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Abstract

Feature subset selection (FSS) is a known technique to
pre-process the data before performing any data mining
tasks, e.g., classification and clustering. FSS provides
both cost-effective predictors and a better understand-
ing of the underlying process that generated data. We
propose Corona, a simple yet effective supervised fea-
ture subset selection technique for Multivariate Time
Series (MTS). Traditional FSS techniques, such as Re-
cursive Feature Elimination (RFE) and Fisher Criterion
(FC), have been applied to MTS datasets, e.g., Brain
Computer Interface (BCI) datasets. However, these
techniques may lose the correlation information among
MTS variables, since each variable is considered sepa-
rately when an MTS item is vectorized before applying
RFE and FC. Corona maintains the correlation infor-
mation by utilizing the correlation coefficient matrix of
each MTS item as features to be employed for SVM.
Our exhaustive sets of experiments show that Corona
consistently outperforms RFE and FC by up to 100%
in terms of classification accuracy, and takes more than
one order of magnitude less time than RFE and FC in
terms of the overall processing time.

Keywords

multivariate time series, feature subset selection, sup-
port vector machine, recursive feature elimination, cor-
relation coefficient matrix

1 Introduction

Feature subset selection (FSS) is one of the techniques
to pre-precess the data before we perform any data
mining tasks, e.g., classification and clustering. FSS is
to identify a subset of original features from a given
dataset while removing irrelevant and/or redundant
features [1]. The objectives of FSS are [2]:
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e to improve the prediction performance of the pre-
dictors

e to provide faster and more cost-effective predictors

e to provide a better understanding of the underlying
process that generated the data

The FSS methods choose a subset of the original
features to be used for the subsequent processes. Hence,
only the data generated from those features need to be

collected. The differences between feature extraction
and FSS are:

e Feature subset selection maintains information on
the original features while this information is usu-
ally lost when feature extraction is used.

e After identifying the subset of original features,
only those features can be measured and collected
ignoring all the other features. However, feature
extraction in general requires measuring all the
original features.

A time series is a series of observations, x;(t);[i =
1,---,n;t =1,--- ,m|, made sequentially through time
where 7 indexes the measurements made at each time
point ¢ [3]. Tt is called a univariate time series when n is
equal to 1, and a multivariate time series (MTS) when
n is equal to, or greater than 2.

MTS datasets are common in various fields, such
as in multimedia and medicine. For example, in multi-
media, Cybergloves used in the Human and Computer
Interface applications have around 20 sensors, each of
which generates 50~100 values in a second [4, 5]. In [6],
22 markers are spread over the human body to mea-
sure the movements of human parts while walking. The
dataset collected is then used to recognize and identify
the person at a distance by how he or she walks. In the
Neuro-rehabilitation domain, kinematics datasets gen-
erated from sensors are collected and analyzed to evalu-
ate the functional behavior (i.e., the movement of upper
extremity) of post-stroke patients [7]. In medicine, Elec-
tro Encephalogram (EEG) from 64 electrodes placed on



the scalp are measured to examine the correlation of ge-
netic predisposition to alcoholism [8]. Functional Mag-
netic Resonance Imaging (fMRI) from 696 voxels out of
4391 has been used to detect similarities in activation
between voxels in [9].

The size of an MTS dataset can become very
large quickly. For example, the EEG dataset in [10]
utilizes tens of electrodes and the sampling rate is
256Hz. In order to process MTS datasets efficiently,
it is therefore inevitable to preprocess the datasets to
obtain the relevant subset of features which will be
subsequently employed for further processing. In the
field of Brain Computer Interfaces (BCIs), the selection
of relevant features is considered absolutely necessary
for the EEG dataset, since the neural correlates are not
known in such detail [10]. Identifying optimal and valid
features that differentiate the post-stroke patients from
the healthy subjects is also challenging in the Neuro-
rehabilitation applications.

An MTS item is naturally represented as an m X n
matrix, where m is the number of observations and
n is the number of wvariables, e.g., sensors. However,
the state of the art feature subset selection techniques,
such as Recursive Feature elimination (RFE) [2], require
each item to be represented in one row. Consequently,
to utilize these techniques on MTS datasets, each
MTS item needs to be first transformed into one row
or column vector, which we call wectorization. For
example, in [10] where an EEG dataset with 39 channels
is used, an autoregressive (AR) model of order 3 is
utilized to represent each channel. Hence, each 39
channel EEG time series is transformed into a 117
dimensional vector. However, if each channel of EEG
is considered separately, we will lose the correlation
information among the variables.

Information theory (IT) based feature subset selec-
tion methods, such as information gain and informa-
tion gain ratio, have been extensively studied and em-
ployed in the data mining and machine learning commu-
nity [11, 12]. However, IT based feature subset selection
methods are also not directly applicable to MTS items,
because, again, an MTS item is not a vector, and also
each value of an MTS item is continuous, not discrete.
Hence, each MTS item should first be transformed into
a vector and also be discretized, which usually results
in loss of important information.

In this paper, we propose a simple yet quite effec-
tive subset selection method for multivariate time se-
ries (MTS)!, termed Corona (Correlation as Features).

TFor multivariate time series, each wariable is regarded as

a feature [10]. Hence, the terms feature and wvariable are
interchangeably used throughout this paper, when there is no
ambiguity.

Corona is based on RFE. Recall that RFE, which uti-
lizes SVM, requires each item to be represented as a vec-
tor. The performance of RFE will therefore heavily rely
on how the MTS dataset is fed into SVM, i.e., how each
MTS item is transformed to be utilized by SVM. Corona
employs the correlation coefficients of an MTS item as
features for SVM and hence for RFE. The intuition is
based on our previous work [13] which has shown that
the correlation information among the variables plays
an important role in obtaining the similarity between
two MTS items. Hence, Corona first computes the pair-
wise correlation coefficients of all the variables, i.e., the
correlation coefficient matrix, of each MTS item. Since
the correlation coefficient matrix is symmetric and its
diagonal values are all 1s, only the upper triangle of the
correlation coefficient matrix except the diagonal val-
ues is utilized to vectorize an MTS item. Consequently,
an MTS dataset is transformed into a matrix, which
we call a feature matriz, where each row represents an
MTS item. Corona subsequently trains SVM on the
feature matrix, which will produce the weights of each
feature. Note that each feature in the feature matrix
is the correlation coefficient of two variables. Corona
then aggregates the weights for each variable and ranks
the variables based on the aggregated weights. Subse-
quently, Corona eliminates the variable with the lowest
rank. This process is repeated until the required num-
ber of variables is obtained. Our experiments show that
the classification performance of the variable subsets se-
lected by Corona is up to about 100% better than those
selected by other feature subset selection methods, such
as Recursive Feature Elimination (RFE) and Fisher Cri-
terion (FC). Moreover, Corona takes more than one or-
der of magnitude less time than RFE and FC in terms
of the overall processing time which includes the time
to vectorize an MTS dataset.

The remainder of this paper is organized as follows.
Section 2 discusses the background. Owur proposed
method is described in Section 3, which is followed by
the experiments and results in Section 4. Related work
is presented in Section 5 followed by conclusions and
future work in Section 6.

2 Background

Corona utilizes the correlation coefficient matrix and
RFE for feature subset selection of MTS datasets. In
this section, we briefly describe the correlation coeffi-
cient matrix, Support Vector Machine and Recursive
Feature Elimination.

2.1 Correlation Coefficient Matrix The correla-
tion represents how strongly one variable implies the
other, based on the available data [14]. Assume that



a and b are two vectors of length n. The correlation
between a and b is then defined as follows [14]:

o= =t

(2.1)

where @ and b are the averages of vector a and b,
respectively; o, and o} are the standard deviations of
a and b, respectively. The correlation value ranges
from -1 to 1. A value greater than 0 means that there
is a positive correlation. That is, if the values of a
increase, then the values of b would also increase. If
the correlation is 0, then there is no correlation between
a and b meaning that they are independent. The
negative correlation value means that there is a negative
correlation between a and b. That is, if the values of
a increase, then the values of b would decrease, or vice
versa.

A correlation coefficient matrix is a symmetric ma-
trix, where the (i, j)th entry in the matrix represents
the correlation between the ith and jth variables. Our
proposed supervised feature subset selection technique,
Corona, utilizes the correlation coefficient matrix of
each MTS item as features for SVM to obtain the
weights of each variable, which is described in Sec-
tion 3.

2.2 Support Vector Machine Support Vector Ma-
chine (SVM) is a classification technique by Vapnik [15].
SVM performs classification by obtaining and utilizing
the optimal separating hyperplane that separates two
classes and maximizes the distance to the closest point
from either class, called margin [15, 16]. Figure 1 repre-
sents the training result of an SVM model for a simple
two class dataset?.

The hyperplane that separates the two classes
shown in Figure 1 can be described as follows [18]:
(2.2) g(x) = w'x +wp
where w is the norm vector of the hyperplane g(x)
and wo/||w|| is the distance from the origin to the
hyperplane. Given new data x;, the sign of g(x;)
determines the class of x;. For simplicity, we described
only the case where the classes are linearly separable.
For more details, please refer to [18, 16].

2.3 Recursive Feature Elimination Based on
SVM, Guyon et al [19] proposed a feature subset se-
lection method called Recursive Feature Elimination
(RFE). RFE is a stepwise backward feature elimination

ZSVM and Kernel Methods Matlab Toolbox [17] is utilized to
generate the figure.

Figure 1: Two classes are linearly separable.

method [14]. That is, RFE starts with all the features
and removes features based on a ranking criterion until
the required number of features are obtained. The pro-
cedure can be briefly described as in Algorithm 1 [19]:

Algorithm 1 Recursive Feature Elimination
1: Train SVM;
2: Rank the features;
3: Eliminate the feature with the lowest rank;
4: Repeat until the required number of features are
retained;

In order to rank the features, RFE utilizes the
sensitivity analysis based on the weight vector w in
Equation 2.2. That is, at each iteration, RFE eliminates
one feature with the minimum weight. The intuition is
that the feature with the minimum weight would least
influence the weight vector norm [20], and is therefore
to be removed.

RFE, however, cannot be used with MTS datasets
as s, since an MTS item is represented as a matrix,
while RFE requires each item to be represented as a
vector. In [10], for example, each variable, i.e., channel,
is transformed separately using the autoregressive fit
coefficients of order 3. By doing so, however, the
correlation information among the variables would be
lost. In the following section, we propose an extension
of RFE to MTS datasets, called Corona.

3 Proposed Method

In this section, we describe Corona, which is a simple
yet effective feature subset selection technique for MTS
datasets based on RFE. Recall that SVM, hence RFE,
requires each MTS item to be represented as a vector.



Corona utilizes the correlation coefficients as features
for an MTS item to be used for SVM. The intuition us-
ing the correlation coefficients as features for MTS items
to be used for SVM comes from our previous work [13]
which has shown that the correlation information of an
MTS item plays a significant role in computing the sim-
ilarity between two MTS items.

Hence, Corona first computes the correlation coef-
ficient matrix for each MTS item. A correlation coeffi-
cient matrix is symmetric and its diagonal values, which
represent the autocorrelations of all the variables, are all
1s. Hence, as features for an MTS item, the correlation
coefficients in the upper triangle of the correlation co-
efficient matrix except the diagonal values are utilized,
which are then vectorized as in Algorithm 2. For an n-
variate MTS item, the number of features to be used for
SVM is Z;:lli =n x (n—1)/2. For example, for the
HumanGait dataset where n is 66, the number of fea-
tures is 66 x 65/2 = 2145. For an MTS dataset which
has N items, this transformation results in an /N X p ma-
trix, where p = n x (n — 1)/2. We denote this matrix a
feature matriz.

Corona subsequently trains SVM using the feature
matrix. Utilizing the model resulted from the SVM
training, we obtain the weight vector w for the fea-
tures that have been employed in the SVM training.
Note that each feature utilized for SVM training is a
correlation of two variables. In order to determine the
ranks of the variables, we construct a symmetric ma-
trix using the weights obtained by SVM, which we call
a weight matriz (Lines 1-10 in Algorithm 4). This is
similar to un-vectorizing the vectorized correlation co-
efficient matrix except that the weights obtained from
SVM are used, not the correlation coefficients. Hence,
the ¢th column in the weight matrix represents all the
weights of the features, i.e., the correlation coefficients,
with which the ith variable is associated. After obtain-
ing the weight matrix, Corona aggregates all the weights
of each variable and obtains one value per variable. Fi-
nally, based on the aggregated values, Corona decides
which variable to eliminate. In our experiments, we took
the greedy approach, and identified a variable whose
maximum weight is the minimum among the maximum
weights of all the variables (Lines 11-12 in Algorithm 4).
The variable whose maximum weight is the minimum is
then to be removed. The intuition behind using the maz
aggregate function is to retain the variables that are
associated with the correlation coefficients which con-
tribute most to the SVM training result.

Algorithm 3 describes the overall process of Corona.
Given an MTS dataset, Corona first computes the
feature matrix T by vectorizing the upper triangle of the
correlation coefficient matrix of each MTS item (Lines

1-4 of Algorithm 3, and Algorithm 2). Subsequently, it
performs SVM on the feature matrix. Using the feature
weights obtained from SVM, Corona ranks the variables
as in Algorithm 4. The entire process is repeated until
the required number of variables are identified.

Algorithm 2 Vectorize a correlation coefficient matrix
using the upper triangle

Require: C {a correlation coefficient matrix of an n-

variate MTS item};

C’uectom'zed — []7

for i =1 tondo
C’Uectorized — [Cvectorized C[l, (Z + 1) : TL]],

end for

Algorithm 3 Corona
Require: MTS dataset, N {the number of items in the
dataset}, k {the required number of variables};
1: for i =1to N do
2:  C « correlation coefficient matrix of the iTtH
MTS item;
Ti,:] <« vectorize C using the upper triangle of
C;
end for
[ranksv ar, weightsgyas] < Train SVM on T
Rank variables using weightssv r;
Remove one variable with the lowest rank;
Repeat until k variables remain;

o

4 Performance Evaluation

In order to evaluate the effectiveness of Corona in
terms of classification performance and overall process-
ing time, we conducted several experiments on three
real-world datasets. After obtaining a subset of vari-
ables using Corona, we performed classification using
SVM with linear kernel as in [10]. Subsequently, we
compared the performance of Corona with those of
RFE [2, 10], Fisher Criterion (FC), Exhaustive Search
Selection (ESS) when possible, and using all the avail-
able variables (ALL). The algorithm of Corona for the
experiments is implemented in Matlab and in® R using*
€1071 and® RFE packages.

4.1 Datasets The HumanGait dataset [6] has
been used for identifying a person by recognizing his/her
gait at a distance. In order to capture the gait data, a

Shttp://www.r-project.org/
4http://cran.r-project.org/src/contrib/Descriptions/e1071.html

Shttp://www.hds.utc.fr/ “ambroise/softwares/RFE/



Algorithm 4 Rank variables using weightssy

| | HumanGait | BCAR | BCI MPI |

Require: weightssy s {weights obtained by SVM}, n
{the number of variables for an MTS item};

W~

2: count «— 1;

3: fori=1tondo

4: Wi, (i + 1) : n] «— weightsgy[count : (count +
n—i—1)}

5.  count < count +n —1;

6: end for

7. W — W + transpose(W);

8 fori=1tondo

9 W(i, i)« 1;

10: end for

11: weightscorona «— Aggregate W in column-wise;
12: rankcorona — sort(weightscorona);

twelve-camera VICON system was utilized with 22 re-
flective markers attached to each subject. For each re-
flective marker, 3D position, i.e., x, y and z, are acquired
at 120Hz, generating 66 values at each timestamp. 15
subjects, which are the labels assigned to the dataset,
participated in the experiments and were required to
walk at four different speeds, nine times for each speed.
The total number of data items is 540 (15 x 4 x 9) and
the average length is 133.

Motor Behavior and Rehabilitation Laboratory,
University of Southern California collected Brain
and Behavior Correlates of Arm Rehabilitation
(BCAR) kinematics dataset to study the effect of
Constraint-Induced (CI) physical therapy on the post-
stroke patients’ control of upper extremity [7]. The
functional specific task performed by subjects was a
continuous 3 phase reach-grasp-place action; a subject
sits on a chair pressing down the starting switch with
his or her impaired forearm. She or he is then sup-
posed to reach for a target object, either a cylinder or
a card, grasp it, place it into a designated hole, release
it, and finally bring her or his hand back to the start-
ing switch. This specific task is repeated five times
per subject under four different conditions, i.e., for 2
different objects (Cylinder/Card) by posing 2 different
forearm postures (pronation/supination). The perfor-
mance is traced by six miniBIRD trackers attached on
the index nail, thumb nail, dorsal hand, distal dorsal
forearm, lateral mid upper arm and shoulder, respec-
tively. Then, 11 dependent variables are measured from
the raw data, sampled at 120Hz and filtered using a
0-lag Butterworth low-pass filter with a 20Hz cut-off
frequency. Unlike other datasets, BCAR dataset kept
the record of 11 dependent features rather than 36 raw
variables at each timestamp. They were defined by ex-

# of variables 66 11 39
average length 133 454 1280

# of labels 15 2 2
# of items per label 36 22/17 1000
total # of items 540 39 2000

Table 1: Summary of datasets used in the experiments

perts in advance and calculated from the raw variables
by the device software provided with the trackers; some
of them were just raw variables (e.g., wrist tracker X, Y,
and Z coordinates) while others were synthesized from
raw variables (e.g., aperture was computed as tangential
displacement of two trackers on thumb and index nail).
Note that these 11 variables were considered as origi-
nal variables throughout the experiments. Four control
(i.e., healthy) subjects and three post-stroke subjects
experiencing a different level of impairment participated
in the experiments. For each of the 4 conditions, the to-
tal number of data items is 39, and their average length
is about 454 (i.e., about 3.78 seconds).

The Brain Computer interface (BCI) dataset
at the Max Planck Institute (MPI) [10] was col-
lected to examine the relationship between the brain
activity and the motor imagery, i.e., the imagination of
limb movements. Eight right handed male subjects par-
ticipated in the experiments, out of which three subjects
were filtered out after pre-analysis [10]. 39 electrodes
were placed on the scalp to record the EEG signals at
the rate of 256Hz. The total number of items is 2000,
i.e., 400 items per subject.

Table 1 summarizes the datasets used in the exper-
iments.

4.2 Classification Performance We evaluated the
effectiveness of Corona in terms of classification accu-
racy. Support Vector Machine (SVM) with linear kernel
was adopted as the classifier. Using SVM, we performed
leave-one-out cross validation for the BCAR dataset and
10 fold cross validation [14] for the rest since they have
too large number of items to conduct leave-one-out cross
validation.

For RFE and FC, we vectorized each MTS item
as in [10]. That is, each variable is represented as the
autoregressive (AR) fit coefficients of order 3 using the
forward backward linear prediction [21]. Therefore, each
MTS item with n variables is represented in a vector of
size n x 3. The Spider [22] implementation of FC is
subsequently employed. For small datasets, i.e., BCAR
and HumanGait, RFE in The Spider [22] was employed,
while for large dataset, i.e., BCI MPI, RFE package for
R is utilized. Note that Exhaustive Search Selection
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Figure 2: (a) HumanGait dataset, Classification Evaluation (b) 22 markers for the HumanGait dataset. The
markers with a filled circle represent 16 markers from which the 27 variables are selected by Corona, which yields
better performance accuracy than using all the 66 variables.

(ESS) method was performed only on BCAR dataset
due to the intractability of ESS for the large datasets.
The ESS methods simply searches exhaustively among
all possible combinations of variables and selects the
best combination. Obviously, this is an impractical
approach due to its high complexity and we only used
it here (when possible) to generate the ground truth.

Figure 2(a) presents the generalization perfor-
mances on the HumanGait dataset. It shows that a sub-
set of 11 variables selected by Corona out of 66 performs
the same as the one using all the variables (99.0741% ac-
curacy), which is represented as a solid horizontal line.
Moreover, a subset of 27 variables yields 100% accuracy.
The 27 variables selected by Corona are from only 16
markers (marked with a filled circle in Figure 2(b)) out
of 22, which would mean that the values generated by
the remaining 6 markers does not contribute much to
the identification of the person. From this information
we may be able to better understand the characteristics
of the human walking.

The performances by RFE and FC for the Human-
Gait dataset is much worse than Corona. Even when
using all the variables, the classification accuracy is
around 55%. Counsidering the fact that RFE on 3 AR
coefficients performed well in [10], this may indicate
that for the HumanGait dataset the correlation infor-
mation among variables is more important than for the
BCI MPI dataset. Hence, each variable should not be
taken out separately to compute the autoregressive co-
efficients, by which the correlation information would

be lost. Note that in [10], the order 3 for the autore-
gressive fit is identified after proper model selection ex-
periments, which would mean that for the HumanGait
dataset, the order of the autoregressive fit should be de-
termined, again, after comparing different order models.
Hence, it is not a trivial task to transform an MTS item
into a vector, after which the traditional machine learn-
ing techniques, such as Support Vector Machine (SVM),
can be applied.

Figure 3 shows the classification performance of the
selected variables on the BCAR dataset for 4 different
conditions. For example, Figure 3(c) represents that
a card was used as a target object and the pronated
forearm posture was taken by a subject to perform the
continuous reach-grasp-place task in [7].

The BCAR is the simplest dataset with 11 origi-
nal variables and the number of MTS items for each
condition is just 39. Hence, we applied the Exhaustive
Search Selection (ESS) method to find all the possible
variable subset combinations, for each of which we per-
formed leave-one-out cross validation. It took about 87
minutes to complete the whole ESS experiments. The
result of ESS shows that 100% classification accuracy
can be achieved by either 4 or 5 variables out of 11.
The dotted lines represent the best, the average, and
the worst performance obtained by ESS, respectively,
given the number of selected variables.

Figure 3 again shows that Corona consistently out-
performs RFE and FC methods. The figure also de-
picts that the 5 variables selected by Corona produce
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Figure 3: BCAR dataset,

100% classification accuracy for Cylinder/Pronation
and Card/Pronation conditions. Besides, Corona out-
performs or performs the same as the one using all
the variables, which is represented as a horizontal
solid line. This implies that Corona never eliminates
useful information in its variable selection. For the
Cylinder/Pronation condition, for example, Figure 3(a)
shows that only the 4 variables selected by Corona pro-
duce about 98% classification accuracy, which is the
same as using all the 11 variables. Moreover, the overall
performance of Corona is close to the best performance
of ESS, which is far from the average performance.

As illustrated in the figure, FC method never beats
the Corona for 3 conditions, and for the Card/Pronation
condition, Corona by far outperforms FC when more
than 3 variables are selected. As compared to RFE,
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Classification Evaluation

Corona again shows consistently better classification
performance almost always.

Figure 4 represents the performance comparison us-
ing the BCI MPI dataset. Note that unlike in [10] where
they applied the feature subset selection per subject, the
whole items from the 5 subjects were utilized in our ex-
periments, which would make the subset of variables se-
lected by Corona more applicable for subsequent data
mining tasks. Moreover, the regularization parameter
Cs for SVM was estimated via 10 fold cross validation
from the training datasets in [10], while we used the de-
fault value, which is 1. The figure again depicts that
Corona performs far better than RFE and FC.

For the BCI MPI dataset, it is intractable to try
all the combinations of the 39 channels to identify the
best combination. Therefore, to find the ground-truth,
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Figure 4: BCI MPI dataset, Classification Evaluation

n [10], the 17 channels located over or close to the mo-
tor cortex were manually identified as the best com-
bination of channels using the domain knowledge. In
Figure 4, the classification performance using those 17
motor imagery channels (termed MIC 17) is presented
in dashed lines, while the performance using all the vari-
ables is shown in a solid horizontal line. Using the 17
variables selected by Corona, the classification accuracy
is 75.45%, which is even better than the expert-selected
channels of MIC 17 whose accuracy is 73.65%.

4.3 Processing Time Corona in fact utilizes a lot
more number of features than RFE to vectorize an MTS
item. For example, for the HumanGait dataset where
there are 66 variables, each MTS item is represented
with 66 x 65/2 = 2145 features by Corona, while
RFE represents each MTS item with 66 x 3 = 198
features. Obviously, this would result in more training
time for SVM on which both Corona and RFE are
based. However, RFE takes a considerable amount
of time to compute and obtain the AR coefficients of
order 3. Hence, the overall processing time of Corona,
including the time to transform the MTS dataset, is one
order of magnitude less than that of RFE.

For the BCI MPI dataset, for example, it takes
only 4.562 seconds to compute all the 2000 correlation
coefficient matrices for Corona, while it takes about
7600 seconds to compute the AR coefficients of order
3 for RFE, both using Matlab. The total processing
time including the transformation for Corona of the
BCI MPI dataset is less than 480 seconds, while that
of RFE is more than 7800 seconds. Table 2 summarizes
the processing time of the 3 feature selection methods
employed for the experiments.

Table 2: Comparison of processing time in seconds
for different feature selection methods on 3 different
datasets

HumanGait | BCAR | BCI MPI

Corona 422.688 0.191 472.953
RFE 962.063 9.039 | 7886.844
FC 113.907 6.469 | 7594.941

5 Related Work

In the field of Brain Computer Interfaces (BCIs), exten-
sive research has been conducted on Electroencephalo-
gram (EEG) datasets. The EEG dataset is collected
using multiple electrodes placed on the scalp. The sam-
pling rate is hundreds of Hertz. The selection of relevant
features is considered absolutely necessary for the EEG
dataset, since the neural correlates are not known in
such detail [10].

In [10], feature selection is performed on the 39
channel EEG dataset. Each EEG item is broken into 39
separate channels, and for each channel, autoregressive
(AR) fit of order 3 is computed. Subsequently, each
channel is represented by 3 autoregressive coefficients.
Feature selection using Recursive Feature Elimination
(RFE) is then performed on these transformed dataset.
As shown in Section 4.2, by considering the channels
separately, they lose the correlation information among
channels.

n [23], EEG dataset from UCI KDD Archive [24]
has been used for the experiments. EEG-1 dataset
contains only 20 measurements for two subjects from
two arbitrary electrodes (F4 and P8). EEG-2 dataset
contains 20 measurements from the same 2 electrodes
for each subject. It is not clear how the two subjects
out of 122 subjects and the two electrodes out of 64 are
chosen. The best accuracies obtained are 90.0 + 0.0%
using DCHMM-exact, 90.5 + 5.6% using Multivariate
HMM for the EEG-1 dataset. 78.5 + 8.0% using
Multivariate HMM.

In [25], a subset of the HumanGait dataset, a total
of 45 items of 15 subjects, was used for an HMM-
based clustering. They, however, achieved only 75%
classification accuracy, which could have been achieved
by Corona using only 9 variables out of 66 as shown in
Figure 2(a).

In [26], Genetic Algorithm (GA) and Support Vec-
tor Machine (SVM) are used for feature subset selection.
Two EEG datasets are used, TTD and NIPS 2001. The
TTD (Thought Translation Device) EEG dataset were
generated with 6 channels, and the other EEG dataset
which was submitted to Neural Information Processing
Systems (NIPS) Conference in 2001, were collected with



27 channels. For the EEG dataset with 6 channels, they
also performed the exhaustive search to find out the best
channels. The advantage of GA is that the optimal sub-
set of variables is produced as output, and hence, one
does not have to specify how many variables she would
like to select. However, GA is known to be very time
consuming.

In [27], features are firstly extracted from the
original dataset, and then feature subset selection are
performed using mutual information. The accuracy
from training set is less than 70% and from test set is
less than 85%. The EEG data used was obtained from
Graz University of Technology, Austria, and Artificial
Neural Network (ANN) is used for classification. Note
that this approach, i.e., performing feature extraction
and then feature selection, may work well in terms of
classification accuracy. However, we cannot reduce the
amount of data to be collected, if the features are global
features for which all the raw data would be required.

6 Conclusion and Future Work

In this paper, we proposed a simple yet quite effec-
tive feature subset selection method for multivariate
time series (MTS), termed Corona. Corona first vec-
torizes the correlation coefficient matrix of each MTS
item to be used as features for SVM, and yields a fea-
ture matriz. After training SVM on the feature ma-
trix, Corona computes the weight matriz, from which
the ranks for the variables are identified. Based on the
ranks, Corona eliminates one variable with the lowest
rank, and repeats itself until the required number of
variables are retained. Our experiments on the three
real-world datasets show that Corona consistently out-
performs other feature selection methods, such as Re-
cursive Feature Elimination (RFE) and Fisher Criterion
(FC) in terms of classification performance by up to
100%. Moreover, Corona takes more than one order of
magnitude less time than RFE in terms of the overall
processing time.

We intend to extend this technique to the stream
of data where the feature subset selection can be per-
formed incrementally adjusting itself based on the ob-
servations collected thus far.
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