
An Efficient Index Structure for Large-scale Geo-tagged
Video Databases

Ying Lu Cyrus Shahabi Seon Ho Kim
Integrated Media Systems Center, University of Southern California, Los Angeles, California, USA

{ylu720,shahabi,seonkim}@usc.edu

ABSTRACT
An unprecedented number of user-generated videos (UGVs) are
currently being collected by mobile devices, however, such un-
structured data are very hard to index and search. Due to recent
development, UGVs can be geo-tagged, e.g., GPS locations and
compass directions, at the acquisition time at a very fine spatial
granularity. Ideally, each video frame can be tagged by the spatial
extent of its coverage area, termed Field-Of-View (FOV). In this
paper, we focus on the challenges of spatial indexing and querying
of FOVs in a large repository. Since FOVs contain both location
and orientation information, and their distribution is non-uniform,
conventional spatial indexes (e.g., R-tree, Grid) cannot index them
efficiently. We propose a class of new R-tree-based index struc-
tures that effectively harness FOVs’ camera locations, orientations
and view-distances, in tandem, for both filtering and optimization.
In addition, we present novel search strategies and algorithms for
efficient range and directional queries on FOVs utilizing our in-
dexes. Our experiments with a real-world dataset and a large syn-
thetic video dataset (over 30 years worth of videos) demonstrate
the scalability and efficiency of our proposed indexes and search
algorithms and their superiority over the competitors.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Spatial
databases and GIS; H.3.4 [Information Storage and Retrieval]:
Systems and Software—Performance evaluation

General Terms
Algorithms, Experimentation, Performance

Keywords
Geo-tag, index, scalability, user-generated video

1. INTRODUCTION
Driven by the advances in video technologies and mobile devices

(e.g., smartphones), a large number of User-Generated-Videos (UGVs)
are being produced and consumed by the public. According to
Cisco [1], the overall mobile data traffic reached 1.5 exabytes per
month in 2013 and it will reach 15.9 exabytes per month by 2018.
Obviously, UGVs play a critical role in daily life, however, it is still
challenging to organize and search such a huge amount of UGVs.

To overcome this challenge, we leverage smartphone sensors
while capturing videos to model video content with its geospa-
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SIGSPATIAL’14, November 04 - 07 2014, Dallas/Fort Worth, TX, USA
Copyright 2014 ACM 978-1-4503-3131-9/14/11 ...$15.00
http://dx.doi.org/10.1145/2666310.2666480.

tial properties at the fine granularity level of frame (e.g., Field-Of-
View [3]) . FOV model has been proven to be very useful for vari-
ous media applications such as demonstrated by the online mobile
media management system, MediaQ [6]. In the presence of such
geo-metadata, we propose a new efficient index for a large scale
geo-tagged video database.

Figure 1: Range query in MediaQ [6]
p

θ
α

North

R

Θ
r

b
θ

e
θ

→

b
θ

→

e
θ

Figure 2: FOV model

Unlike conventional spatial objects (e.g., points, rectangles), FOV
is a spatial object with orientation. For example, Fig. 1 shows the
FOV (shaped in blue pie) of the video frame currently being dispa-
lyed on MediaQ. Using FOVs, there are two typical queries on geo-
tagged videos [8]: range and directional queries. A range query
finds FOVs that overlap with a user-specified circular query area as
shown in Fig. 1. A directional query finds FOVs whose orientations
overlap with the user-specified direction within a range.

Note that “direction” discussed in this paper is an inherent at-
tribute of FOVs. This is different than how direction has been
treated in the past in the spatial database field, where they focused
on directional relationships [9], direction-aware queries [7] (direc-
tion is only a component of a query), and moving directions. To
distinguish from these “directions”, we will use the term “orienta-
tion” when referring to the direction attribute of FOVs.

FOVs are spatial objects with both locations and orientations.
Existing indexes (e.g., R-tree [4], Grid [8]) cannot efficiently sup-
port this type of data (see Sec. 2.2).

To overcome the drawbacks of the existing approaches, we pro-
pose a class of new index structures using both location and ori-
entation information, termed OR-trees, building on the premises
of R-tree. Our first straightforward approach uses R-tree to only
index the camera locations of FOVs as points and then augments
the index nodes to store their orientations. This variation of OR-
tree is expected to generate smaller MBRs and reduce their dead
spaces while supporting orientation filtering. To enhance further,
we devise a second variation by adding an optimization technique
in utilizing orientation information during node split and merge op-
erations. Finally, in our third and last variation, we add the FOVs’
viewable distances into the consideration during both filtering and
optimization process.

Our experiments with both a real-world dataset and a large syn-
thetic dataset (over 30 years worth of videos) demonstrate the scala-
bility and efficiency of our proposed indexes and search algorithms
and their superiority over the competitors.

2. PRELIMINARIES

2.1 Video Spatial Model and Query Definitions
We represent videos as a sequence of video frames, and each

video frame is modeled as a Filed Of View (FOV) [3] as shown in
Fig. 2. An FOV f is denoted as (p,R,

−→
Θ), in which, p is the camera

location, R is the visible distance,
−→
Θ is the orientation of the FOV

in form of a tuple <
−→
θb
−→
θe>, where,

−→
θb and

−→
θe are the beginning

and ending view directions in clockwise direction, the values of
which are presented as <θb, θe> w.r.t. the North

−→
N . During video

recording using sensor-enable camera devices, we can obtain the
camera view direction w.r.t the north θ and the visible angle α au-
tomatically [3]. Then we can derive θb = (θ− α

2
+ 360)mod360 ,

and θe = (θ + α
2

+ 360)mod360 .
We represent the coverage of a video v as a series of FOVs

Fv . A video database V is represented as an FOV database F =
{Fvi |∀vi ∈ V}. Then, the problem of video search is transformed
into spatial query on FOVs. Two typical geo-video queries, range
and directional, are formally defined bellow.

RangeQ(Qr,F)
def⇐⇒ {f ∈ F|f ∩Qr 6= ∅}

DirQ(Qd, Qr,F)
def⇐⇒ {f ∈ F|f.~Θ ∩Qd 6= ∅ ∧ f ∩Qr 6= ∅}

2.2 Baseline Methods
2.2.1 R-tree

One baseline for indexing FOVs is using R-tree[4], which in-
dexes the FOVs based on the MBRs of the visible scene of the
FOVs. Consider the FOV objects in Fig. 3. Since R-tree is based
on the optimization of minimizing the area of MBRs of FOVs, the
MBRs of the leaf nodes of the R-tree are the dashed rectangles in
Fig. 3 (assume the fanout is 2).
Range and Directional queries based on R-tree For the range
query Qr in Fig. 3, we need to access all the R-tree nodes (R1 ∼
R7) since all of their MBRs overlaps Qr . However, of which, only
two FOVs f1 and f2 are results. For the directional query with the
query direction interval Qd (0◦− 90◦) and the query range Qr , we
also need to access all of the R-tree nodes since this R-tree cannot
support orientation filtering.

Qr

f1

f3

f8

f4

f2
f5

f7

R1
R2

R3
R4

Qd

f6

Figure 3: Sample
dataset of FOVs

f1
MBR(f1)

(a) FOV object

R1

f1

f5

(b) Index node
Figure 4: Dead spaces of object and R-
tree node. Dashed area is the dead space.

Hence, R-tree has the following drawbacks for indexing FOVs.
Dead space: Fig. 4 illustrates the “dead spaces” (or empty area,
the area that is covered by the MBR of an R-tree node, but does not
overlap with any objects in the subtree of the node [4]) of FOV f1
and R-tree node R1 in Fig. 3. Dead spaces will cause false posi-
tives for range queries, and thus increase both index node accesses
and CPU computation cost. Taking the range query in Fig. 3 as
an example, due to the dead spaces of index nodes R3 and R4, it
needs to access R3 and R4, which are not necessary to be accessed
since FOVs in neitherR3 nor FOVs inR4 are results. Large MBRs:
The area of the MBR of an R-tree node would be large due to the
large visible scenes of the FOV objects enclosed in the node. With
R-tree, large MBRs will increase the number of accessed node for
a given range query since the decision whether to visit a node de-
pends on if the MBR overlaps the query area [4]. No orientation

filtering: With regular R-tree, there is no orientation information in
the index nodes of the R-tree. No orientation optimization: R-tree
is constructed based on the optimization of minimizing the cover-
ing area of FOV objects, without considering their directions.

2.2.2 Grid-based Index
Another approach that considers the directions of FOVs is Grid-

based Index, termed as Grid [8], a three-level grid-based index
structure based on viewable scene, camera locations and view di-
rections. The first level indexes FOVs in a coarse grid, where each
grid cell maintains the FOVs that overlap with the cell. At the sec-
ond level, each first-level cell is divided into a set of subcells, each
maintaining the FOVs whose camera locations are inside the cell.
At the third level, it divides 360◦ into x intervals. Each direction
interval maintains a list of FOVs whose orientations overlap with
the interval. Grid uses the first and second levels for range filter-
ing to process range queries and use the third level for orientation
filtering to process directional queries.

However, Grid has the following drawbacks. First, it stores the
location and orientation information at different levels, which is
not efficient since video queries usually involve both location and
orientation information of FOVs at the same time during query pro-
cessing. Second, it is not suitable for indexing FOVs with different
zoom levels and camera lens’ properties since those FOVs have dif-
ferent viewable distances [3] and it will result in a large number of
candidate second-level cells. Third, it performs poorly for skewed
distribution of FOVs since the bucket occupancy of grid files rises
very steeply for skewed distribution [5].

3. THE CLASS OF OR-TREES
To overcome the drawbacks of R-tree and Grid, we devise a class

of new index structures combining camera locations, orientations
and viewable distances of videos.

3.1 Orientation Augmented R-tree: OAR-tree
Recall that with R-tree, using MBRs to estimate FOVs will re-

sult in large MBRs, large “dead spaces” and the loss of orientation
information. In this section, we introduce a new index called Ori-
entation Augmented R-tree (OAR-tree) based on smaller MBRs,
reduced “dead spaces”, and incorporating orientation information
in the index nodes, to accelerate the query efficiency.

In particular, for the leaf index nodes of an OAR-tree, instead of
the MBRs of FOV objects, we store three values and a pointer to
the actual FOV objects. Based on which, we can avoid the “dead
spaces” of FOV objects to reduce false positives. Specifically, each
leaf index node N of an OAR-tree contains a set of entries in the
form of (Oid, p, R,

−→
Θ), where, as discussed in Sec. 2.1, Oid is the

pointer to an FOV in the database; p is the camera location of the
FOV object; R is its visible distance; and

−→
Θ is its view orientation.

For internal index nodes, we replace 1) Oid with a pointer to the
child node, 2) p with the MBR of all camera points in the child
node, 3) R with an aggregate value representing all visible dis-
tances in the child node, and 4)

−→
Θ with an aggregate value repre-

senting all orientations in the child node. Specifically, each non-
leaf index node N of an OAR-tree contains a set of entries in the
form of (Ptr, MBRp, MinMaxR,

−−−→
MBO), where

• Ptr is the pointer to a child node of N ;
• MBRp is the MBR of the camera locations of the FOVs in

the subtree rooted atPtr; Obviously,MBRp is much smaller
than the MBR of FOVs in R-tree.
• MinMaxR is a tuple <MinR,MaxR>, whereMinR (resp.
MaxR) is the minimum (resp. maximum) visible distance
of the FOVs in the subtree rooted at Ptr;

•
−−−→
MBO is the Minimum Bounding Orientation (MBO), de-
fined in Definition 1 below, of the orientations of the FOVs
in the subtree rooted at Ptr.

DEFINITION 1 (MINIMUM BOUNDING ORIENTATION).
Given a set of FOVs’ orientations Ω =

�
Θi < θbi, θei >

	
,

1 ≤ i ≤ n, n is the number of orientations in Ω , then the Min-
imum Bounding Orientation (MBO) of Ω is the minimum angle
in clockwise direction that covers all the orientations in Ω , i.e.,

MBO(Ω) =< θb, θe >, such thatø−→θb−→θe = min
θbi∈Ω

�
max
θej∈Ω

ù−→
θbi
−→
θej
	

.

The OAR-tree stores the MBRs of camera locations, and incor-
porates the aggregate orientation and viewable distance information
of all the child nodes to achieve smaller MBRs and orientation fil-
tering. However, the OAR-tree is only based on the optimization of
minimizing the covering area of the camera locations, which may
result in large false positives for both range and directional queries.
Similarly for the “dead space” of an R-tree node, we define the
“Virtual Dead Space” of an OAR-tree node in Definition 2. Differ-
ent from the dead space of an R-tree node where the coverage of
an R-tree node, i.e., MBR, is stored, for the virtual dead space of
an OAR-tree, its virtual coverage is not stored. However, both of
them will produce false positives for range queries. Fig. 5(a) shows
the virtual dead spaces of the OAR-tree node containing f1 and f5,
and the OAR-tree node containing f1 and f2.

DEFINITION 2 (VIRTUAL DEAD SPACE). Given an OAR-tree
node N(MBRp,

−−−→
MBO,MaxMinR), then the virtual dead space

ofN is the area that is virtually covered byN , but does not overlap
with any FOVs in the subtree of N . The virtual coverage of N is a
convex such that any point in which can be covered by any FOV (p,
−→
Θ , R), ∀p ∈ N.MBRp, ∀

−→
Θ ∈ N.

−−−→
MBO, ∀R ∈ N.MaxMinR.

Consider Fig. 5(a) again, for the example in Fig. 3, FOV f1 is
grouped together with f5 in the OAR-tree based on the camera
point optimization. However, if f1 is grouped together with f2,
additionally considering orientation information, then the virtual
dead spaces of the OAR-tree node containing FOVs f1 and f5 will
be significantly reduced and so does the number of false positives.

Based on this, we next discuss how to enhance OAR-tree by con-
sidering orientation optimization during the index construction.

f1

f5

(a) Location
only

f1 f2

.

(b) Location
and orientation

Figure 5: Virtual dead spaces of
OAR-tree nodes based on different
optimizations.

Qr Qd

f1

f3

f8

f4

f2

f5

f7N1

f6

N2

N3

N4

Figure 6: O2R-tree for
the example in Fig.2.2.1

3.2 Orientation Optimized R-tree: O2R-tree
In this section, we propose a new index called Orientation Opti-

mized R-tree (O2R-tree) that optimizes based on both the camera
locations covering area and the similarity in orientation.

The stored information in O2R-tree index nodes is the same as
that in the OAR-tree. The main difference between O2R-tree and
OAR-tree is in the optimization criteria during the merging and
splitting of the index nodes. We use the standard Quadratic Split
algorithm [4] based on our proposed Waste function.

Given an O2R-tree entryE(MBRp,MaxMinR,MBO) and an
FOV object f(p,R,Θ), the covering area waste ∆Area(E, f) for
the camera location is defined in Eqn(1).

∆Area(E, f) = Area(MBR(E, f))−Area(E) (1)

where Area(MBR(E, f)) is the area of the MBR of E.MBRp
and f.p; Area(E) is the areas of Ei.MBRp. The angle waste for
the view orientation is computed by Eqn(2)

∆Angle(E, f) = ÿMBO(E.MBO, f.Θ)−û−−−−−→E.MBO −ö−−→f.Θ (2)

where ÿMBO(E.MBO, f.Θ) is the MBO of E.MBO and f.Θ.
Combining Eqn(1) and Eqn(2) using linear regression and nor-

malization, we can compute the overall waste cost in Eqn(3).

Wastelo(E, f) = βl
∆Area(E, f)

max∆Area
+ βo

∆Angle(E, f)

max∆Angle
(3)

In Eqn(3), max∆Area (resp. max∆Angle) is the maximum of
∆Area(E, f) (resp. ∆Angle(E, f)) for all the pair entries Ei
and Ej to normalize the camera location (resp. orientation) waste.
Parameters βl and βo, 0 ≤ βl, βo ≤ 1, βl + βo = 1, are used to
strike a balance between the area and angle wastes.

Fig. 6 gives the O2R-tree of our running example. It can prune
O2R-tree node N2 for both range and directional queries, instead
of accessing all the index nodes as the OAR-tree.

3.3 View Distance and Orientation Optimized
R-tree: DO2R-tree

Considering the camera location and orientation for optimization
may still be insufficient. Hence, we discuss how to construct the
index based on the optimization criterion incorporating the view
distance information of FOVs, and we call the new index View
Distance and Orientation Optimized R-tree (DO2R-tree).

The difference between DO2R-tree and O2R-tree is the opti-
mization criteria. In the waste function of DO2R-tree in Eqn(5),
it incorporates the view distance differences as given in Eqn(4).

∆Diff(E, f) = Diff(Ef)−Diff(E) (4)

whereDiff(E) is the difference between maximum and minimum
viewable distances of entry E. Diff(Ef) is the difference be-
tween maximum and minimum viewable distances of node enclos-
ing the viewable distances of E and f .

Combining all the wastes together, we can compute the overall
waste cost in Eqn(5).

Wastelod(E, f) = βl
∆Area(E, f)

max∆Area
+ βo

∆Angle(E, f)

max∆Angle

+ βd
∆Diff(E, f)

max∆Diff
(5)

In Eqn(5), max∆Diff is the maximum of ∆Diff(E, f) for all
the pair entries Ei and Ej to normalize the visible distance. Pa-
rameters βl, βo and βd, 0 ≤ βl, βo, βd ≤ 1, βl + βo + βd = 1, are
used to tune the impact of the three wastes. In particular, if βd = 0,
then DO2R-tree reduces to O2R-tree, and if also βo = 0, then it
becomes OAR-tree.

4. QUERY PROCESSINGS
We proceed to present the query algorithms based on DO2R-tree

which is the generalization of the three indexes discussed in Sec. 3.

4.1 Range queries
At the high-level, the algorithm descends the DO2R-tree in the

branch-and-bound manner, progressively checking whether each
visited FOV object/index node overlap with the range query ob-
ject. Subsequently, the algorithm decides whether to prune an ob-
ject/index node, or to report the FOV object/index node (all the

FOVs in the index node) to be result(s). In the following, we will
first present an exact approach to identify whether an FOV over-
laps with the range query object, and then we exploit it to identify
whether an index node should be accessed or not through two newly
defined strategies: 1) pruning strategy and 2) total hit strategy.

q

p

r

(a) Case 1

q

p
R

r

→

b
θ

→

e
θ

Θ

f

g

(b) Case 2

q

p

R

r

→

b
θ

→

e
θ

Θ

f

g

b
e

(c) Case 3

→

b
θ

→

e
θ

Θ

(d) Case 4
Figure 7: Overlap identifying for an FOV object

As shown in Fig. 7, there are four overlapping cases. Then we
can derive the lemma bellow to identify whether an FOV is a result.

LEMMA 1 (OVERLAP IDENTIFYING FOR AN OBJECT). Given
an FOV f

�
p, R, Θ<θb, θe>

�
and a range query Qr(q, r), f over-

laps withQr iff it satisfies Eqn(6), or Eqn(7), or Eqn(8), or Eqn(9).
|pq| ≤ r (6)

|pq| ≤ r + R and÷−→θb−→pq +÷−→pq−→θe =ô−→Θ (7)

|pq| cos÷−→pq−→θb −
È
r2 − (|pq| sin÷−→pq−→θb)2 ≤ R and ÷−→θb−→pq+÷−→pq−→θe 6=ô−→Θ (8)

|pq| cos÷−→pq−→θe −
È
r2 − (|pq| sin÷−→pq−→θe)2 ≤ R and ÷−→θb−→pq+÷−→pq−→θe 6=ô−→Θ (9)

Based on Lemma 1, we can develop the pruning strategy to ex-
amine if an index nodeN

�
MBRp,<MinR,MaxR>,MBO<θb, θe>

�
can be pruned or not.

LEMMA 2 (PRUNING STRATEGY). Index nodeN can be pruned
if it satisfies Eqn(10), or Eqn(11), or Eqn(12),

MinD(q,MBRp) ≥ r +MaxR (10)

MinA(MBO,MBRp, q) ≥ arcsin
r

MinD(MBRp, q)
(11)

MinD(q,MBRp) cos(MaxA(MBO,MBRp, q))−p
r2 −MinD2(MBRp, q) sin2(MinA(MBO,MBRp, q)) ≤MaxR, (12)

where MinD(MBRp, q) is the minimum distance from q to MBRp

We next discuss the novel total hit strategy. We call an index
node N a “total hit” iff all the objects in N overlap with the query
circle. This is a new concept that does not exist with regular R-
trees. If an index node N is a “total hit”, then it is not necessary
to exhaustively check for all the FOVs in N one by one, so the
processing cost can be significantly reduced.

LEMMA 3 (TOTAL HIT STRATEGY). All the FOVs in the sub-
tree ofN can be reported as results if it satisfies Eqn(13), or all the
equations (14), (15) and (16),

MaxD(q,MBRp) ≤ r (13)
MaxD(q,MBRp) ≤ r +MinR (14)

MaxA(MBO,MBRp, q) ≤ arcsin
r

MaxD(MBRp, q)
(15)

MaxD(q,MBRp) cos(MinA(MBO,MBRp, q))−p
r2 −MaxD2(MBRp, q) sin2(MaxA(MBO,MBRp, q)) ≤MinR (16)

Due to the space limitation, we included the proofs of Lemmas 1,
2, and 3 in our technical report [2].

4.2 Directional queries
Given a direction interval Qd, we can easily decide whether the

orientation of a DO2R-tree node overlaps with Qd. The directional
query algorithm also follows a branch-and-bound process, progres-
sively applying the search strategies. Note that we apply the range
search strategies and the orientation filtering at the same time to
decide if a DO2R-tree node can be pruned or is a “total hit”.

5. PERFORMANCE EVALUATION
We conducted experimental studies to evaluate the efficiency of

our proposed indexes and search algorithms: OAR-tree, O2R-tree,
and DO2R-tree for range and directional queries using a real-world
dataset and big synthetically generated datasets (more than 30 years
worth of videos). We observed that both O2R-tree and DO2R-tree
significantly outperformed the baseline indexes (i.e., R-tree and
Grid) for both range and directional queries. Specifically, O2R-tree
(resp., DO2R-tree) accessed around 40% (resp., 50%) less pages
than Grid, and around 50% (resp., 60%) less than R-tree for range
queries. In additional, O2R-tree (resp., DO2R-tree) accessed about
70% (resp., 65%) less number of pages than Grid and accessed
about 67% (resp., 63%) less than R-tree for directional queries.
This demonstrates that the orientation optimization in building O2R-
tree and DO2R-tree was more effective in supporting directional
queries. Another observation is that OAR-tree outperformed Grid
slightly for directional queries and even incurred a slightly more
page accesses than R-tree for range queries. The results demon-
strated that not the simple consideration of orientation but the opti-
mization criteria considering the orientation significantly facilitated
the reduction of the dead spaces of tree nodes and subsequently
leading to the reduction of false positives.

6. CONCLUSION AND FUTURE WORK
We represented video data as a series of spatial objects with

orientations, i.e., FOVs, and proposed a class of R-tree-based in-
dexes that can index location, orientation, and distance information
of FOVs for both filtering and optimization. Further, two novel
search strategies were proposed for fast video range and directional
queries on top of our index structures. The experimental results
demonstrate the superiority of our indexes comparing to conven-
tional ones. We intend to extend this work in two directions: 1) to
extend our indexes to the cloud for even larger sets of video data,
2) to study the insertion and update costs of our indexes for batch
insertion of video.

Acknowledgments
This research has been funded in part by NSF grant IIS-1320149,
the USC IMSC, and unrestricted cash gifts from Google and Northrop
Grumman. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the author(s) and do
not necessarily reflect the views of NSF.

7. REFERENCES
[1] http://www.cisco.com/c/en/us/solutions/collateral/

service-provider/visual-networking-index-vni/white_
paper_c11-520862.pdf.

[2] An Efficient Index Structure for Large-scale Geo-tagged Video Databases.
http://www.cs.usc.edu/research/
technical-reports-list.htm?#2014.

[3] A. S. Ay, R. Zimmermann, and S. H. Kim. Viewable Scene Modeling for
Geospatial Video Search. In ACM Intl. Conf. on MM, pages 309–318, 2008.

[4] A. Guttman. R-trees: a dynamic index structure for spatial searching. In
SIGMOD, pages 47–57, 1984.

[5] V. Jain and B. Shneiderman. Data structures for dynamic queries: An analytical
and experimental evaluation. In Proc. of the Workshop on Advanced Visual
Interfaces. NY: ACM, pages 1–11, 1994.

[6] S. H. Kim, Y. Lu, G. Constantinou, C. Shahabi, G. Wang, and R. Zimmermann.
Mediaq: Mobile multimedia management system. In ACM MMSys, pages
224–235, 2014.

[7] X. Liu, S. Shekhar, and S. Chawla. Object-based directional query processing in
spatial databases. Proc. of IEEE TKDE, 15(2):295–304, Feb. 2003.

[8] H. Ma, S. A. Ay, R. Zimmermann, and S. H. Kim. Large-scale geo-tagged video
indexing and queries. GeoInformatica, Dec. 2013.

[9] Y. Theodoridis, D. Papadias, and E. Stefanakis. Supporting direction relations in
spatial database systems. In Proc. of the 7th Intl. Symposium on Spatial Data
Handling(SDH’96), 1996.

