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With many location-based services, spatial data such as points of interest are indexed at a potentially 
untrusted host and queries are evaluated by navigating the underlying index structure used to partition 
the data. While encryption can prevent the host from learning the data content (i.e., what is accessed), 
it cannot hide the frequency that index nodes are accessed while navigating the index for query 
processing. Combining the knowledge of such access frequencies with public knowledge readily 
available about points of interest, the host can infer sensitive information about the indexed data and 
hence the locations of the users querying it (violating location privacy). In this paper, we propose a 
technique that hides frequency access to the nodes of tree-structured spatial indexes (e.g., R-tree) from 
an untrusted server hosting the data. With our approach, each access to an index node requires reading 
an extra node using a precomputed node-based probability distribution function to guarantee uniform 
node access at all tree levels. We analytically verify the strong level of privacy achieved with a 
constant computation and acceptable communication and storage overhead for employing our private 
index navigation scheme. 
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1. INTRODUCTION 

The ever increasing demand for querying spatial data through location-based 
applications has dramatically increased the popularity of location-based services 
(LBS). With LBS, location data such as points of interest are hosted at a location 
server LS and queried by users U={u1,…,us} who subscribe to the service. The 
location server LS (or server for short) usually employs a tree-structured spatial 
indexing scheme such as a kd-tree or an R-tree [5] to index data. However, LS is 
potentially untrusted and therefore, a common concern in LBS is achieving privacy; 
User queries are usually location-dependent and therefore the focus is on achieving 
user location privacy. Protecting the location information embedded in user queries 
as well as the data accessed to respond to user queries are the key objectives in the 
location privacy domain. The second goal is also referred to as content privacy[14].  

Recently, numerous K-anonymity/spatial cloaking[6,13] and spatial 
transformation[7,17] techniques are proposed to achieve location privacy. 
Furthermore, encryption is known as the de facto solution to achieve content 

                                                           
1 This work has been carried out when the author was a PhD student at USC’s Information 
Laboratory. 
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privacy. However, even with encryption, severe information leakage to LS can 
happen by revealing how the underlying spatial index structure is accessed. 
Consider the following scenario. Assume N={o1,o2,…,on} static objects (e.g., 
restaurants) are first encrypted and then indexed by a tree-structured index such as 
an R-tree R which is then stored at LS and queried by a subscriber uU. Clearly, 
each oi and hence its enclosing nodes (i.e., MBRs) have a certain level of 
“popularity” represented by how frequently the indexed objects are requested by 
users. Encrypting the contents of each MBR, however, does not affect how 
frequently it is being accessed. Therefore, LS can associate the immediate MBR 
(and potentially all its ancestor MBRs) indexing the most popular object oi with the 
most frequently queried node in R with high probability. Exploiting its prior 
knowledge of oi popularity (e.g., the location of the hottest restaurant in Los 
Angeles) or how objects in N are distributed, LS can guess u’s location with good 
enough accuracy. Protecting information about how frequently nodes are accessed 
is also referred to as access privacy [14]. It is known that without access privacy, 
content privacy is not fully achievable [11] and hence to protect user privacy, both 
content and access privacy are required at the same time. 

Achieving access privacy by protecting the adversaries from learning any 
sensitive information from the patterns of accessing data is not trivial. The private 
information retrieval techniques aim to achieve access privacy by entirely blinding 
the server from learning any information about what records are being accessed and 
hence how frequently they are requested. However, PIR is very costly. Using 
information theoretic PIR, one can achieve perfect secrecy at the cost of a linear 
client server communication [3]. To reduce this prohibitively expensive cost, 

computational PIR schemes bring the communication cost down to )( nO by 

assuming a computationally bounded server where the security of the approaches 
relies on the intractability of a computationally complex mathematical problem, 
such as Quadratic Residuosity Assumption [10]. However, similar to information-
theoretic PIR, this class of approaches cannot avoid a linear scan of all database 
items per query. Ultimately, the class of Hardware-based PIR approaches places 
trust on a tamper-resistant hardware device [1]. These techniques achieve almost 
optimal computation and communication overhead at the cost of relying on a 
hardware device (with severe computing and storage resources) to provide perfect 
secrecy. Therefore, the PIR-based approaches to location privacy [4, 8] are still 
relatively costly to be employed in practice despite achieving strong user 
confidentiality. 

In this paper we protect access privacy by proposing a novel technique with 
significantly less cost than the proposed PIR approaches mentioned above while 
still achieving strong measures of user, content and access privacy. Our scheme is 
based on the observation that if access privacy is achieved through protecting 
information leakage from the patterns of accessing index nodes, encryption and 
client-side query processing are enough to achieve content and user location 
privacy, respectively. Therefore, our contribution is proposing a secure tree 
navigation scheme to achieve access privacy. We flatten node access frequencies 
for each tree level under a practical and relaxing assumption about the variation 
between node access frequencies. Obviously, to achieve privacy, our method incurs 
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extra computation, communication and storage overhead compared to processing 
queries on the original index. However, we analytically show the costs remain 
acceptable for LBS service providers and subscribers.  

Our proposed technique is query-independent. In other words, it manipulates the 
underlying structure of the tree and abstracts away the details of tree navigation 
from the query processing module. Therefore, it requires minimal extra 
computation or storage overhead at the client side by only requiring encryption and 
decryption of nodes. 

2. RELATED WORK 

As we stated in Section 1, the bulk of existing work on privacy of spatial data 
focuses on achieving user location privacy. Here, the goal is to ensure a user 
location is protected from the untrusted server by hiding users’ location information. 
The K-anonymity, cloaking, transformation-based and dummy-based techniques are 
notable examples of such approach [6, 7, 9, 13, 17]. However, these approaches fall 
short of protecting access privacy and hence cannot protect user location 
confidentiality. The server can combine the information gathered from analyzing 
the frequency of nodes requested during query processing with its prior knowledge 
about the objects indexed to deduce user locations with high probability. This 
approach is also referred to as the correlation attack. While PIR-based approaches 
to location privacy are resilient to correlation attacks, they incur very high 
computation and communication costs [4] or rely on a trusted hardware with severe 
computation and storage limitations [8]. 
   Perhaps closest to our work is the techniques proposed by Lin and Candan in 
[11, 12]. Although the focus is on traversing XML and other structured documents 
rather than performing spatial queries, the proposed approaches can be applied to 
our set up. The authors devise schemes that use a redundancy set with a node 
swapping technique to obfuscate tree navigation. With both techniques, the 
complexity of tree traversal is )( mdO  for d and m representing the tree height 

and the redundancy set size, respectively. However, two fundamental differences 
between our approach and the techniques discussed in [11, 12] are our read-only 
nature of protocols and the relaxed burden on the client side. With our approach 
clients iteratively perform read, decrypt and request cycles with the server. In 
contrast, even a read request for a certain data element in [11,12] requires clients to 
write/modify the underlying tree structure for each node access during the index 
traversal. This requires the establishment of concurrency control mechanism to 
maintain the integrity of the tree while avoiding deadlocks. Moreover, the 
read/write nature of client operations during the index traversal and the locking 
mechanism both exacerbate client response time when server is interacting with 
multiple clients concurrently. Finally, while [12] assumes query load is uniformly 
distributed among nodes and [11] does not consider exact original node access 
frequencies as server’s prior knowledge, we assume the server’s awareness of the 
non-uniform query access frequencies as prior knowledge and devise schemes that 
prevent the server from gaining any useful knowledge from access frequencies to 
our proposed privacy-aware index. 
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  Another relevant study is the recent work of Williams et al. [15] which employs 
Oblivious RAM to enable private retrieval of a data item. The novel reshuffling 
protocol proposed improves the costly computation complexity of an ORAM 
protocol and yields an amortized cost of )loglog(log NNO  per query. There are 

three key differences between this work and our proposed technique. For one, [15] 
places significant demands onto the client with regard to storage (an 

)( nO temporary client side storage) and computation (the construction of an 

encrypted bloom filter, an )loglog( NNO oblivious scramble algorithm, etc.). 

Moreover, the proposed ORAM protocol incurs expensive communication cost; An 
)loglog( NNO shuffling coupled with several round trips for online query 

processing result in up to 100 second response time for some queries in a dataset of 
100MB even under a simulated network latency setup. Lastly, the ORAM protocol 
is designed to retrieve a single data item. Using it in our LBS setup to process 
range or kNN queries requires an index traversal which results in the retrieval of 
multiple items further exacerbating the response time. In Section 4 we show how 
we achieve practical response times without placing strong demand on the client 
side. 

3. PRELIMINARIES AND THREAT MODEL 

To serve data efficiently, LS uses a tree-like index such as an R-tree R to index 
objects in N. Without loss of generality and to simplify discussion, we focus our 
attention on R-trees due to their popularity for indexing static spatial data. Since all 
objects are available during the offline index (i.e., R) construction, we also assume 
all tree nodes are filled with data. We relax both of these assumptions in Section 4.3 
and show how similar techniques can be applied to R-trees with partially full nodes 
and to other tree-structured spatial indexes such as kd-trees and quadtrees. 

 
Table I. Notations and symbols 

 
 
Assuming R’s capacity is c, each node contains c children represented by 

m1,…,mc where each mi is itself an MBR of c objects (by using the term “objects” 
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hereafter, we refer to internal elements of each node which could be MBR’s of 
lower nodes or the actual POI data for leaf nodes. To avoid confusion, we explicitly 
use “leaf objects” to refer to the latter case).We use the notation Ni,j to refer to the 
jth node of R at depth i={1,…,h}. Figure 1 illustrates such a tree where leaf nodes 
are represented by Nh,j indexing o1,…,on represented by their location and 
identifiers. Table 1 summarizes the notations used throughout the paper. 

 
Figure 1. R-tree 

 
Using its prior knowledge of past queries, LS which hosts R, knows how 

frequently internal and leaf nodes of R are requested. We use f(Ni,j), or its short 
form fi,j, to show the normalized (0≤fi,j≤1) access frequency of the node Ni,j in T 
number of queries. We also assume the strongest adversarial case where LS is 
aware of the spatial distribution of elements in N. To achieve privacy, we replace R 
with its privacy-aware variant R' and have LS serve queries using R' whose nodes 
and their access frequencies are denoted by N'i,j and f'i,j, respectively. We assume 
the trend in which objects are queried (i.e., their popularity) does not vary 
significantly with time and in particular after replacing R with R'. Each N'i,j in R' is 
assigned a node identifier id = H(i,j) computed as a one-way hash function of i, j 
(e.g., SHA512) and is encrypted with a private key inaccessible to LS to protect 
content privacy. Similar to [11,12,16] we assume the secret key is shared by 
subscribers of LS to decrypt R-tree nodes. To avoid collusion attacks, the 
cryptographic operations can be performed by the assistance of inexpensive 
smartcards placed in subscriber’s client devices [2]. We also presume users employ 
an anonymous access protocol to protect their identity while interacting with LS. 

Since nodes are encrypted, LS cannot traverse R' and tree navigation becomes an 
interactive scheme between the user u and the server. To perform any spatial query 
such as range or kNN, u privately requests a series of nodes N'i,j chosen based on 
the query processing logic. At each step u first requests the next node N'i,j by its id= 
H(i,j). After decrypting N'i,j, u identifies one of the node’s children N'i+1,j' for 
further expansion and sends a subsequent request to the server for the node 
represented by id = H(i+1,j'). This read, decrypt, encrypt and request process is 
repeated by u until the leaf nodes (likely) containing the query result are retrieved. 
If several MBRs at level i intersect with a query, they are each retrieved separately 
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using the scheme discussed above. Note that encrypting each MBR in a node as 
opposed to encrypting the whole node data would result in an information leakage 
by exposing the ordering among the elements of each node. 

Since both R and R' are hosted by the location server LS, it knows fi,j values 
while serving R and later learns f'i,j values by serving R'. The location server is not 
trustworthy and is curious to exploit this knowledge to infer user locations from R 
and R' node access frequencies. To do this, LS employs a frequency variation attack. 
That is, the server tries to correlate the fi,j and f'i,j values or exploits the variations 
among f'i,j values in R' and combines this with its prior knowledge to infer the 
contents of N'i,j. Our approach presented in Section 4 shows how we generate a 
privacy-aware tree R' whose f'i,j values are meaningless to LS thus achieving user 
location privacy. 

4. OBFUSCATING ACCESS FREQUENCIES  

Consider the scenario where LS hosts N and the client (we hereafter use the terms 
client and user interchangeably) u forms a query Q to find a nearby object oi. As we 
discussed in Section 1, one extreme solution (in terms of both privacy and 
efficiency) is for u to use PIR to privately navigate the index structure hosted by LS 
to prevent him from learning her location. While remaining perfectly secret, this 
approach is very expensive (Section 2). In another extreme, K-anonymity can be 
used to confuse LS by sending him K queries to make u indistinguishable among a 
redundancy set of size K. Although being efficient, this technique offers 
significantly weaker privacy guarantees as in the best case, it makes u 
indistinguishable among a usually small set of K-1 other users. Moreover, recent 
studies [4,7,8,17] show how sophisticated attacks can be mounted against such 
schemes. We strike a compromise by utilizing the hierarchical nature of tree 
structured spatial indexes to enable efficient yet oblivious traversal of the tree by 
making node access frequencies meaningless to the untrusted server. With our 
approach, the original R-tree R is replaced by its privacy aware variant R' such that 
the index navigation is performed on R' nodes denoted by N'i,j. To process Q, u 
interactively requests a series of nodes from LS that allow her to find oi. We show 
that with our approach, the server does not learn the frequency (and hence content) 
of nodes accessed to execute Q. 

The basic idea behind our proposed scheme is to perform redundant reads from 
the server for each node requested by u. We obfuscate node access frequencies by 
grouping “less popular” nodes with more frequently accessed ones in a redundancy 
set RS. We compute for each node N'i,j, a probability distribution function stored at 
its parent node. This function instructs the client to form a redundancy set RS 
which includes N'i,j as well as another node of the same height chosen according to 
a certain precomputed probability function to make node access entirely uniform. 
More formally, our goal is to break the correlation between the original node access 
frequencies {fi,1,fi,2,…,fi,c

i-1} and the modified access frequencies of R' nodes 
{f'i,1,f'i,2,…,f'i,c

i-1} for i{1,…,h} by making node access frequencies uniform. 
To achieve uniformity in node access frequencies, one can think of creating a 

redundancy set RS for each N'i,j access in R' with capacity c. In particular, each RS 
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would include the original node requested as well as K other elements chosen 
uniformly at random from the ci-1 nodes with the same height to protect node access 
frequencies. In the following lemma, we show that this naive protocol does not 
protect information leakage because the resulting node access frequencies f'i,j are 
not uniform and are in fact highly correlated with fi,j values. More formally, we 
show that the histogram of access frequencies would uniformly increase for all 
nodes and thus the new frequency histogram will not be uniform since the original 
frequencies are not uniform. 

 

Lemma 1. Using the above naïve scheme, f'i,j=α+β×fi,j where 
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Proof. By randomly choosing elements of RS, at depth i, each Ni,k, k≠j has a 

11 
 ii c

K
p chance of being included in RS. Such added nodes each contribute 

to f'i,j with probability pi. In other words, including Ni,k in Ni,j’s redundancy set 
adds fi,k to f'i,j with probability pi. In general, 

 

 
 

Corollary: For N'i,j1, N'i,j2: f'i,j1-f'i,j2= β×(fi,j1- fi,j2). 
The above observation states that members of the redundancy set cannot be 
uniformly picked if the original nodes are accessed at different frequencies. 
Therefore, we need to take values of fi,j into account while constructing the 
redundancy set. We now present a protocol that achieves this goal.  

4.1 Probabilistic Uniform Node Access 

Consider the tree of Figure 2 where each Ni-1,j access results in a subsequent request 
for one of the nodes in the next level of the tree (i.e., i) at different frequencies. 
Our goal is to add one redundant node to each original node request in such a way 
that the overall node access frequencies f'i,j for all nodes at depth i become equal 
(hereafter, we refer to this criteria as the uniform node access frequency). To 
achieve this, we define for each internal node Ni-1,j a probability table pti-1,j whose 
values are of the form ri,j→i,k denoting the probability of accessing each Ni,k 
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whenever Ni,j is originally requested. In other words, for each Ni,j request at level i-
1, one Ni,k is added to a redundancy set RS in a random order according to ri,j→i,k 
values in pti-1,j. In order to enforce one and only one redundant read per node access, 

we require that 


 
jSk

kiji

i

r 1,, which means each node Ni,j is paired with one Ni,k 

as its redundant read with probability ri,j→i,k. Figure 3 illustrates how a redundant 
node is chosen. Each node picks a random variable x (0,1] and drops it the large 
rectangle whose length is 1. The small rectangle containing x identifies the 
redundant node to be read. Note that even for a fixed node Ni,j redundant nodes can 
be different each time as the value of x is determined randomly for each Ni,j request. 

 

 
Figure 2. Original R-tree 

 
To store each pti-1,j, for an internal node we form a c×Si matrix where  

Si={1,…,ci-1} and each (encrypted) entry represents ri,j→i,k. In order to maintain the 
original capacity (fan-out) of the tree structure, we store these tables in a separate 
data structure where each pti-1,j is identified by Ni-1,j’s id. This probability table 
result in a storage overhead to prevent leakage from the pattern the index is 
traversed. With our implementation, maintaining these tables incurred a reasonable 
increase in total amount of space needed to store the index for different values of c. 

 

 
Figure 3. Probability contributions of node N'i,3 

 
We proceed to the offline calculation of the probability tables. Since the size of 

the redundancy set RS is always 2, using the above scheme each node access adds 
to the access frequency of one and exactly one other node included in its RS. To 
compute the modified node access frequency f'i,j we add to its original access 
frequency fi,j, the weighted probabilistic frequency contributions of all other nodes 
of depth i. This contribution is a function of each node’s popularity, as well as the 
probability of that node picking Ni,j as its redundant node. More formally, 
performing the above scheme increases fi,j to f'i,j for j{1,…,ci-1}: 

 
Lemma 2. The new access frequency of a node Ni,j will increase by the sum of 

all other node’s probabilistic contribution to Ni,j at depth i. Or 





jk

jikikijiji rfff ,,,,,' . Using lemma 2, we prove the following property.  
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Theorem 1. The above scheme increases the sum of access frequencies at each 

depth by a factor of 1. Or 
 


i iSj Sj

jiji ff ,, 2' . 

Proof: Using lemma 2 and setting 


 
jSk

kiji

i

r 1,, , we write: 

 
 
To clarify, let us take the following examples for the simple case of a tree with 

height h = 2. For c = 2 (Figure 4a), this scheme is straightforward. We have f'2,1= 
f2,1+ f2,2×r2,2→2,1=f2,1+f2,2=1. Similarly, f'2,2=1. In other words, each request for one 
node includes the other with probability 1. Therefore, the probability of accessing 
both nodes is equal. For higher values of c such as c=3, the case is slightly more 
complicated (see Figure 4b). To obtain new node access frequencies, we need to 
solve the following system of equations. 

 

 
Figure 4. Examples 

 

 
 

  The above system has 9 unknowns (i.e., 3 new f' and 6 new ri,j→i,k unknowns for 
kSi-j) and 6 equations. However, a closer look at the protocol gives us the 
remaining information required to solve the above system. Based on our objective 
of equalizing modified node access frequencies, we have f'2,1=f'2,2=f'2,3. Using 
Theorem 1, f'2,1+f'2,2+f'2,3=2. This property gives us three less unknowns: 

 

83



 

Proceedings of the Third International Conference on Emerging Databases (EDB 2011) 

 
Therefore, for the general case, in order to achieve uniform access for each tree 

depth i we set 
i

Sj
ji

ji S

f

f i




,

,

2

'  (observe that |Si| is equal to the number of nodes 

at level i) and solve a linear system of e equations and e unknowns offline. The 
unknowns are |Si|-1 probability contributions for each of the |Si| nodes. Thus, e= 
|Si|×(|Si|-1)= |Si|

2-|Si|. 
To execute a query Q, at each step the user u receives the encrypted original 

(N'i,j) and redundant (N'i,j') MBRs along with their probability tables. Next, u 
discards N'i,j' and its table (which needs to be transferred to u to prevent LS from 
identifying the redundant MBR), decrypts N'i,j and picks the next MBR from level 
i+1 of N'i,j to be expanded and uses the probability table to pick the redundant MBR 
for the next original node request. This process is repeated for every node u 
requests as part of processing Q. Note that even for the first query at time T= t0, the 
likelihood of any two nodes being included in the user request is     . Finally, 
aside from the storage overhead, the security of this method comes at the cost of 
transferring two probability tables for each node request to the client. 

The probability contributions of each node (derived from solving the system of 
equations for each probability table) determine which redundant node will 
accompany each originally requested node in client’s request to the server. However, 
one might wonder if the actual node access frequencies will need time to converge 
to our calculated values after certain number of node requests at T=t1, t1>>t0. This 
is in fact not the case. Consider the example of Figure 4b and let f2,1=0.6, f2,2=0.1 
and f2,3=0.3. Solving a system of 6 equations and unknowns will yield 

 
For the first query submitted at T=t0, we calculate p(N2,1,N2,2) which represents 

the probability of nodes N2,1 and N2,2 belonging to the user’s request. 

 
 
 

Therefore, any two nodes could be the first nodes requested from the server. To 
see why observe that in Equation 8, we set similar values for the expected node 
access frequency f'i,j. Therefore, each node is equally likely to be present in a user’s 
request. It is important to note that although node access frequencies are equal, one 
cannot take away the attacker’s prior knowledge of objects popularity. For instance, 
consider an extreme case where the client downloads the entire database and 
processes her query locally to achieve perfect secrecy. Even though all nodes are 
accessed once (and in fact transferred to the client), the server can still assign a 
higher probability to a certain object being the actual user intended object. However, 
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this knowledge is not acquired from monitoring the client/server interactions. 
Similarly, our goal is to ensure our methods do not leak any extra information to 
the attacker by the way objects are accessed. 

 

4.2 Security and Complexity Analysis 

In this section we review the server overhead in employing our proposed 
probabilistic uniform node access scheme, henceforth denoted by PU, for spatial 
query processing using the privacy-aware tree R'. 

Theorem 2. Let CO(n), CPU(n) denote the computational cost of processing a 
spatial query Q over n objects using the original and the PU method, respectively. 
CPU(n)≈ 2CO(n). 

Proof: Processing Q using R at each step, requires a “visit” phase to inspect a 
node Ni,j and an “expand” phase where the server identifies the next MBR to be 
visited. This MBR is selected based on the nature of Q (for instance an MBR 
overlapping with Q if Q is a range query). Replacing R with R' results in two 
changes. First, the MBR inspection process is shifted to the client u as nodes of R' 
are encrypted. Furthermore, each “visit” to a single node is replaced by requesting a 
redundancy set of size ʋ where ʋ= 2 for PU. However, the expansion phase remains 
intact because of all ʋ nodes requested by u, only one MBR would trigger the next 
client server interaction (see Figure 5). Therefore, the complexity of processing Q 
is ʋCO(n) where ʋ is a constant. The ≈ notation is used to account for the (constant) 
extra cost of retrieving the probability tables from the server. 

Therefore, the PU method achieves fully uniform node access frequency where 
the probability of any two nodes being requested is    . Moreover, according to 
Lemma 2, the server overhead for the PU technique is twofold due to an increase in 
size of the result set. 

 
Figure 5. Visiting vs. expanding nodes 

4.3 Generalizations 

We assumed in Section 3 that leaf objects in N are indexed using an R-tree with 
capacity c where each node contains exactly c elements and deferred the 
generalization of our approach to partially full R-trees as well as applying our 
proposed scheme to oblivious navigation of other tree-structured spatial indexes 
such as kd-trees and quadtrees. In the following sections, we discuss these two 
generalizations, respectively. 

Partially Full R-trees: To prove several properties of our proposed R-tree 
variant, we assumed each internal node N'i,j of R-tree includes exactly c child 
MBRs and each leaf node groups exactly c objects into a leaf MBR. Although 
having the entire dataset available offline enables the construction of a balanced 
tree where most of the nodes are in fact full, several nodes at each level might not 
contain exactly c objects. The partially full structure of the tree, even though nodes 
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are encrypted, can potentially leak information to the server about the distribution 
of the actual static objects. To deal with this issue, during an offline process, we 
traverse the tree from level h-1 up to level 1 and for each parent node N'i,j with c'<c 
children, we pad c'-c children with dummy data and access frequency of zero and 
link them to N'i,j. This process guarantees that no information is leaked to the server 
from any asymmetry of the tree structure. Moreover, one can easily verify that 
using the above approach, all tree properties and proofs of correctness and security 
still hold. Finally, observe that all proofs of complexity assumed a worst case 
scenario where the tree nodes are all full and therefore, padding the nodes with 
dummy data does not exacerbate the complexity analysis of earlier sections. 

Other Tree Structured Spatial Indexes: In previous sections, we detailed our 
schemes for privacy-aware navigation of R-trees. Although we focused our 
attention on R-trees, we did not make any assumptions specific to R-trees that do 
not hold in other tree structured spatial indexes. The PU technique discussed in 
Section 4.1 can be employed with any other tree-structured index that respects the 
notion of recursively grouping lower level objects in higher nodes. Furthermore, 
the tree should have the same number of objects in each node. Obviously, several 
spatial indexes such as kd-trees and quadtrees satisfy all the above properties. 
Finally, since tree nodes are encrypted, the client should be capable of performing 
the query processing interactively with the server. This requires the client to be 
aware of how the underlying spatial index is used for query processing. 

4.4 Limitations of Probabilistic Uniform Node Access Method 

Although the system of equations derived from Theorem 1 can be easily solved 
using Gaussian reduction, there are cases where the solution is not valid. To see 
why note that 

 
 

 

If                         , there will at least exist one value of ri,k→i,j 
smaller than 0 for some k which is an invalid probabilistic contribution for a node. 
This situation occurs if there are large variations among the access frequencies of 
nodes of a certain tree level. For instance, if c = 3, an optimal solution can be found 

only if 32:, ,  jifji . One way to solve this problem is to replicate a node 

whose fi,j is more than the above threshold into two identical nodes each with half 
the original frequency. To maintain the structure of the tree, it suffices to randomly 
choose one of the replicated nodes at its parent with probability 1/2.  

However, replication introduces new complexities to our approach. Therefore, 
this approach is effective whenever there is normal variations among fi,j values at 
each depth. We believe this is a practical assumption for POI data. However, 
applying this technique to cases where this property does not hold is an open 
question of our approach. In the remainder of this paper, we discuss our future work 
to go beyond the limitations of probabilistic node access technique and devise 
techniques that do not assume restrictions on node access frequency variations and 
work well even in the presence of outliers.  
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4. CONCLUSION AND FUTURE WORK 

 
To protect the location privacy of users who subscribe to location-based services, 
encryption is not sufficient for hiding the contents of the underlying spatial index. 
The potentially untrusted server hosting spatial data can obtain sensitive 
information by monitoring “how” (i.e., in what frequency) the encrypted index 
nodes are being accessed. Combining this information with its prior knowledge 
about the data, the server can easily deduce the location of the user querying the 
data. In this paper, we proposed our probabilistic uniform node access technique 
that enables oblivious navigation of tree-structured spatial indexes while incurring 
acceptable communication overhead and server side complexity and imposing 
minimal burden on the client side. We analytically studied the security and 
efficiency of our approach. As we discussed in Section 4.4, our proposed technique 
imposes some assumptions on the distribution of access frequency values for nodes. 
Moreover, it requires storing probability values at tree nodes. To address these two 
issues, we are working on an object permutation scheme that obfuscates the 
histogram of node access frequencies in the original tree by converting it to a semi-
uniform distribution. Our initial observations demonstrate significant savings on 
computation and communication overhead compared to our approach we proposed 
in this paper. However, such benefits obviously come at a cost which in our case 
will be more lax the privacy guarantees. We plan to empirically evaluate both 
approaches with real-world and synthetic data to better understand their properties. 

Finally, while efficient for querying static data, our original and modified index 
structures are not suitable for processing dynamic data. As part of our future work, 
we are investigating how to improve our proposed methods to efficiently deal with 
dynamic data. 
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