

Proceedings of the Third International Conference on Emerging Databases (EDB 2011)

Towards Private Navigation of Tree Structured
Spatial Indexes

Ali Khoshgozaran1
Samsung Electronics

Irvine, CA
jaffar.k@samsung.com

Cyrus Shahabi
University of Southern California, InfoLab

Los Angeles, CA 90089
shahabi@usc.edu

With many location-based services, spatial data such as points of interest are indexed at a potentially
untrusted host and queries are evaluated by navigating the underlying index structure used to partition
the data. While encryption can prevent the host from learning the data content (i.e., what is accessed),
it cannot hide the frequency that index nodes are accessed while navigating the index for query
processing. Combining the knowledge of such access frequencies with public knowledge readily
available about points of interest, the host can infer sensitive information about the indexed data and
hence the locations of the users querying it (violating location privacy). In this paper, we propose a
technique that hides frequency access to the nodes of tree-structured spatial indexes (e.g., R-tree) from
an untrusted server hosting the data. With our approach, each access to an index node requires reading
an extra node using a precomputed node-based probability distribution function to guarantee uniform
node access at all tree levels. We analytically verify the strong level of privacy achieved with a
constant computation and acceptable communication and storage overhead for employing our private
index navigation scheme.

Key Words: Location Privacy; Spatial Databases; Location-Based Services; Private Information Retrieval;
Anonymity; Cloaking

1. INTRODUCTION

The ever increasing demand for querying spatial data through location-based
applications has dramatically increased the popularity of location-based services
(LBS). With LBS, location data such as points of interest are hosted at a location
server LS and queried by users U={u1,…,us} who subscribe to the service. The
location server LS (or server for short) usually employs a tree-structured spatial
indexing scheme such as a kd-tree or an R-tree [5] to index data. However, LS is
potentially untrusted and therefore, a common concern in LBS is achieving privacy;
User queries are usually location-dependent and therefore the focus is on achieving
user location privacy. Protecting the location information embedded in user queries
as well as the data accessed to respond to user queries are the key objectives in the
location privacy domain. The second goal is also referred to as content privacy[14].

Recently, numerous K-anonymity/spatial cloaking[6,13] and spatial
transformation[7,17] techniques are proposed to achieve location privacy.
Furthermore, encryption is known as the de facto solution to achieve content

1 This work has been carried out when the author was a PhD student at USC’s Information
Laboratory.

75

Proceedings of the Third International Conference on Emerging Databases (EDB 2011)

privacy. However, even with encryption, severe information leakage to LS can
happen by revealing how the underlying spatial index structure is accessed.
Consider the following scenario. Assume N={o1,o2,…,on} static objects (e.g.,
restaurants) are first encrypted and then indexed by a tree-structured index such as
an R-tree R which is then stored at LS and queried by a subscriber uU. Clearly,
each oi and hence its enclosing nodes (i.e., MBRs) have a certain level of
“popularity” represented by how frequently the indexed objects are requested by
users. Encrypting the contents of each MBR, however, does not affect how
frequently it is being accessed. Therefore, LS can associate the immediate MBR
(and potentially all its ancestor MBRs) indexing the most popular object oi with the
most frequently queried node in R with high probability. Exploiting its prior
knowledge of oi popularity (e.g., the location of the hottest restaurant in Los
Angeles) or how objects in N are distributed, LS can guess u’s location with good
enough accuracy. Protecting information about how frequently nodes are accessed
is also referred to as access privacy [14]. It is known that without access privacy,
content privacy is not fully achievable [11] and hence to protect user privacy, both
content and access privacy are required at the same time.

Achieving access privacy by protecting the adversaries from learning any
sensitive information from the patterns of accessing data is not trivial. The private
information retrieval techniques aim to achieve access privacy by entirely blinding
the server from learning any information about what records are being accessed and
hence how frequently they are requested. However, PIR is very costly. Using
information theoretic PIR, one can achieve perfect secrecy at the cost of a linear
client server communication [3]. To reduce this prohibitively expensive cost,

computational PIR schemes bring the communication cost down to)(nO by

assuming a computationally bounded server where the security of the approaches
relies on the intractability of a computationally complex mathematical problem,
such as Quadratic Residuosity Assumption [10]. However, similar to information-
theoretic PIR, this class of approaches cannot avoid a linear scan of all database
items per query. Ultimately, the class of Hardware-based PIR approaches places
trust on a tamper-resistant hardware device [1]. These techniques achieve almost
optimal computation and communication overhead at the cost of relying on a
hardware device (with severe computing and storage resources) to provide perfect
secrecy. Therefore, the PIR-based approaches to location privacy [4, 8] are still
relatively costly to be employed in practice despite achieving strong user
confidentiality.

In this paper we protect access privacy by proposing a novel technique with
significantly less cost than the proposed PIR approaches mentioned above while
still achieving strong measures of user, content and access privacy. Our scheme is
based on the observation that if access privacy is achieved through protecting
information leakage from the patterns of accessing index nodes, encryption and
client-side query processing are enough to achieve content and user location
privacy, respectively. Therefore, our contribution is proposing a secure tree
navigation scheme to achieve access privacy. We flatten node access frequencies
for each tree level under a practical and relaxing assumption about the variation
between node access frequencies. Obviously, to achieve privacy, our method incurs

76

Proceedings of the Third International Conference on Emerging Databases (EDB 2011)

extra computation, communication and storage overhead compared to processing
queries on the original index. However, we analytically show the costs remain
acceptable for LBS service providers and subscribers.

Our proposed technique is query-independent. In other words, it manipulates the
underlying structure of the tree and abstracts away the details of tree navigation
from the query processing module. Therefore, it requires minimal extra
computation or storage overhead at the client side by only requiring encryption and
decryption of nodes.

2. RELATED WORK

As we stated in Section 1, the bulk of existing work on privacy of spatial data
focuses on achieving user location privacy. Here, the goal is to ensure a user
location is protected from the untrusted server by hiding users’ location information.
The K-anonymity, cloaking, transformation-based and dummy-based techniques are
notable examples of such approach [6, 7, 9, 13, 17]. However, these approaches fall
short of protecting access privacy and hence cannot protect user location
confidentiality. The server can combine the information gathered from analyzing
the frequency of nodes requested during query processing with its prior knowledge
about the objects indexed to deduce user locations with high probability. This
approach is also referred to as the correlation attack. While PIR-based approaches
to location privacy are resilient to correlation attacks, they incur very high
computation and communication costs [4] or rely on a trusted hardware with severe
computation and storage limitations [8].
 Perhaps closest to our work is the techniques proposed by Lin and Candan in
[11, 12]. Although the focus is on traversing XML and other structured documents
rather than performing spatial queries, the proposed approaches can be applied to
our set up. The authors devise schemes that use a redundancy set with a node
swapping technique to obfuscate tree navigation. With both techniques, the
complexity of tree traversal is)(mdO for d and m representing the tree height

and the redundancy set size, respectively. However, two fundamental differences
between our approach and the techniques discussed in [11, 12] are our read-only
nature of protocols and the relaxed burden on the client side. With our approach
clients iteratively perform read, decrypt and request cycles with the server. In
contrast, even a read request for a certain data element in [11,12] requires clients to
write/modify the underlying tree structure for each node access during the index
traversal. This requires the establishment of concurrency control mechanism to
maintain the integrity of the tree while avoiding deadlocks. Moreover, the
read/write nature of client operations during the index traversal and the locking
mechanism both exacerbate client response time when server is interacting with
multiple clients concurrently. Finally, while [12] assumes query load is uniformly
distributed among nodes and [11] does not consider exact original node access
frequencies as server’s prior knowledge, we assume the server’s awareness of the
non-uniform query access frequencies as prior knowledge and devise schemes that
prevent the server from gaining any useful knowledge from access frequencies to
our proposed privacy-aware index.

77

Proceedings of the Third International Conference on Emerging Databases (EDB 2011)

 Another relevant study is the recent work of Williams et al. [15] which employs
Oblivious RAM to enable private retrieval of a data item. The novel reshuffling
protocol proposed improves the costly computation complexity of an ORAM
protocol and yields an amortized cost of)loglog(log NNO per query. There are

three key differences between this work and our proposed technique. For one, [15]
places significant demands onto the client with regard to storage (an

)(nO temporary client side storage) and computation (the construction of an

encrypted bloom filter, an)loglog(NNO oblivious scramble algorithm, etc.).

Moreover, the proposed ORAM protocol incurs expensive communication cost; An
)loglog(NNO shuffling coupled with several round trips for online query

processing result in up to 100 second response time for some queries in a dataset of
100MB even under a simulated network latency setup. Lastly, the ORAM protocol
is designed to retrieve a single data item. Using it in our LBS setup to process
range or kNN queries requires an index traversal which results in the retrieval of
multiple items further exacerbating the response time. In Section 4 we show how
we achieve practical response times without placing strong demand on the client
side.

3. PRELIMINARIES AND THREAT MODEL

To serve data efficiently, LS uses a tree-like index such as an R-tree R to index
objects in N. Without loss of generality and to simplify discussion, we focus our
attention on R-trees due to their popularity for indexing static spatial data. Since all
objects are available during the offline index (i.e., R) construction, we also assume
all tree nodes are filled with data. We relax both of these assumptions in Section 4.3
and show how similar techniques can be applied to R-trees with partially full nodes
and to other tree-structured spatial indexes such as kd-trees and quadtrees.

Table I. Notations and symbols

Assuming R’s capacity is c, each node contains c children represented by

m1,…,mc where each mi is itself an MBR of c objects (by using the term “objects”

78

Proceedings of the Third International Conference on Emerging Databases (EDB 2011)

hereafter, we refer to internal elements of each node which could be MBR’s of
lower nodes or the actual POI data for leaf nodes. To avoid confusion, we explicitly
use “leaf objects” to refer to the latter case).We use the notation Ni,j to refer to the
jth node of R at depth i={1,…,h}. Figure 1 illustrates such a tree where leaf nodes
are represented by Nh,j indexing o1,…,on represented by their location and
identifiers. Table 1 summarizes the notations used throughout the paper.

Figure 1. R-tree

Using its prior knowledge of past queries, LS which hosts R, knows how

frequently internal and leaf nodes of R are requested. We use f(Ni,j), or its short
form fi,j, to show the normalized (0≤fi,j≤1) access frequency of the node Ni,j in T
number of queries. We also assume the strongest adversarial case where LS is
aware of the spatial distribution of elements in N. To achieve privacy, we replace R
with its privacy-aware variant R' and have LS serve queries using R' whose nodes
and their access frequencies are denoted by N'i,j and f'i,j, respectively. We assume
the trend in which objects are queried (i.e., their popularity) does not vary
significantly with time and in particular after replacing R with R'. Each N'i,j in R' is
assigned a node identifier id = H(i,j) computed as a one-way hash function of i, j
(e.g., SHA512) and is encrypted with a private key inaccessible to LS to protect
content privacy. Similar to [11,12,16] we assume the secret key is shared by
subscribers of LS to decrypt R-tree nodes. To avoid collusion attacks, the
cryptographic operations can be performed by the assistance of inexpensive
smartcards placed in subscriber’s client devices [2]. We also presume users employ
an anonymous access protocol to protect their identity while interacting with LS.

Since nodes are encrypted, LS cannot traverse R' and tree navigation becomes an
interactive scheme between the user u and the server. To perform any spatial query
such as range or kNN, u privately requests a series of nodes N'i,j chosen based on
the query processing logic. At each step u first requests the next node N'i,j by its id=
H(i,j). After decrypting N'i,j, u identifies one of the node’s children N'i+1,j' for
further expansion and sends a subsequent request to the server for the node
represented by id = H(i+1,j'). This read, decrypt, encrypt and request process is
repeated by u until the leaf nodes (likely) containing the query result are retrieved.
If several MBRs at level i intersect with a query, they are each retrieved separately

79

Proceedings of the Third International Conference on Emerging Databases (EDB 2011)

using the scheme discussed above. Note that encrypting each MBR in a node as
opposed to encrypting the whole node data would result in an information leakage
by exposing the ordering among the elements of each node.

Since both R and R' are hosted by the location server LS, it knows fi,j values
while serving R and later learns f'i,j values by serving R'. The location server is not
trustworthy and is curious to exploit this knowledge to infer user locations from R
and R' node access frequencies. To do this, LS employs a frequency variation attack.
That is, the server tries to correlate the fi,j and f'i,j values or exploits the variations
among f'i,j values in R' and combines this with its prior knowledge to infer the
contents of N'i,j. Our approach presented in Section 4 shows how we generate a
privacy-aware tree R' whose f'i,j values are meaningless to LS thus achieving user
location privacy.

4. OBFUSCATING ACCESS FREQUENCIES

Consider the scenario where LS hosts N and the client (we hereafter use the terms
client and user interchangeably) u forms a query Q to find a nearby object oi. As we
discussed in Section 1, one extreme solution (in terms of both privacy and
efficiency) is for u to use PIR to privately navigate the index structure hosted by LS
to prevent him from learning her location. While remaining perfectly secret, this
approach is very expensive (Section 2). In another extreme, K-anonymity can be
used to confuse LS by sending him K queries to make u indistinguishable among a
redundancy set of size K. Although being efficient, this technique offers
significantly weaker privacy guarantees as in the best case, it makes u
indistinguishable among a usually small set of K-1 other users. Moreover, recent
studies [4,7,8,17] show how sophisticated attacks can be mounted against such
schemes. We strike a compromise by utilizing the hierarchical nature of tree
structured spatial indexes to enable efficient yet oblivious traversal of the tree by
making node access frequencies meaningless to the untrusted server. With our
approach, the original R-tree R is replaced by its privacy aware variant R' such that
the index navigation is performed on R' nodes denoted by N'i,j. To process Q, u
interactively requests a series of nodes from LS that allow her to find oi. We show
that with our approach, the server does not learn the frequency (and hence content)
of nodes accessed to execute Q.

The basic idea behind our proposed scheme is to perform redundant reads from
the server for each node requested by u. We obfuscate node access frequencies by
grouping “less popular” nodes with more frequently accessed ones in a redundancy
set RS. We compute for each node N'i,j, a probability distribution function stored at
its parent node. This function instructs the client to form a redundancy set RS
which includes N'i,j as well as another node of the same height chosen according to
a certain precomputed probability function to make node access entirely uniform.
More formally, our goal is to break the correlation between the original node access
frequencies {fi,1,fi,2,…,fi,c

i-1} and the modified access frequencies of R' nodes
{f'i,1,f'i,2,…,f'i,c

i-1} for i{1,…,h} by making node access frequencies uniform.
To achieve uniformity in node access frequencies, one can think of creating a

redundancy set RS for each N'i,j access in R' with capacity c. In particular, each RS

80

Proceedings of the Third International Conference on Emerging Databases (EDB 2011)

would include the original node requested as well as K other elements chosen
uniformly at random from the ci-1 nodes with the same height to protect node access
frequencies. In the following lemma, we show that this naive protocol does not
protect information leakage because the resulting node access frequencies f'i,j are
not uniform and are in fact highly correlated with fi,j values. More formally, we
show that the histogram of access frequencies would uniformly increase for all
nodes and thus the new frequency histogram will not be uniform since the original
frequencies are not uniform.

Lemma 1. Using the above naïve scheme, f'i,j=α+β×fi,j where

11

,
ick

kii fpa ,

ip

1
1 for

11
 ii c

K
p .

Proof. By randomly choosing elements of RS, at depth i, each Ni,k, k≠j has a

11
 ii c

K
p chance of being included in RS. Such added nodes each contribute

to f'i,j with probability pi. In other words, including Ni,k in Ni,j’s redundancy set
adds fi,k to f'i,j with probability pi. In general,

Corollary: For N'i,j1, N'i,j2: f'i,j1-f'i,j2= β×(fi,j1- fi,j2).
The above observation states that members of the redundancy set cannot be
uniformly picked if the original nodes are accessed at different frequencies.
Therefore, we need to take values of fi,j into account while constructing the
redundancy set. We now present a protocol that achieves this goal.

4.1 Probabilistic Uniform Node Access

Consider the tree of Figure 2 where each Ni-1,j access results in a subsequent request
for one of the nodes in the next level of the tree (i.e., i) at different frequencies.
Our goal is to add one redundant node to each original node request in such a way
that the overall node access frequencies f'i,j for all nodes at depth i become equal
(hereafter, we refer to this criteria as the uniform node access frequency). To
achieve this, we define for each internal node Ni-1,j a probability table pti-1,j whose
values are of the form ri,j→i,k denoting the probability of accessing each Ni,k

81

Proceedings of the Third International Conference on Emerging Databases (EDB 2011)

whenever Ni,j is originally requested. In other words, for each Ni,j request at level i-
1, one Ni,k is added to a redundancy set RS in a random order according to ri,j→i,k
values in pti-1,j. In order to enforce one and only one redundant read per node access,

we require that

jSk

kiji

i

r 1,, which means each node Ni,j is paired with one Ni,k

as its redundant read with probability ri,j→i,k. Figure 3 illustrates how a redundant
node is chosen. Each node picks a random variable x (0,1] and drops it the large
rectangle whose length is 1. The small rectangle containing x identifies the
redundant node to be read. Note that even for a fixed node Ni,j redundant nodes can
be different each time as the value of x is determined randomly for each Ni,j request.

Figure 2. Original R-tree

To store each pti-1,j, for an internal node we form a c×Si matrix where

Si={1,…,ci-1} and each (encrypted) entry represents ri,j→i,k. In order to maintain the
original capacity (fan-out) of the tree structure, we store these tables in a separate
data structure where each pti-1,j is identified by Ni-1,j’s id. This probability table
result in a storage overhead to prevent leakage from the pattern the index is
traversed. With our implementation, maintaining these tables incurred a reasonable
increase in total amount of space needed to store the index for different values of c.

Figure 3. Probability contributions of node N'i,3

We proceed to the offline calculation of the probability tables. Since the size of

the redundancy set RS is always 2, using the above scheme each node access adds
to the access frequency of one and exactly one other node included in its RS. To
compute the modified node access frequency f'i,j we add to its original access
frequency fi,j, the weighted probabilistic frequency contributions of all other nodes
of depth i. This contribution is a function of each node’s popularity, as well as the
probability of that node picking Ni,j as its redundant node. More formally,
performing the above scheme increases fi,j to f'i,j for j{1,…,ci-1}:

Lemma 2. The new access frequency of a node Ni,j will increase by the sum of

all other node’s probabilistic contribution to Ni,j at depth i. Or

jk

jikikijiji rfff ,,,,,' . Using lemma 2, we prove the following property.

82

Proceedings of the Third International Conference on Emerging Databases (EDB 2011)

Theorem 1. The above scheme increases the sum of access frequencies at each

depth by a factor of 1. Or

i iSj Sj

jiji ff ,, 2' .

Proof: Using lemma 2 and setting

jSk

kiji

i

r 1,, , we write:

To clarify, let us take the following examples for the simple case of a tree with

height h = 2. For c = 2 (Figure 4a), this scheme is straightforward. We have f'2,1=
f2,1+ f2,2×r2,2→2,1=f2,1+f2,2=1. Similarly, f'2,2=1. In other words, each request for one
node includes the other with probability 1. Therefore, the probability of accessing
both nodes is equal. For higher values of c such as c=3, the case is slightly more
complicated (see Figure 4b). To obtain new node access frequencies, we need to
solve the following system of equations.

Figure 4. Examples

 The above system has 9 unknowns (i.e., 3 new f' and 6 new ri,j→i,k unknowns for
kSi-j) and 6 equations. However, a closer look at the protocol gives us the
remaining information required to solve the above system. Based on our objective
of equalizing modified node access frequencies, we have f'2,1=f'2,2=f'2,3. Using
Theorem 1, f'2,1+f'2,2+f'2,3=2. This property gives us three less unknowns:

83

Proceedings of the Third International Conference on Emerging Databases (EDB 2011)

Therefore, for the general case, in order to achieve uniform access for each tree

depth i we set
i

Sj
ji

ji S

f

f i

,

,

2

' (observe that |Si| is equal to the number of nodes

at level i) and solve a linear system of e equations and e unknowns offline. The
unknowns are |Si|-1 probability contributions for each of the |Si| nodes. Thus, e=
|Si|×(|Si|-1)= |Si|

2-|Si|.
To execute a query Q, at each step the user u receives the encrypted original

(N'i,j) and redundant (N'i,j') MBRs along with their probability tables. Next, u
discards N'i,j' and its table (which needs to be transferred to u to prevent LS from
identifying the redundant MBR), decrypts N'i,j and picks the next MBR from level
i+1 of N'i,j to be expanded and uses the probability table to pick the redundant MBR
for the next original node request. This process is repeated for every node u
requests as part of processing Q. Note that even for the first query at time T= t0, the
likelihood of any two nodes being included in the user request is . Finally,
aside from the storage overhead, the security of this method comes at the cost of
transferring two probability tables for each node request to the client.

The probability contributions of each node (derived from solving the system of
equations for each probability table) determine which redundant node will
accompany each originally requested node in client’s request to the server. However,
one might wonder if the actual node access frequencies will need time to converge
to our calculated values after certain number of node requests at T=t1, t1>>t0. This
is in fact not the case. Consider the example of Figure 4b and let f2,1=0.6, f2,2=0.1
and f2,3=0.3. Solving a system of 6 equations and unknowns will yield

For the first query submitted at T=t0, we calculate p(N2,1,N2,2) which represents

the probability of nodes N2,1 and N2,2 belonging to the user’s request.

Therefore, any two nodes could be the first nodes requested from the server. To
see why observe that in Equation 8, we set similar values for the expected node
access frequency f'i,j. Therefore, each node is equally likely to be present in a user’s
request. It is important to note that although node access frequencies are equal, one
cannot take away the attacker’s prior knowledge of objects popularity. For instance,
consider an extreme case where the client downloads the entire database and
processes her query locally to achieve perfect secrecy. Even though all nodes are
accessed once (and in fact transferred to the client), the server can still assign a
higher probability to a certain object being the actual user intended object. However,

84

Proceedings of the Third International Conference on Emerging Databases (EDB 2011)

this knowledge is not acquired from monitoring the client/server interactions.
Similarly, our goal is to ensure our methods do not leak any extra information to
the attacker by the way objects are accessed.

4.2 Security and Complexity Analysis

In this section we review the server overhead in employing our proposed
probabilistic uniform node access scheme, henceforth denoted by PU, for spatial
query processing using the privacy-aware tree R'.

Theorem 2. Let CO(n), CPU(n) denote the computational cost of processing a
spatial query Q over n objects using the original and the PU method, respectively.
CPU(n)≈ 2CO(n).

Proof: Processing Q using R at each step, requires a “visit” phase to inspect a
node Ni,j and an “expand” phase where the server identifies the next MBR to be
visited. This MBR is selected based on the nature of Q (for instance an MBR
overlapping with Q if Q is a range query). Replacing R with R' results in two
changes. First, the MBR inspection process is shifted to the client u as nodes of R'
are encrypted. Furthermore, each “visit” to a single node is replaced by requesting a
redundancy set of size ʋ where ʋ= 2 for PU. However, the expansion phase remains
intact because of all ʋ nodes requested by u, only one MBR would trigger the next
client server interaction (see Figure 5). Therefore, the complexity of processing Q
is ʋCO(n) where ʋ is a constant. The ≈ notation is used to account for the (constant)
extra cost of retrieving the probability tables from the server.

Therefore, the PU method achieves fully uniform node access frequency where
the probability of any two nodes being requested is . Moreover, according to
Lemma 2, the server overhead for the PU technique is twofold due to an increase in
size of the result set.

Figure 5. Visiting vs. expanding nodes

4.3 Generalizations

We assumed in Section 3 that leaf objects in N are indexed using an R-tree with
capacity c where each node contains exactly c elements and deferred the
generalization of our approach to partially full R-trees as well as applying our
proposed scheme to oblivious navigation of other tree-structured spatial indexes
such as kd-trees and quadtrees. In the following sections, we discuss these two
generalizations, respectively.

Partially Full R-trees: To prove several properties of our proposed R-tree
variant, we assumed each internal node N'i,j of R-tree includes exactly c child
MBRs and each leaf node groups exactly c objects into a leaf MBR. Although
having the entire dataset available offline enables the construction of a balanced
tree where most of the nodes are in fact full, several nodes at each level might not
contain exactly c objects. The partially full structure of the tree, even though nodes

85

Proceedings of the Third International Conference on Emerging Databases (EDB 2011)

are encrypted, can potentially leak information to the server about the distribution
of the actual static objects. To deal with this issue, during an offline process, we
traverse the tree from level h-1 up to level 1 and for each parent node N'i,j with c'<c
children, we pad c'-c children with dummy data and access frequency of zero and
link them to N'i,j. This process guarantees that no information is leaked to the server
from any asymmetry of the tree structure. Moreover, one can easily verify that
using the above approach, all tree properties and proofs of correctness and security
still hold. Finally, observe that all proofs of complexity assumed a worst case
scenario where the tree nodes are all full and therefore, padding the nodes with
dummy data does not exacerbate the complexity analysis of earlier sections.

Other Tree Structured Spatial Indexes: In previous sections, we detailed our
schemes for privacy-aware navigation of R-trees. Although we focused our
attention on R-trees, we did not make any assumptions specific to R-trees that do
not hold in other tree structured spatial indexes. The PU technique discussed in
Section 4.1 can be employed with any other tree-structured index that respects the
notion of recursively grouping lower level objects in higher nodes. Furthermore,
the tree should have the same number of objects in each node. Obviously, several
spatial indexes such as kd-trees and quadtrees satisfy all the above properties.
Finally, since tree nodes are encrypted, the client should be capable of performing
the query processing interactively with the server. This requires the client to be
aware of how the underlying spatial index is used for query processing.

4.4 Limitations of Probabilistic Uniform Node Access Method

Although the system of equations derived from Theorem 1 can be easily solved
using Gaussian reduction, there are cases where the solution is not valid. To see
why note that

If , there will at least exist one value of ri,k→i,j
smaller than 0 for some k which is an invalid probabilistic contribution for a node.
This situation occurs if there are large variations among the access frequencies of
nodes of a certain tree level. For instance, if c = 3, an optimal solution can be found

only if 32:, , jifji . One way to solve this problem is to replicate a node

whose fi,j is more than the above threshold into two identical nodes each with half
the original frequency. To maintain the structure of the tree, it suffices to randomly
choose one of the replicated nodes at its parent with probability 1/2.

However, replication introduces new complexities to our approach. Therefore,
this approach is effective whenever there is normal variations among fi,j values at
each depth. We believe this is a practical assumption for POI data. However,
applying this technique to cases where this property does not hold is an open
question of our approach. In the remainder of this paper, we discuss our future work
to go beyond the limitations of probabilistic node access technique and devise
techniques that do not assume restrictions on node access frequency variations and
work well even in the presence of outliers.

86

Proceedings of the Third International Conference on Emerging Databases (EDB 2011)

4. CONCLUSION AND FUTURE WORK

To protect the location privacy of users who subscribe to location-based services,
encryption is not sufficient for hiding the contents of the underlying spatial index.
The potentially untrusted server hosting spatial data can obtain sensitive
information by monitoring “how” (i.e., in what frequency) the encrypted index
nodes are being accessed. Combining this information with its prior knowledge
about the data, the server can easily deduce the location of the user querying the
data. In this paper, we proposed our probabilistic uniform node access technique
that enables oblivious navigation of tree-structured spatial indexes while incurring
acceptable communication overhead and server side complexity and imposing
minimal burden on the client side. We analytically studied the security and
efficiency of our approach. As we discussed in Section 4.4, our proposed technique
imposes some assumptions on the distribution of access frequency values for nodes.
Moreover, it requires storing probability values at tree nodes. To address these two
issues, we are working on an object permutation scheme that obfuscates the
histogram of node access frequencies in the original tree by converting it to a semi-
uniform distribution. Our initial observations demonstrate significant savings on
computation and communication overhead compared to our approach we proposed
in this paper. However, such benefits obviously come at a cost which in our case
will be more lax the privacy guarantees. We plan to empirically evaluate both
approaches with real-world and synthetic data to better understand their properties.

Finally, while efficient for querying static data, our original and modified index
structures are not suitable for processing dynamic data. As part of our future work,
we are investigating how to improve our proposed methods to efficiently deal with
dynamic data.

ACKNOWLEDGEMENTS

This research has been funded in part by NSF grant CNS- 0831505 (CyberTrust),
the NSF Integrated Media Systems Center (IMSC) and unrestricted cash and
equipment gift from Google and Microsoft. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

REFERENCES

[1] D. Asonov. Querying Databases Privately: A New Approach to Private Information Retrieval,
volume 3128 of Lecture Notes in Computer Science. Springer, 2004.

[2] L. Bouganim and P. Pucheral. Chip-secured data access: confidential data on untrusted servers.
In VLDB’02, pages 131–142.

[3] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. Private information retrieval. J. ACM,
45(6):965–981, 1998.

[4] G. Ghinita, P. Kalnis, A. Khoshgozaran, C. Shahabi, and K.-L. Tan. Private queries in location
based services: anonymizers are not necessary. In SIGMOD’08, pages 121–132.

[5] A. Guttman. R-trees: a dynamic index structure for spatial searching. In SIGMOD’84, pages
47–57.

[6] P. Kalnis, G. Ghinita, K. Mouratidis, and D. Papadias. Preserving anonymity in location based

87

Proceedings of the Third International Conference on Emerging Databases (EDB 2011)

services. A Technical Report, 2006.
[7] A. Khoshgozaran and C. Shahabi. Blind evaluation of nearest neighbor queries using space

transformation to preserve location privacy. In SSTD’07, pages 239–257.
[8] Ali Khoshgozaran, Cyrus Shahabi, and Houtan Shirani-Mehr, Location privacy: going beyond K-

anonymity, cloaking and anonymizers, Knowledge and Information Systems, Volume 26, Issue 3
(2011), Page 435.

[9] H. Kido, Y. Yanagisawa, and T. Satoh. Protection of location privacy using dummies for location
based services. In ICDE Workshops, page 1248, 2005.

[10] E. Kushilevitz and R. Ostrovsky. Replication is not needed: single database, computationally
private information retrieval. In FOCS’97, pages 364–373.

[11] P. Lin and K. S. Candan. Secure and privacy preserving outsourcing of tree structured data. In
Secure Data Management, VLDB Workshop, SDM, pages 1–17, 2004.

[12] P. Lin and K. S. Candan. Hiding tree structured data and queries from untrusted data stores.
Information Systems Security, 14(4):10–26, 2005.

[13] M. F. Mokbel, C.-Y. Chow, andW. G. Aref. The new casper: Query processing for location
services without compromising privacy. In VLDB’06, pages 763–774.

[14] S. W. Smith and D. Safford. Practical server privacy with secure coprocessors. IBM Syst. J.,
40(3):683–695, 2001.

[15] P.Williams, R. Sion, and B. Carbunar. Building castles out of mud: practical access pattern
privacy and correctness on untrusted storage. In CCS’08, pages 139–148, 2008.

[16] M. L. Yiu, G. Ghinita, C. S. Jensen, and P. Kalnis. Outsourcing search services on private spatial
data. In ICDE’09, pages 1140–1143.

[17] M. L. Yiu, C. S. Jensen, X. Huang, and H. Lu. Spacetwist: Managing the trade-offs among
location privacy, query performance, and query accuracy in mobile services. In ICDE’08, pages
366–375.

88

