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ABSTRACT
Real-time ride-sharing, which enables on-the-fly matching between
riders and drivers (even en-route), is an important problem due to its
environmental and societal benefits. With the emergence of many
ride-sharing platforms (e.g., Uber and Lyft), the design of a scal-
able framework to match riders and drivers based on their various
constraints while maximizing the overall profit of the platform be-
comes a distinguishing business strategy.
A key challenge of such framework is to satisfy both types of the
users in the system, e.g., reducing both riders’ and drivers’ travel
distances. However, the majority of the existing approaches focus
only on minimizing the total travel distance of drivers which is not
always equivalent to shorter trips for riders. Hence, we propose
a fair pricing model that simultaneously satisfies both the riders’
and drivers’ constraints and desires (formulated as their profiles).
In particular, we introduce a distributed auction-based framework
where each driver’s mobile app automatically bids on every nearby
request taking into account many factors such as both the driver’s
and the riders’ profiles, their itineraries, the pricing model, and the
current number of riders in the vehicle. Subsequently, the server de-
termines the highest bidder and assigns the rider to that driver. We
show that this framework is scalable and efficient, processing hun-
dreds of tasks per second in the presence of thousands of drivers.
We compare our framework with the state-of-the-art approaches
in both industry and academia through experiments on New York
City’s taxi dataset. Our results show that our framework can simul-
taneously match more riders to drivers (i.e., higher service rate)
by engaging the drivers more effectively. Moreover, our frame-
work schedules shorter trips for riders (i.e., better service quality).
Finally, as a consequence of higher service rate and shorter trips,
our framework increases the overall profit of the ride-sharing plat-
forms.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online Information
Services-Commercial services
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1. INTRODUCTION
Real-time ride-sharing, as an alternative transportation service,

alleviates traffic congestion and decreases auto emissions. With the
emergence of many commercial platforms (e.g., Uber and Lyft),
which automatically match drivers and riders on-the-fly, real-time
ride-sharing becomes more and more popular. According to [1],
millions of trips have been taken on UberPool since its launch
at August 2014, and thousands of passengers take it five times a
week during commuting hours. Enabled by the development and
technology advances of smart phones and location-based services,
ride-sharing platforms typically operate as follows: (1) Riders and
drivers can join the platform via their smart phones, (2) a rider can
submit a request, which consists of the pick-up and drop-off points,
to the platform, (3) once a new request is received, the platform de-
termines a driver (even en-route) to pick up the rider, (4) when the
trip is completed, the platform calculates the rider’s fare and the
driver’s income. With these platforms, riders can share a vehicle
with reduced trip cost while enjoying fast and convenient trans-
portation.

Many challenges exist to enable such real-time ride-sharing plat-
forms. From a business point of view, the platform provider (e.g.,
Uber) seeks to maximize its own profit. However, higher profits
should not be at the cost of either charging passengers more or
paying drivers less than what would compromise participation and
retention due to no monetarily incentive for either parties. Con-
sequently, the design of a fair pricing model becomes an essential
business strategy. This is particularly important in cases of carpool-
ing where riders share their ride with other riders. Even though
carpooling reduces the riders’ cost, it incurs extra distance (i.e., de-
tour) for riders. While each rider’s fare should be discounted as a
function of the length of the detour, the driver should be rewarded
more as the total travel distance is increased due to all detours. Fur-
thermore, different users (i.e., riders and drivers) might value their
time differently. Therefore, a fair pricing model should be avail-
able to both riders and drivers to express, for a certain amount of
detour, how much discount or compensation they expect. Finally,
in addition to fair pricing scheme for riders and drivers, the model
should account for the provider’s revenue as well.

The second challenge of a ride-sharing platform is to process
incoming requests in real-time. This involves two different tasks:
i) checking which drivers can add the new requests (new pick-up
and drop-off locations) to their current trip without violating the
constraints of that trip (i.e., scheduling) and ii) selecting the best
driver among those who can serve the new request (i.e., matching).
Processing the schedule of potentially thousands of drivers to check
if they can accommodate a new request, with the additional task
of matching their pricing profile with the incoming rider’s profile,
becomes computationally intensive. Therefore, the design of an



efficient and scalable algorithm that assigns riders to drivers with a
fair pricing model while maximizing the provider’s revenue, is very
challenging.

The majority of previous studies [2, 3, 4, 5] focus on improving
the efficiency of on-the-fly assignment with the objective of mini-
mizing the total travel distance of drivers. In particular, in existing
studies a new request is assigned to a driver who can fit the request
in his schedule with the least amount of increase in the total trav-
eled distance. However, minimizing drivers’ total travel distance
is not always equivalent to overall shorter trips for riders. Conse-
quently, when assigning a new request, the driver who would incur
the minimum increase in total travel distance is not necessarily the
most cost effective option. To illustrate, suppose driver a has two
passengers on board and driver b has only one. To serve an incom-
ing request, a’s incurred detour is 2 miles while for b the detour is
3 miles. Even though a’s detour is shorter, the platform owner has
to compensate both passengers of a for 2 miles (a total of 4 miles)
while in the case of b it has to compensate only one passenger for
a total of 3 miles. In addition, from the riders’ perspectives, in the
first scenario two riders incur extra detour while in the second only
one rider incurs an extra detour. Few studies [6, 7] consider a pric-
ing model by defining monetary incentives for riders and drivers.
In [6], a pricing model is introduced where instead of being com-
pensated, a rider can potentially end up being penalized for longer
detours by paying a higher fare. Ma et. al. [7] overcomes the un-
fairness issue in [6] to some extent. Even though, a new rider can
incur detour in his trip, their model only compensates riders that
are already on board. In addition, since this model is targeted for
a different application, the notion of revenue fails to provide any
incentive for the platform provider. Furthermore, in all previous
studies [6, 8, 7], a centralized server is responsible for matching
and scheduling incoming requests. Most of these studies utilize a
spatiotemporal index to enable matching, i.e., narrowing down the
number of potential drivers who can serve an incoming request.
With thousands of drivers in the system, even after applying the
spatial index, the centralized server still needs to perform schedul-
ing and profile matching for all the candidate drivers. We show that
with large number of drivers, these frameworks fail to process new
requests in real-time (Section 5.3.4) and hence not scalable.

To address aforementioned challenges, in this paper, we intro-
duce an Auction-based Price-Aware Real-time (APART) ride-sharing
framework. We propose a general and versatile pricing model that
allows both riders and drivers to set their monetary expectations
for participating in ride-sharing based on their predefined profiles.
Specifically, each rider’s profile defines the expected discount ratio
for the detours incurred by ride-sharing. For example, one rider can
express that he is willing to accept a 10 mile detour for 30% dis-
count. On the other hand, each driver’s profile defines the expected
cost in terms of his total travel distance and time. The model also
accounts for the revenue of the platform provider. Consequently,
our objective is to maximize the revenue of the ride-sharing frame-
work while satisfying various temporal and monetary constraints of
all users. APART is price-aware because a new request is assigned
to a driver which generates the highest profit. Since our pricing
model is designed to compensate riders for detours, the most prof-
itable choice is also the one where riders incur the least amount
of detour, hence better service quality. Finally, APART also max-
imizes the revenue of the provider by increasing the service rate
(throughput) in the system through engaging available drivers more
effectively to serve more requests.

To efficiently assign riders to the candidate drivers, we intro-
duce a distributed auction-based framework. With our framework,
APART, the server broadcasts a new request to a set of candidate

drivers and the mobile app of each candidate driver1 computes and
submits a bid based on the driver’s current schedule, his and his
other passengers’ profiles and other spatiotemporal constraints. Sub-
sequently, the server collects all the bids from candidate drivers and
assigns the rider to the highest bidding driver. To guarantee high
service quality, each driver runs a branch-and-bound algorithm that
performs an exhaustive search to find out whether it can fit a new
request into its current scheduling. Each driver carries a small num-
ber of riders so even an exhaustive search can be performed in
real-time. Due to the distributed nature of APART, all candidate
drivers perform the search in parallel. Once each driver finds its
own best schedule, the server simply selects the driver that gener-
ates the highest profit. Consequently, APART is able to find the
most profitable drivers in real-time.

We conducted extensive experiments on a large scale New York
City taxi dataset and show that APART is scalable and efficient, ca-
pable of processing hundreds of tasks per second in the presence of
thousands of drivers. By comparing our framework with the state-
of-the-art approaches [8], we show that our framework can simulta-
neously match up to 10% more riders to drivers (i.e. higher service
rate), while the total travel distance of riders are 20% less (i.e., bet-
ter service quality), hence our framework can generate more profit
than other approaches with an even better service quality. On the
other hand, we show that in a framework were riders are assigned
to drivers with the least increase in the driver’s travel distance, up to
25% of the requests are not assigned to the most profitable driver.

The remainder of this paper is organized as follows. We define
our problem in Section 2, and explain our pricing model in Sec-
tion 3. We present our APART framework, and discuss its auction-
based approach in Section 4. In Section 5, we report the experiment
results. We discuss the related work in Section 6 and conclude the
paper in Section 7.

2. PROBLEM DEFINITION
In this section, we define the terminologies, and formally define

the problem under consideration.

2.1 Basic Concepts
The road network is represented as a graph G(I, E), where each

node represents intersections, and each edge represents a road seg-
ment. Each edge (i, j) ∈ E (i, j ∈ I) is associated with a weight
c(i, j) which is a travel cost (can be either time or distance) from i
to j. The shortest path cost d(s, t) is defined as a minimal cost path
connecting s and t. With our approach, APART, time and distance
can be converted from one to the other.

DEFINITION 1 (RIDE REQUEST). A ride request r can be rep-
resented as 〈s, e, w, ε, f〉 consisting of a starting point s ∈ I and
an end point e ∈ I . Each request also specifies w as the maximum
time the rider can wait after making a request and the maximal de-
tour ε · d(s, e) the rider can afford . In addition, a rider’s profile
f : R+ → [0, 1], specifies the relative discount in exchange for an
incurred detour of ∆d ∈ R+.

Upon the acceptance of a request, APART assigns it to a driver.

DEFINITION 2 (DRIVER). A driver v is represented as 〈L, n, g〉
where L is the list of ride requests assigned to v, and n is the maxi-
mum number of requests v can accept at any point in time. A driver
also has a profile g : R+ → $2 which specifies the monetary cost of
v driving a distance d ∈ R+ while servicing its assigned requests.
1Hereafter we use the term “driver” to refer to both the human
driver and the software running on his mobile device.
2In this paper, we show monetary values with $



DEFINITION 3 (SCHEDULE). Given a set L with n requests,
a schedule S = 〈x1, · · · , x2n〉 is an ordered sequence of pick-up
and drop-off points for these request, where for each ri ∈ L, ri.s
precedes ri.e in S.

A schedule is valid for a driver v, if it satisfies the following
conditions:

• The riders’ waiting time constraint: for any request ri, the
waiting time from the time the request is made until v arrives
at ri.s should be less than ri.w.

• The driver’s capacity constraint: the number of riders in the
vechile cannot exceed the total capacity n.

• Detour constraint: the maximum distance of every rider’s trip
should be less than (1 + ε) · d(ri.s, ri.e).

• The driver’s and all riders’ (the new rider and the those al-
ready in the vehicle) monetary constraints (See Section 3)

The driver follows the sequence of picking up and dropping off
riders. The schedule changes over time as riders are serviced (picked-
up/dropped-off) and new requests are added to the schedule. In fact,
adding a new request to a schedule can re-order some requests that
already exist in the schedule. For example, when a new request r3

arrives, the initial schedule of 〈s1, s2, e1, e2〉 can be reordered to
〈s1, s2, s3, e2, e3, e1〉, where rider 1 is dropped off after rider 2.

DEFINITION 4 (MATCHING). Assuming we have a set of drivers
V and a set of requests R, we call M ⊂ V × R a matching if for
each r ∈ R there is at most one v ∈ V such that (v, r) ∈ M . We
call (v, r) ∈M a match.

In a matching M , for every driver v, there exists a valid schedule
Sv , such that (v, ri) ∈M =⇒ ri.s ∈ Sv ∧ ri.e ∈ Sv (or simply
ri ∈ Sv).

In Section 3, we define a generic pricing model where given a
driver and its schedule, the pricing model computes the final fare
each rider has to pay, the income of the driver and the ride-sharing
platform’s profit. Subsequently, we can define the ride-sharing
problem as follows:

DEFINITION 5 (RIDE-SHARING PROBLEM). Given a set of
ride requests R and a set of drivers V, the goal of the ride-sharing
problem is to find a matching M between R and V such that the
revenue of M is maximized.

The ride-sharing problem is NP-Hard since the Vehicle Rout-
ing Problem (VRP) [9] is reducible to the ride-sharing problem in
polynomial time. A globally optimal solution to the ride-sharing
problem can be achieved when a Clairvoyant exists which knows
what requests are going to be submitted to the framework at what
time and also has the knowledge of which drivers are going to be
available, in advance. However, in this paper we study the online
version of the problem, i.e., the framework has no knowledge re-
garding future requests and incoming requests have to be matched
with drivers as soon as they are submitted to the framework. The
optimality of online algorithms are usually analyzed using compet-
itive ratio [10], i.e., an algorithm A is called c-competitive for a
constant c > 0, if and only if, for any input I the result of A(I)
is at most c times worst than the globally optimal solution. In the
following we show no online algorithm can achieve a good com-
petitive ratio for ride-sharing problem.

THEOREM 2.1. There does not exist a deterministic online al-
gorithm for the ride-sharing problem that is c-competitive (c > 0).

PROOF. Suppose there exists an algorithmA that is c-competitive.
For A to be c-competitive, it should be at most c times worst than
the optimal solution for every input. Consequently, to show no c-
competitive algorithm exists, we only need to show one input for
which where A does not have a competitive ratio of c.
We assume there exist an adversary which knows every decision
A makes and consider the input generated by this adversary. For
simplicity, we assume there is only one driver at point (0, 0). The
input starts with r1 with a pick-up location at (w, 0) and r2 with
pick-up location at (−w, 0) (we assume all requests have a maxi-
mum wait time of w). The algorithm can make three choices for
the driver. (1) move toward r1, (2) move towards r2 and (3) stay
still. If choice 1 is selected, the adversary can generate the input
such that at time t = 1, n more request are submitted with pick-
up location at (−w − 1, 0) and drop-off locations similar to r2.
Similar arguments can be made if choice 2 or 3 are selected by the
algorithm. A globally optimal solution can complete n+1 requests
whileA can at most complete one request. By adding more drivers
far away in a similar situation, the adversary can make A’s solu-
tion unboundedly worse than the optimal solution. Therefore, we
contradicted the assumption that A is c-competitive.

3. PRICING MODEL
In a ride-sharing platform where the objective is to maximize

the monetary profit, it is important to utilize a pricing model which
is fair to both riders and drivers. For example, the pricing model
introduced in [6] compensates drivers based on the distance they
travel and this is the total fare all riders have to pay (split). There-
fore, for the portions of the trip where there are more than one
passenger, the fare gets divided by the number of passengers on the
vehicle. It is true that on average, riders end up paying less as com-
pared to when they are the only passenger on the vehicle. However,
the problem with this model is that the riders are still paying for the
detours incurred in their trip, even though they split the cost. There-
fore, if long detours are incurred in a rider’s trip, the rider may end
up paying even more than when he is the only passenger. For exam-
ple, with a simple experiment on New York City’s taxi dateset, we
observed that up to 10% of riders pay more than what they would
have paid if they did not participate in carpooling (see Section 5.4).

In this section, we define a generic pricing model which aims
to satisfy the monetary constraints of the users of the system. Be-
fore we continue, it is important to note that one of the building
blocks of any real-world ride-sharing system is to compute the
shortest path between any two points in the road network. With-
out loss of generality, we define our pricing model based on a static
road network where edge weights remain stationary during com-
putation. However, our algorithms can be extended to incorporate
time-dependent networks where cost of edges are time varying. For
example, the fare of a ride is dependent on the distance between the
pick-up and the drop-off points in a static network where in a time-
dependent network it can be dependent on the travel time between
those two points. A fair pricing model has to satisfy the following
rules:
• For every single rider, if the rider’s trip is longer than the

shortest trip between his pick-up and drop-off location, the
rider should receive a discount proportional to his detour
(i.e., the difference between the actual and the shortest trip).
• For a driver, if the driver’s trip is increased by serving more

riders, the driver’s compensation should increase proportional
to the distance of the driver’s trip.

Consequently, the pricing model should answer three key ques-
tions: (1) “How much should the riders pay for a trip?” (2) “How



0 20 40 60 80 100
Distance detour (∆d)

0

0.2

0.4

0.6

0.8

0.9

1

D
is

c
o
u
n
t 
ra

ti
o

c = 0.9
λ = 0.05

f(10)=0.55

Rider discount: f(∆d)=ce-λ∆d

(a) Example Rider’s Profile

0 20 40 60 80 100
Total travel distance (d)

0

20

40

60

80

100

T
o

ta
l 
p

ro
fi
t 

($
)

Driver income: g(d)=d

(b) Example Driver’s Profile

Figure 1: Example User Profiles

much should the drivers be compensated for serving riders?” and
(3) “What is the revenue of the ride-sharing platform?”. We define
our generic pricing model by answering these three questions.

Every request r has a default fare based on the shortest distance,
dr ∈ R+, from sr to er . In other words, every pricing model
should have an arbitrary function F : R+ → $ such that F (dr)
is the default fare of a ride. In a ride-sharing system, the actual
route between the pick-up and drop-off locations of a ride is not
necessarily the shortest route between the two points. We represent
the actual route between the two end points of a ride with d′r and
define the detour of a ride as ∆dr = d′r − dr . As explained in
Definition 1, each request is associated with a profile. We introduce
the concept of a rider’s profile as a tool for the rider to specify how
much discount he expects to receive in return for a certain amount
of detour on his trip. A rider’s profile can have different formats:
e.g., linear decay, exponential decay, etc., which represents that
rider is not willing to take a service after the decay point. Fig. 1(a)
shows an example of a rider’s profile, where the rider will have 55%
of discount for 10 miles of detour.

Subsequently, for a request r with shortest distance dr , detour
∆dr and a profile fr , the final fare is represented as:

fare(r) = F (dr)fr(∆dr) (1)

This guarantees that no rider pays more than what he would have
paid if he took a solo ride. In fact, the rider will get compensated
for longer trips due to the detour. This satisfies the first rule of our
fair pricing model.

Every driver has a unique profile which allows him to specify
the cost of his service. Similar to riders, drivers can have differ-
ent expectations for participating in ride-sharing platforms. The
drivers’ profile allows them to set their expectations with respect
to how much they expect to be paid for participating in the plat-
form. The driver’s profile can be any function. In fact, it can take
any arbitrary input in addition to the distance. For example, it is
possible to define the driver’s profile as g : N × R+ → $ where
for 〈n, d〉 ∈ N × R+, n and d are the number of passengers be-
ing serviced by the driver and the driver’s total traveled distance,
respectively. Without loss of generality, we assume distance is the
only input of the driver’s profile. Intuitively, the profile is a mono-
tonically increasing function. For example, the profile in Fig. 1(b)
is one where the driver charges $1 per mile.

At any point in time, each driver has a schedule. A driver will be
compensated during the time its schedule is not empty. Therefore,
for every driver v, the income is:

incomev =

∫ ends

starts

I (Sv(t) 6= 〈〉) .g(d(t))dt (2)

Where I() is the indicator function, Sv(t) and d(t) are the driver’s
schedule and the distance he travels at time t, respectively. In ad-
dition, starts and ends are the first pick-up time and last drop-off
time of Sv . Consequently, regardless of the serviced requests, each

driver receives an income only based on his total travel distance.
This satisfies the second rule of our fair pricing model.

The amount of a driver’s compensation does not necessarily have
to be the same as what the riders pay for the same distance. It is the
framework’s responsibility to assign riders with drivers where their
profiles are compatible. The profit APART makes from driver v is
the difference between the fares collected from all riders serviced
by v and the income v receives for himself. Subsequently, the total
profit (revenue) of APART is the sum of the profits received from
all drivers:

profitv =
∑
ri∈sv

fare(ri)− costv (3)

revenue =
∑
v∈V

profitv (4)

A price-aware framework can utilize pricing models and profiles
in order to provide a better service quality. Consider the example in
Fig. 2 where a driver is en-route to pick-up a rider from s1 and drop-
off at e1. Before the driver reaches s1 a new request arrives with
s2 and e2 as the pick-up and drop-off locations, respectively. We
also assume both {s1, s2, e1, e2} (Fig. 2(a)) and {s1, e1, s2, e2}
(Fig. 2(b)) are valid schedules. Any algorithm with the objective of
minimizing the total travel distance will select the route in Fig. 2(a).
With APART, the riders are able to set their profiles such that the
framework might end up selecting either routes. For example, if
riders want to get to their destination with the least amount of de-
tour, they can set their expected compensation for small detours to
a high value and the framework will select the route in Fig. 2(b) as
the schedule for the driver. On the other hand, if riders are willing
to share a ride and reduce the cost of their ride, they can do so by
configuring their profiles differently. Depending on what the rid-
ers and drivers accept as a higher quality service, by setting their
respected profiles they can adjust APART to provide them with a
service that better suits them. Here we only considered two riders
and a single driver in order to make the example in Fig. 2 simple.
Even though in this example, a smaller detour is achieved through
avoiding carpooling, in the experiments in Section 5.4 we show that
at least 80-90% of the riders do engage in carpooling and yet, end
up with a detour of only 6-7% of their original trip.

(a) Minimize Driver’s Distance (b) Minimize Rider’s Detour

Figure 2: Examply of Price-aware Scheduling

We end this section with a note on the versatility of our pricing
model. We explained our pricing model based on the objective of
our framework which is maximizing the provider’s revenue. How-
ever, using the same definitions and by configuring the riders’ and
drivers’ profiles differently, we can adjust the framework to achieve
other objectives as well. For example, consider minimizing total
travel distance of drivers. Many studies [6, 8, 7] achieve this goal
by assigning a new request to the driver with the least increase in
travel distance. Theorem 3.1 shows, with only configuring the rid-
ers’ and drivers’ profiles appropriately, APART can make exactly
the same assignments and achieve the same objective.

THEOREM 3.1. If all the riders’ profiles are set to f ′
r = 1 and

every drivers’ profiles to g′v = 1, by selecting the most profitable
driver, APART will select the driver with the minimum increase in
travel distance.



PROOF. Upon arrival of a new request r, each driver in APART
finds a schedule which generates the most profit. Since f ′

r(∆dr) =
1, regardless of ∆dr , the final fare for r is equal to F (dr) where dr
is the length of the shortest path between r’s pick-up and drop-off
points. Therefore, for an incoming request r, every driver v can
compute the maximum profit it can generate for the system upon
accepting r as: profitv = F (dr) − g′(∆dv) where ∆dv is the
increase in v’s traveled distance if r is assigned to v. Since F (dr)
is the same regardless of the driver, the most profitable driver is the
one with the smallest ∆dv .

4. APART FRAMEWORK
In a real-time ride-sharing application, once the server receives

a request, it needs to determine the driver who can best accommo-
date the new request with respect to his current schedule. With a
large number of candidate drivers, the scheduling phase becomes
the bottleneck in centralized frameworks where one single server
processes the requests. Therefore, we introduce APART which
overcomes this shortcoming by distributing the scheduling task to
the drivers themselves. We first explain the auction framework in
which the server broadcasts new arriving requests to the drivers.
Subsequently, we discuss how each driver generates a bid based on
its current schedule.

4.1 Dispatch Requests
Auction frameworks have been effectively used for assignment

problems [11, 12]. Following the terminology used in auction frame-
works, APART considers drivers as bidders and ride requests as
goods. Note that the actual human driver does not engage in bid-
ding, instead, his mobile app software does the bidding based on
various constraints and goals. The server plays the role of a central
auctioneer in APART. With APART, once a new request is received
by the server (auctioneer), it presents the request to the drivers (bid-
ders). Each driver computes a new schedule which incorporates the
incoming request, and generates a bid based on the driver’s and rid-
ers’ profile. Subsequently the bid is submitted to the server. The
bidding process is performed as a sealed-bid auction where drivers
simultaneously submit bids and no other driver knows how much
the other drivers have bid. In the end the server selects the driver
with the highest bid as the winner and matches the request with the
driver.

With APART, drivers that are far away from the pick-up location
of an incoming request, are not asked to bid on the request. The
server only sends an incoming request to eligible drivers that are
defined as:

DEFINITION 6 (ELIGIBLE DRIVERS). An available driver v
is said to be eligible for servicing a newly submitted request r, if
and only if:

distance(v, r.s) ≤ r.w × avg_speed

Figure 3: Spatiotemporal Grid Index

In other words, an available driver d is eligible for serving request
r, if he has enough time to reach the pick-up location of r within
r’s waiting time. In order to find eligible workers for each request,

the server maintains a spatial index on the location of the drivers.
With APART, the server does not need to know the exact location
of the drivers to filter out non-eligible drivers. We use a grid index
where the server only keeps track of which cell a driver is located
in. For example, in Fig. 3, assuming the black dot is the pick-up
location of a new request and r is the maximum wait time for the
new request, any driver in the shaded cells will receive the new re-
quest. In our grid index, we use the filter and refine process in [13]
in order to enable continuous query processing on the underlying
road network using Euclidean distances.

Algorithm 1 Dispatch(Vr, r, startT ime)

Input: Vr is the set of currently available drivers, r is a new re-
quest and startT ime is the current time

Output: v ∈ Vr as the driver that request r is assigned to
1: vselected ← null
2: Bids← ∅
3: for v ∈ Vr do
4: bv ← ComputeBid(v, v.schedule, r, startT ime)
5: Bids← Bids ∪ {bv}
6: end for
7: vselected ← arg maxx {bx ∈ Bids}
8: return vselected

Algorithm 1 outlines the process of assigning an incoming re-
quest r, where Vr is the set of eligible drivers for request r (line 3).
For each candidate driver v, the ComputeBid method (line 4) is ex-
ecuted to perform scheduling and compute v’s bid (Section 4.2).
Subsequently, the platform chooses the driver with the highest bid.
In case of a tie in line 7, the algorithm randomly selects one driver
among the ones with the highest bid. Notice that all the iterations
of the for loop in Algorithm 1 (lines 3-6) run in parallel.

4.2 Bid Computation & Payments
Once a driver is notified of a new request, it has to compute a

bid. The bid each driver generates reflects the profit the system can
gain if the request is assigned to that driver. Once the ride-sharing
application receives the request, it generates a bid and submits the
bid to the server. When a new request is assigned to a diver, he will
be notified with an updated schedule. This means that the human
driver’s interaction with APART is limited to configuring his profile
on the ride-sharing application.

Algorithm 2 ComputeBid(v, v.schedule, r, startT ime)

Input: v is a driver with schedule v.schedule, r is a new request
and start_time is the current time.

Output: additional profit that v can generate by accepting r
1: src← {r′.s|r′ ∈ v.schedule}
2: src← src ∪ {r.s}
3: newProfit, newSchedule←FindBestSchedule(v, ∅, src,−∞, ∅, startT ime)

4: oldProfit← GetProfit(v, v.schedule, startT ime)
5: additionProfit← newProfit− oldProfit
6: return additionProfit

Algorithm 2 outlines the bid computation process. First, it inserts
the pick-up locations (including the new request’s pick-up point) in
the list named src (lines 1-2). Subsequently, the algorithm calls
FindBestSchedule which finds the best valid schedule and its cor-
responding profit using Algorithm 3. Because each driver’s bid is
the additional profit that the new request can generate for the plat-
form, the algorithm calculates oldProfit for v’s original sched-
ule using Algorithm 4 (line 4). Hence, the additional profit that v
can generate by accepting r is the difference between newProfit



and oldProfit. The reason FindBestSchedule is initially called
with only the pick-up locations is to guarantee, for every request its
pick-up location is scheduled before its drop-off location.

Algorithm 3 FindBestSchedule(v, curList, remList, bestProfit,
bestSchedule, startT ime)

Input: curList and remList are lists of pick-up/drop-off points that
have been added and to be added to a valid schedule, respec-
tively. bestProfit and bestSchedule are the best profit and
corresponding schedule observed so far, and startTime is the
current time.

Output: bestProfit, bestSchedule as the best profit and corre-
sponding schedule for input points if a valid schedule exists.
Otherwise −∞, ∅

1: if curList.size + remList.size > v.n ×2 then
2: return bestProfit, bestSchedule
3: end if
4: for p in remList do
5: f ′ ← curList
6: f ′.add(p)
7: profit← GetProfit(v, f ′, startT ime)
8: if profit 6= −∞ then
9: r′ ← remList

10: r′.remove(p)
11: if p.type == pick-up point then
12: r′.add(p.req.e) // add the drop-off point into r′

13: end if
14: if r′.size == 0 then
15: return profit, f ′

16: end if
17: profit, schedule← FindBestSchedule(f ′, r′, bestProfit,

bestSchedule, startT ime)
18: if profit > bestProfit then
19: bestProfit← profit
20: bestSchedule← schedule
21: end if
22: end if
23: end for
24: return bestProfit, bestSchedule

We now explain how to find the most profitable schedule in Al-
gorithm 3. The idea is to enumerate every valid schedule, calcu-
late its profit and choose the most profitable one. Therefore, the
algorithm recursively performs an exhaustive search to find the
best valid schedule. Given the set of nodes that have already been
added to the schedule(i.e., curList), and the remaining nodes(i.e.,
remList), at each iteration of Algorithm 3 (lines 4-23), one node
from remList is added to curList (lines 5-6). Each time a new
node is added to curList, the algorithm checks whether this par-
tial schedule is valid. If the partial schedule is invalid, GetProfit in
line 7 returns −∞ and the search continues to the next branch.
Otherwise, the variable profit contains the profit of the partial
schedule curList. Once the pick-up node of a request is added
to curList, the corresponding drop-off node of the same request is
added to remList (line 11-13). If the remaining nodes get empty,
the search on the current branch stops and the current branch’s
profit is returned (lines 14-16); otherwise, it recursively checks the
new branch r′ (line 17). The best profit is updated once the search
finds a profit higher than bestProfit (lines 18-21).

Figure 4 shows an example of using Algorithm 3 to find a best
schedule with two requests r1 and r2. Each rectangle represents
a node in the search tree, where the left and right sections con-
tain the scheduled points and the remaining points, respectively

(sets curList and remList in Algorithm 3). Initially remList
is started with the two pick-up locations. Each time a new pick-up
point (e.g., s1) is scheduled and moved from the right section to
the left, the corresponding drop-off point (e.g., e1) will be added to
the right section. The shaded rectangles contain an invalid partial
schedule in the left section and hence, the tree does not expand un-
der them. The search continues until all the branches have been vis-
ited and the complete schedule with the highest profit is returned.

Figure 4: Illustration of Algorithm 3

Algorithm 4 GetProfit(v, schedule, startT ime)

Input: schedule is an ordered list of pick-up/drop-off points of
driver v and startTime is the current time.

Output: the profit of performing the input schedule at time
startT ime. If schedule is not valid it returns −∞

1: time← startT ime
2: loc← v.loc
3: distance← 0
4: for p in schedule do
5: trip← ShortestPath(loc, p.loc)
6: distance += Distance(trip)
7: time += TravelTime(trip)
8: if p.type == pick-up point then
9: if time > p.req.req_time + p.req.w then

10: return −∞
11: end if
12: pickUp[p.req]← distance
13: end if
14: if p.type == drop-off point then
15: ∆d← distance− pickUp[p.req]
16: if ∆d > p.req.ε× p.req.sp then
17: return −∞
18: end if
19: fare += p.req.f(∆d) × F(p.req.sp)
20: cost← v.g(distance)
21: end if
22: loc← p.loc
23: end for
24: profit← fare− cost
25: return profit

Algorithm 4 computes the profit driver v can generate by com-
pleting schedule at startT ime. Each driver v runs this algorithm
locally, and hence, v.loc (line 2) and v.g (line 20) refer to v’s cur-
rent location and profile, respectively. Also, for any node p in the
schedule, p.req and p.req.sp refer to the corresponding request of
node p and the shortest path for that request, respectively. Algo-
rithm 4 iterates through the nodes in schedule one by one keep-
ing track of the added time and distance. Each node is either
a pick-up node or a drop-off node. For pick-up nodes, the al-
gorithm checks if the maximum wait time constraint is violated
(line 9). For every drop-off node, the detour constraint is checked
(line 16). If the check is successful, the algorithm computes the
actual travel distance for the request and determines the incurred



detour (line 19). After computing the detour, the algorithm com-
putes the added fare and cost using Eqs. (1) to (3). If the input
schedule is not valid, the algorithm returns −∞ as the profit.

Once drivers submit their bids, the server selects the driver with
the highest bid and assigns the new request to that driver.

5. EXPERIMENTS
5.1 Dataset

We evaluate our algorithms using one month (May, 2013) of
New York City’s taxi dataset [14], which contains 39437 drivers
and around 500,000 trips per day. Each ride in the dataset has a
pick-up latitude/longitude, a drop-off latitude/longitude and request
time. We extracted the road network of New York City from Open
Street Map (OSM), which is represented as an undirected graph
with 55,957 vertices and 78,597 edges. Subsequently, we mapped
the source and destination of each trip to the road network. Simi-
lar to [8], we maintain a cache for shortest paths between vertices,
which means that the shortest path can be found in constant time.
Initially, each driver is randomly located on one vertex of the road
network. When the vehicle is serving rider requests, we assume it
is following the schedule and moving constantly towards the desti-
nation.

5.2 Experiment Setup

5.2.1 Algorithms
We compared the results of our framework (APART) with two

other approaches: TREE (i.e., Kinetic tree [8]) from academia and
NN (i.e., Nearest Neighbor) from industry.

Our implementation of TREE is based on the algorithms in [8].
Since TREE [8] does not provide any pricing model, once a ride is
completed, we compute its incurred detour and use Eqs. (1) to (3) to
compute the platform’s revenue. Also, to make the comparison fair,
before assigning a request to a driver we perform profile matching
to insure the provider does not end up loosing money. If the profiles
were not compatible, we select the next driver with the shortest
increase in travel distance.

The NN algorithm is implemented based on the current approach
adopted by major ride-sharing platforms such as Uber. To the best
of knowledge, these platforms find the first nearest driver to the
pick-up location of a new request. If the driver is able to fit the new
request in its schedule without violating any constraints, he accepts
the request. Otherwise the request is rejected and the algorithm
tries to assign the request to the next nearest driver. This continues
until a driver accepts the request, or every driver rejects it in which
case the request is dropped.

Parameter Values
Max Wait Time (w) 3min, 6min, 9min, 12min, 15min, 20min

# of Drivers 1000, 2000, 5000, 10000, 20000
Max Passengers (n) 2, 3, 4, 5, 6

Max Allowed Detour (ε) 25%, 50%, 75%, 100%

Table 1: Parameters for Algorithm Comparison

In the first set of experiments, we use the pricing model ex-
plained in Section 3 and compare the three approaches. In Sec-
tion 5.4 we utilize the pricing model introduced in [7] for both
APART and TREE. Because there is no concept of revenue (similar
to what we introduced in Section 3) in the pricing model of [7], in
order to compare the generated revenue, we assume each driver has
to pay 20% of their income as the platform’s share.

5.2.2 Configurations and Measures
In our experiments we measure the following metrics by varying

different parameters of the system: (1) service rate as the percent-
age of requests that were completed, (2) the revenue of the system
and (3) the response time for matching a request with a driver. Ta-
ble 1 shows the different values we used for various parameters to
evaluate our framework (default values are shown in bold).

For the pricing model by default we configure it as:
F (d) = 2× d

∀r, fr(∆dr) = 1− (0.25×∆d2
r)

∀v, gv(d) = 1.5× d
(5)

5.3 Algorithm Comparison

5.3.1 Overall comparison
In this section, we compare and analyze the performance of the

three approaches using the default parameters in Table 1 with re-
spect to service rate, generated revenue and response time.

As shown in Fig. 5(a), APART is able to serve more requests
(i.e. higher service rate) compared to the other two approaches.
For all three approaches we use the same set of requests and drivers
for each iteration, which means all approaches start with the same
configuration in the road network. However, each approach assigns
riders to drivers differently and hence, after a while the dynamism
of the network (i.e., location of the drivers on the road network) will
be different in each algorithms. To understand the reason for higher
service rate, for each incoming request, we also count the number
of eligible workers (Section 4.1). We say, the driver availability in
algorithmA is higher than B with regard to request r, if during the
simulation, more eligible drivers in algorithm A are available for
r compared to that of algorithm B. Fig. 5(b) shows the percentage
of the requests for which APART has higher(/lower) driver avail-
ability compared to the other two approaches. The left two bars in
Fig. 5(b) show that for more than 60% of the requests, APART has
a higher driver availability compared to both NN and TREE. This
means that APART engages drivers more effectively compared to
NN and TREE and hence, is able to serve more requests.

Next, we compare the algorithms with regard to how much rev-
enue they generate. Fig. 5(c) shows APART generates almost 20%
and 50% more revenue compared to TREE and NN, respectively.
In Section 1 we mentioned that the driver with minimum increase
in his travel distance is not necessarily the most profitable driver.
To verify this theory, when running TREE, for each incoming re-
quest (and after the algorithm chose the driver with least increase
in traveled distance), we also check all eligible drivers to see which
one generates the highest profit by serving the new request. We
performed a similar check when running NN. Based on our ob-
servations, for 23% of the requests, the driver chosen by TREE is
different from the most profitable driver. This number for NN is
70%. In Section 5.2.1 we explain, with implementation of TREE
and NN the request is not assigned to a driver that cannot satisfy the
monetary constraint. In other words, both approaches make sure by
assigning a request to a driver, the platform provider does not loose
money. If we relax this check for both approaches, in TREE, 5% of
the requests are assigned to drivers that loose money. This number
is 40% for NN.

The final metric we compare, is the average response time for
processing a single request. As shown in Fig. 5(d), with the de-
fault setting, the processing time in TREE is almost twice the re-
sponse time in APART. The reason is that although TREE utilizes
a “Kinetic Tree” data structure which maintains the current avail-
able schedules to expedite the scheduling process, the server has to
perform scheduling for eligible drivers sequentially while APART
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Figure 5: Comparing Algorithms with Default Values

distributes the scheduling to the drivers. Nevertheless, with the de-
fault settings, all three approaches process the requests under 3ms
which is acceptable for a real-time framework.

Following we vary different parameters based on Table 1 and
evaluate the effect of each parameter on the same metrics.

5.3.2 Service Rate
In this set of experiments we compare the service rate of the three

approaches. As shown in Fig. 6, all algorithms generate high ser-
vice rates when the constraints are relaxed or there is high resource
availability. However, under tight constraints or limited resources,
APART outperforms the other two approaches by up to 20%. In the
previous section we showed how APART copes with the dynamism
in the system better than the other two approaches.
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Figure 6: Comparing Service Rate of the Algorithms

5.3.3 Revenue
As mentioned, the main objective of APART is to maximize the

ride-sharing platform’s revenue. In this experiment, we compare
the generated revenue of each algorithm. Towards that end, we
apply the pricing model explained in Section 3. Here, we want
to evaluate the effect of varying the parameters in Table 1 on the
revenue and compare different algorithms. In Section 5.4 we apply
different pricing models to the algorithms and compare revenue un-
der different pricing models.

Fig. 7 shows that regardless of the values of different parameters,
APART generates more revenue than any other approaches. When
we compare the results in Fig. 7 with Fig. 6, even under configura-
tions where all algorithms have the same service rate, APART man-
ages to generate at least 10% more revenue. The main reason for
higher revenue is that APART is designed to make a price-aware
assignment, i.e., assign the request to a driver that generates the
most profit. On the other hand, the TREE and NN algorithms were
not designed to maximize revenue. As explained in Section 3, the
pricing models that are used in APART are designed such that the
higher profits are not gained by scamming the riders.

5.3.4 Response Time
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Figure 7: Comparing Revenue of the Algorithms

Similar to [6, 8], APART instantly processes a request once it is
submitted. In order to evaluate the scalability of our framework, our
next set of experiments evaluate the response time of processing a
single request.
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Figure 8: Comparing Response Time of the Algorithms
Fig. 8(b) shows that when more drivers are added, the scalability

of TREE suffers as it has to perform scheduling for a larger num-
ber of vehicles. On the other hand, due to the distributed nature of
APART’s auction-based approach, each driver does scheduling for
itself and adding drivers does not affect the overall response time of
APART as much. In Fig. 8(c) we observe that although APART’s
response time does not go beyond 5ms, TREE handles the increase
in maximum passengers better due to the Kinetic Tree structure im-
plementation [8]. The reason for NN’s poor performance is that it
has to perform scheduling computation sequentially, for possibly
multiple drivers. Finally, in Fig. 8(a) and Fig. 8(d) we conclude
that for relaxed constraints, the response time of TREE increases
up to 4 times higher than that of APART. The main reason is that
the Kinetic Tree structure keeps track of all valid orders of requests
that are assigned to a driver. As we relax the constraints, the num-



ber of feasible permutations of the requests increases which makes
the size of the Kinetic Tree larger and updates become more expen-
sive. This in turn increases the response time. Fig. 8 shows unlike
the other two approaches, APART’s scalability does not suffer by
varying different parameters of the framework.

5.4 Comparing Different Pricing Models
In this section, we evaluate the effect of the pricing model. First

we show the importance of designing a fair pricing model. We uti-
lize the three approaches with the model in [6] and show how some
riders may suffer by participating in ride-sharing. Subsequently, we
perform some experiments utilizing the pricing model in [7] and
show that as a result of price-aware assignments, regardless of the
model, APART generates more revenue for the platform provider.
Finally, we show the flexibility that profiles provide for the users.

Fig. 9 shows the result of utilizing the pricing model in [6].
Based on this pricing model, the driver’s income is:

c.d1 + (1 + α).c.d2

where d1 is the distance the driver had only one rider on-board, d2

is the total distance the driver had more than one rider on-board
and c is some predefined constant. α takes a value between 0 and
1 which determines the increase in the driver’s income for serving
more than one rider. As we show in Fig. 9(a), by participating in
ride-sharing, the majority of riders save money (pay less as com-
pared to riding alone). Fig. 9(a) supports the claim in [6] that on
average riders will save money. However, Fig. 9(b) shows that re-
gardless of what algorithm is used, up to 10% of riders pay more by
participating in ride-sharing which is not acceptable. The reason is
that, riders have to pay even for detours. Even though riders split
the fare on detours, if detours are sufficiently long, even carpooling
riders loose money.
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Figure 9: Fairness of Pricing Models
In the next set of experiments, we apply the model in [7] and

evaluate the performance of APART and TREE. In this model,
riders get compensated for any detour incurred in their trip. The
amount of compensation is based on the new rider’s fare and the
length of a rider’s detour compared with the detour of other riders
on the vehicle. Because the algorithm in [7] is similar to TREE, we
only compared APART with TREE. Fig. 10(a) shows that APART
provides a slightly higher service rate than TREE. However, due to
assigning the riders to the most profitable drivers, APART ends up
generating 10% more revenue.
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Figure 10: Effect of Applying an Arbitrary Pricing Model

In Section 3, we mentioned by setting their profiles, users can
configure APART to make assignments the way they find desir-

able. In the last set of our experiments, we use two different con-
figurations to represent the riders’ profiles. First, we set the riders’
profiles to fT (∆dr) = 1

(∆dr+1)
. Such profile is suitable for a rider

who wants to minimize his detour and is willing to share a ride
only if the detour is short. Since the rider sets Tight constraints we
show this profile by fT . In the second iteration, we set the profile
of the riders to fR(∆dr) = 1 − ( ∆dr

maxδ
). This profile is more Re-

laxed (hence, fR) and it is expected that more riders share a trip.
Fig. 11 shows the result of utilizing APART and TREE with fT and
fR. Since TREE does not make price-aware assignments, the re-
sults in both iterations were the same. However, as we observe with
APART_T, almost 10% fewer riders ended up sharing a ride while
on average they only observed 6-7% increase in their trips. On the
other hand, with APART_R, almost every rider shares a ride and
the average increase in their trip was almost 20%. An interesting
observation in Fig. 11 is that with APART_R, more riders share a
ride compared to TREE while their average detour was still less.
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Figure 11: Effect of Profiles

In conclusion, APART is agnostic of the price model and is able
to generate more profit. In addition, APART supports different
types of riders’ expectations by adjusting the profiles.

6. RELATED WORK
There are mainly two categories of ride-sharing, i.e., static and

dyanmic ride-sharing. Most existing studies [15, 16, 17] focus on
static ride-sharing, where all riders and drivers are known a priori
and thus, trips are prearranged. Furuhata et al. [15] provoides a
comprehensive suvery of the different types of ride-sharing regard-
ing their formulations, optimizations and key computation chal-
lenges. Santi et al. [16] proposes a graph-based approach to quan-
tify the potential of ride-sharing using New York’s taxi data, and
Cici et al. [17] evaluated the potential of carpooling using four
cities’ mobile dataset. In addition, ride-sharing problem can be
treated as a special class of the dial-a-ride problem (DARP) [18],
or dynamic vehicle routing problem (VRP) [9, 19] in operational
research, which is proven to be NP-hard. All these studies assume
that the riders’ and drivers’ statuses are know in advance, and hence
can afford high computation cost, which is not the case in real-time
ride-sharing.

With the emergence of many ridesahring mobile applications
(e.g., Uber and Lyft), real-time ride-sharing [6, 7, 8, 2, 3, 4, 5] has
recently attracted more research interest. Ma et al. [6, 7] proposed a
ride-sharing dispatch system named “T-share" to serve the rider re-
quest on-the-fly with the objective of reducing drivers’ total travel
distance. Their work focuses on maintaining a spatial-temporal in-
dex to retrieve the candidate drivers. On the other hand, Huang [8]
proposed a kinect tree scheduling algorithm to dynamically match
trip request to drivers with minimum incurred travel distance. Ota
et al. [2] introduced a data-driven simuation framework that en-
ables the analysis of ride-sharing by using New York’s taxi dataset.
Santos et. al [20] propose a ride-sharing system to maximize the
number of matched request. The majority of these studies aim to
minimize the total travel distance of drivers, however, we show that



this does not necessarily mean shorter travel distance for the riders.
Compared with these work, we discuss the conflicting interest be-
tween riders, drivers and platform providers. We propose a general
and versatile pricing model and our objective is to maximize the
total profit of the platform provider. We show that by maximiz-
ing the overall profit, our framework achieves higher service rate
and quality. Finally, we introduced a decentralized auction-based
framework to support scalable and real-time scheduling, which dif-
fers from existing centralized scheduling framework.

Pricing mechanisms in realtime ride-sharing have also been stud-
ied in [21, 22, 23]. Their main focus is to adapt the well-known
VCG mechanism [24] for truthful bidding, while addressing the
specific challenges such as computational issues, incentive com-
patibility [21, 22] and deficit control [23]. These studies are or-
thogonal to our paper, and can be integrated into APART when we
compute the bid of each candidate driver.

Our work is also related to the task assignment and scheduling
problem in spatial crowdsourcing [25, 26, 27]. Spatial crowdsourc-
ing is a platform, which enables a requester to comission workers
to physically travel to some specified locations to perform a set of
spatial tasks. For example, Kazemi et. al [25] formuated task as-
signment in spatial crowdsourcing as a min-cost max-flow problem,
Deng et. al studied both task scheduling problem for one single
worker [26] and multiple workers [27]. Unlike spatial crowdsourc-
ing, in real-time ride-sharing, each rider request consists of both
pickup and dropoff locations. In addition, their assignment and
scheduling are processed in a batch fashion (e.g., batching tasks
and workers every 10 minutes), whereas each rider request in real-
time ride-sharing must be processed in a short amount of time.

7. CONCLUSION AND FUTURE WORK
In this paper, we studied the problem of real-time ride-sharing.

Unlike existing studies, our objective is to maximize the revenue of
the platform provider without compromising service quality, hence
we introduced APART with a fair pricing model so that higher prof-
its cannot be gained by scamming the riders. With APART, riders
were able to set their monetary preferences through their profiles,
and consequently the trips were generated according to our price-
aware assignment mechanism. We validated our framework with
a large scale New York City’s taxi trips data. The experimental
results demonstrated the effectiveness and efficiency of our frame-
work in terms of both service rate and quality. Also, the distributed
nature of APART allowed for real-time processing of requests.

In future, we plan to expand the framework by considering a
time-dependent road network, where pre-computing the shortest
paths between different nodes of the road network becomes impos-
sible. Another interesting direction is to batch the requests arriving
within a short period of time (e.g., 5 seconds).
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