distinct
optimum-time path computed by time-dependent shortest path al-
gorithm was on average 7, and at most 12.

In sum, we observe that the use of time-dependent information
can significantly reduce the travel-times especially during peak hours
when the faster travel-time routes needed the most. In addition, our
experimental results show that while the paths found by TDSP can
deviate largely from SP during rush hours, the number of distinct
paths computed by TDSP is relatively small (i.e, on average 7).

6. CONCLUSION AND FUTURE WORK
With this paper, we study the applicability of existing algorithms

for computation of time-dependent shortest path in real-world large
spatial networks with time-varying edge travel-times. We also present
the first comprehensive study on the impact of considering time-
varying edge costs for route planning in spatial networks. Our ex-
perimental evaluation with real-world spatial networks and traffic
data shows that taking the time-dependent edge travel-times into
account can reduce the travel-time by 36% on average as compared
to static shortest path computation that assumes constant edge weights.
We also observe that although time-dependent shortest path compu-
tation returns different optimal-paths for different departure-times,
there are only a limited number of distinct paths (i.e., 7 on average)
for a given source and destination. We believe that these observa-

tions open a door to several practical directions for future work.
We intend to pursue this study in two different directions. First,

we intend to investigate new data models for effective representa-
tion of time-dependent spatial networks. This is critical in support
of developing efficient and accurate time-dependent algorithms, while
minimizing the storage and computation cost. Second, given that
existing time-dependent shortest path algorithms are impractical
with large scale spatial networks, we plan to develop efficient and
scalable preprocessing techniques that can be used to accelerate the
time-dependent shortest path computation.
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