
SHIFT-SPLIT: I/O Efficient Maintenance of
Wavelet-Transformed Multidimensional Data∗

Mehrdad Jahangiri
University of Southern

California
Los Angeles, CA 90089-0781

jahangir@usc.edu

Dimitris Sacharidis
†

National Technical University
of Athens

Athens, GR 15773

dsachar@dblab.ntua.gr

Cyrus Shahabi
University of Southern

California
Los Angeles, CA 90089-0781

shahabi@usc.edu

ABSTRACT
The Discrete Wavelet Transform is a proven tool for a wide
range of database applications. However, despite broad ac-
ceptance, some of its properties have not been fully explored
and thus not exploited, particularly for two common forms
of multidimensional decomposition. We introduce two novel
operations for wavelet transformed data, termed SHIFT and
SPLIT, based on the properties of wavelet trees, which work
directly in the wavelet domain. We demonstrate their sig-
nificance and usefulness by analytically proving six impor-
tant results in four common data maintenance scenarios,
i.e., transformation of massive datasets, appending data, ap-
proximation of data streams and partial data reconstruction,
leading to significant I/O cost reduction in all cases. Fur-
thermore, we show how these operations can be further im-
proved in combination with the optimal coefficient-to-disk-
block allocation strategy. Our exhaustive set of empirical
experiments with real-world datasets verifies our claims.

1. INTRODUCTION
The Discrete Wavelet Transform is a well established tool,

used extensively in signal processing applications for many
years since its introduction. Recently, it has proven useful
for a number of database applications as well. The wavelet
transformation has been used to provide approximate, pro-
gressive or even fast exact answers to OLAP range-aggregate
queries [2, 3, 7, 9, 12, 13, 15], with its performance rivaling
traditional histogram and sampling techniques. In the do-

∗This research has been funded in part by NSF grants EEC-
9529152 (IMSC ERC) and IIS-0238560 (PECASE), unre-
stricted cash gifts from Microsoft, an on-going collaboration
under NASA’s GENESIS-II REASON project and partly
funded by the Center of Excellence for Research and Aca-
demic Training on Interactive Smart Oilfield Technologies
(CiSoft); CiSoft is a joint University of Southern California
- ChevronTexaco initiative.†This work was done while the author was a graduate stu-
dent of Infolab at the University of Southern California.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2005 June 14-16, 2005, Baltimore, Maryland, USA
Copyright 2005 ACM 1-59593-060-4/05/06 ...$5.00.

main of time-series analysis and mining, wavelets are used
to automate feature extraction and expedite pattern discov-
ery and outlier detection [1, 8]. The wavelet transformation
is also used to provide compact synopses of data streams [4,
5] in support of approximate query processing.

However, despite its broad acceptance, the wavelet trans-
formation has not been explored to its full potential for data
intensive applications. Namely, the compact support and
the multi-scale properties of the wavelets, as illustrated by
the wavelet tree of decomposition, lead to some overlooked
but interesting properties. With the exception of [2], where
traditional relational algebra operations are re-defined to
work directly in the wavelet domain, most applications re-
sort to reconstruction of many data values to support even
the simplest operations in the original domain.

We introduce two novel operations for wavelet decom-
posed data, named SHIFT and SPLIT, that stem from
the multiresolution properties of wavelets to provide gen-
eral purpose functionality. They are designed to work di-
rectly in the wavelet domain and can be utilized in a wide
range of data intensive applications, resulting in significant
improvements in every case.

Furthermore, queries on wavelet-transformed data exhibit
a particular access pattern. There is a strong dependency
among wavelet coefficients, enforced by the multi-scale nest-
ing property, so that we always know which coefficients must
be retrieved alongside any coefficient to reconstruct a data
point or a range. This observation leads to constructing
multidimensional tiles containing wavelet coefficients that
are related with each other under a particular access pat-
tern. These tiles are then stored directly into the secondary
storage, as their size is adjusted to fit a disk block. By
using this tiling approach we can minimize the number of
disk I/Os needed to perform any operation in the wavelet
domain, including the important reconstruction operation
which results in significant query cost reductions. We de-
signed the SHIFT and SPLIT operations to work with
multidimensional tiles, as these operations benefit signifi-
cantly from their existence.

1.1 Data Maintenance Scenarios
To demonstrate the usefulness of our SHIFT and SPLIT

operations we look into four common data maintenance sce-
narios, and examine these operations in each context. The
scenarios are diverse enough to cover most of the areas where
wavelets are used, but not exhaustive, as we conjecture
that the applications that can benefit from the SHIFT
and SPLIT operations are plenty. The scenarios examined

here share the fact that the problem they deal with has a
straightforward solution when dealing with untransformed
data. Therefore, one is compelled to first reconstruct the
original data from the transformed data. However, we are
interested in working entirely in the wavelet domain, and
as we see, this becomes a complicating, but fruitful, factor.
Beside the SHIFT and SPLIT operations, a major con-
tribution of this paper includes the six analytically proven
improvement results in these four applications by utilizing
SHIFT and SPLIT:

• Transformation of Massive Multidimensional Datasets:
In the simplest scenario, we are faced with the transfor-
mation of a multidimensional dataset into the wavelet
domain in an I/O efficient manner, where available
memory is limited. Our approach is transformation
by chunks, small enough to fit in memory. Each trans-
formed chunk is then shifted, to relocate its coeffi-
cients, and split, to update some of the already cal-
culated coefficients. We show that our new transfor-
mation technique significantly outperforms the current
state of the art methods [12, 13] for transforming large
multidimensional datasets.

• Appending to Wavelet Decomposed Transforms: To il-
lustrate, suppose we have already accumulated and
transformed data for 10 years of measurements to ex-
pedite query processing. Now, what should we do
in the case that new data for one more year arrive?
Should we throw the old transformed data and do the
transformation from scratch? Certainly, we cannot
perform updates; there is nothing to update since the
new data involve a part of the data we have not trans-
formed yet. This scenario, seen in the untransformed
domain, involves a number of inserts. However, in the
transformed domain, each of these inserts require some
dimensions to grow, and therefore not only do coeffi-
cients have to be updated, but new coefficients need
to be created as well. In [2], the authors define the
relational algebra operations in the wavelet domain,
but do not propose a solution for insert operations.
Generally, expanding the transformed data to larger
dimension sizes has a high asymptotic cost, even when
using our SHIFT and SPLIT operations; however,
since these operations are faster than computing coef-
ficients, our approach results in faster execution times.

• Data Stream Approximation: Gilbert et al. [5] demon-
strated that a best K-term wavelet approximation of
a single dimensional data stream of domain size N
in the time series model is possible using space of
O(K + logN), by keeping the O(logN) coefficients
that can change, with per-item cost of O(logN). We
show that the SHIFT-SPLIT operations can further
reduce the per-item cost to O

�
1
B

log N
B

�
at the expense

of additional storage of B coefficients.

Furthermore, we investigate the case of multidimen-
sional data streams, decomposed under two different
forms of wavelet transformation. We conclude that we
can maintain a K-term approximation, under certain
restrictions. To the best of our knowledge, this is the
first work dealing with wavelet approximation of mul-
tidimensional data streams, as previous works [8, 1, 4,
5] focused on the single dimensional case.

• Partial Reconstruction from Wavelet Transforms: Con-
sider the scenario in which we wish to extract a region
of the original data from its wavelet transform. We are
faced with the following dilemma: either decompose
the entire data and then extract the desired region,
which is reasonable if the region extend over large part
of the data; or reconstruct point by point the desired
region, which is preferable for small regions.

Chakrabarti et al. [2] propose a solution to deal with
relational algebra selection operations in the wavelet
domain. Their approach examines the wavelet coef-
ficients to calculate their contribution to the selected
range. Our SHIFT-SPLIT approach generalizes this
notion and therefore can be applied to other forms of
wavelet decomposition.

1.2 Outline
We begin our discussion, in Section 2, with presenting

an overview of discrete wavelet transform and the notion of
wavelet trees. In Section 3, we introduce the disk block allo-
cation strategy which leads to the efficient tiling of wavelet
coefficients and then we extend this strategy to the multi-
dimensional case. The SHIFT and SPLIT operations are
presented in full details in Section 4, with their most im-
portant applications appearing in Section 5. We present
our experimental studies in Section 6 and we conclude our
discussion in Section 7.

2. PRELIMINARIES
In this section, we define the preliminary concepts that we

use throughout this paper. For a more detailed treatment
of wavelet basics please refer to [11].

2.1 Discrete Wavelet Transform
The Discrete Wavelet Transformation (DWT) provides a

multi-scale decomposition of data by creating “rough” and
“smooth” views of the data at different resolutions. In the
case of Haar wavelets that we use throughout this paper, the
“smooth” view consists of averages or average coefficients,
whereas the “rough” view consists of differences or detail
coefficients. At each resolution, termed level of decompo-
sition or scale, the averages and details are constructed by
pairwise averaging and differencing of the averages of the
previous level.

Let us consider a vector of 4 values {3, 5, 7, 5} and let
us apply DWT. We start by first taking the pairwise aver-
ages: {4, 6} and the pairwise differences {−1, 1}. For any
two consecutive and non-overlapping pair of data values a, b
we get their average: a+b

2
and their difference divided by 2:

a−b
2

. The result is 2 vectors each of half size containing a
smoother version of the data, the averages, and a rougher
version, the differences; these coefficients form the first level
of decomposition. We continue by constructing the average
and difference from the smooth version of the data: {4, 6}.
The new average is {5} and the difference is {−1}, forming
the second and last level of decomposition. Notice that 5 is
the average of the entire vector as it is produced by itera-
tively averaging pairwise averages. Similarly, −1 represents
the difference between the average of the first half of the
vector and the average of the second half. The final average
and the differences produced at all levels of decomposition
form the Haar transform: {5,−1,−1, 1}. Notice, that at

each level of decomposition the averages and differences can
be used to reconstruct the averages of the previous level.

We denote by uj,k and wj,k the k-th average (a.k.a. scal-
ing coefficient) and the k-th detail coefficient (a.k.a. wavelet
coefficient), respectively, for the j-th level of decomposition.
The averages at level j are decomposed into averages and de-
tails of level j+1. If we denote the set of scaling coefficients
at the j-th level by Uj and the set of wavelet coefficients
at the j-th level by Wj , we can formally write the previous
statement as Uj = Uj+1 ⊕Wj+1, where the direct-sum ⊕
notation refers to the decomposition process. The original
data are the scaling coefficients of the 0-th level. See also
Appendix A.

For example, the 3 level decomposition, shown in Figure 1,
is formally written as:

U0 = U1 ⊕W1

= U2 ⊕W2 ⊕W1

= U3 ⊕W3 ⊕W2 ⊕W1

Figure 1 also shows that for each level of decomposition
j, there are 2n−j wavelet coefficients wj,k and 2n−j scaling
coefficients, for 0 ≤ k ≤ 2n−j −1. The transformed vector �a
consists of the average, un,0, as its first element, followed by
the details wj,k sorted decreasing by level j and increasing by
position k: un,0, wn,0, wn−1,0, wn−1,1, wn−2,0, ..., w1,0, ...,
w1,2n−1−1. We denote that vector �a is the Discrete Wavelet
Transform of a by �a = DWT(a). Note that the untransformed
vector a contains the scaling coefficients at the 0-th level of
decomposition: a[k] = u0,k, for 0 ≤ k ≤ N .

U0
U1

W1

U2

W2

U3

W3

Figure 1: Haar Wavelet Decomposition

We now define the term “support interval” that we will
use frequently in this paper.

Definition 1. The support interval of a (wavelet or scal-
ing) coefficient is the part of the original data from which
this coefficient is computed.

Figure 2 shows the support intervals of Haar wavelets for
a vector of size 8.

Definition 2. A (wavelet or scaling) coefficient covers an-
other (wavelet or scaling) coefficient if the support interval
of the latter is (completely) contained in the support interval
of the former.

For example, the first coefficient in the second level of
decomposition w2,0 covers the first and second coefficients
of the first level of decomposition, w1,0 and w1,1; see Figure
2.

Definition 3. An interval I is a dyadic interval if
I =

�
k2j , (k + 1)2j − 1

�
, for 0 ≤ j ≤ n and 0 ≤ k ≤ 2n−j−1.

Haar wavelet coefficients wj,k and Haar scaling coefficients
uj,k have the property that their support intervals are dyadic
intervals.

Property 1. The support interval of a Haar wavelet co-
efficient wj,k (or scaling coefficient uj,k) is the Ij,k dyadic
interval

�
k2j , (k + 1)2j − 1

�
.

u1,0 Level 1 (j=1)

a (j=0)

Level 2 (j=2)

Level 3 (j=3)

u0,0 u0,1 u0,2 u0,3 u0,4 u0,5 u0,6 u0,7

w1,0 u1,1
w1,1 u1,2

w1,2 u1,3
w1,3

u2,0 u2,1
w2,0 w2,1

u3,0
w3,0

Figure 2: Support Intervals of Haar Wavelets

Multidimensional Wavelet Transformation There
are two ways to perform a multidimensional wavelet de-
composition, the standard and the non-standard. In short,
the standard form is performed by applying a series of one-
dimensional decompositions along each dimension whereas
the non-standard form does not decompose each dimension
separately. In the non-standard form, after each level of
decomposition only the averages corresponding to the same
level are further decomposed. We refer the reader to Ap-
pendix B for further discussion.

2.2 Wavelet Tree
In this section, we review the notion of wavelet tree. Our

purpose is two-fold. This tree exploits the relationships be-
tween coefficients, and thus identifies the access patterns
which lead to the block allocation strategy described in Sec-
tion 3. Furthermore, the SHIFT and SPLIT operations
that we define in Section 4 are easily understood in the con-
text of wavelet trees, as they essentially are operations on
trees.

The multiresolution property of the Haar wavelets induces
a tree construct capturing and illustrating this property. A
wavelet coefficient w is the parent of another coefficient w′,
when w is the coefficient with the smallest support that
covers w′. For Haar wavelets, which is our case, this tree
is a binary tree where each node wj,k has exactly two chil-
dren, wj−1,2k and wj−1,2k+1. The scaling coefficient un,0 is
the root of the tree having only one child wn,0. This tree
structure has been given several names in the wavelet bibli-
ography, such as error tree [13, 12], dependency graph [10],
etc. Figure 3 shows this tree for a vector of size 8; scaling
coefficients are shown with squares, whereas wavelet coeffi-
cients are shown in circles. Figure 3 also shows the original
data as children of the leaf nodes of the tree, drawn with
dotted line.

The beautiful property of this tree is that it portrays the
way Haar wavelets partition the time-frequency plane; see
Figure 3. As j decreases we gain accuracy in the time do-
main, but simultaneously, we lose accuracy in the frequency
domain and vice versa.

The following lemma is a consequence of the time-frequency
trade-off. A single point in time domain depends on those
wavelet coefficients in the path to the root. As a result, a
data value can be reconstructed in time proportional to the
tree height and thus in time logarithmic to the vector size.

w
2,1

u
3,0

w
3,0

w
2,0

time

fr
e
q
u
e
n
c
y

u
0,0

u
0,6

u
0,2

u
0,5

u
0,7

u
0,3

u
0,4

u
0,1

w
1,0

w
1,1

w
1,2

w
1,3

Figure 3: Haar Wavelet Tree

Lemma 1. Let �a be the wavelet transform of vector a of
size N = 2n, �a = DWT(a). Any value of a can be recon-
structed using exactly n + 1 = logN + 1 coefficients from�a.

Proof. Let a[i] be the (i + 1)-th value of a. At each
level of decomposition j, there is exactly one wavelet coeffi-
cient wj,� i

2j � that covers a[i], because of the fact that Haar

wavelets of the same level have non-overlapping support.
This together with the parent-child relationship existent in
the wavelet tree results in the covering wavelet coefficients
wj,� i

2j �, ∀j ∈ [1, n] and the scaling coefficient un,0 belonging

to a (n+ 1)-long path in the tree.

Therefore, as Lemma 1 suggests a point query can be
answered using O(logN) coefficients. However, the wavelet
transformation is mainly used for its ability to answer range-
sum queries also using O(logN) coefficients, as the following
lemma suggests.

Lemma 2. Let �a be the wavelet transform of vector a of
size N = 2n, �a = DWT(a). A range-sum query

�r−1
i=l a[i]

can be answered using not more than 2n + 1 = 2 logN + 1
coefficients from �a.

Proof. This lemma holds because of the fact that Haar
wavelets have a 0-th vanishing moment. For more details
refer to [9].

3. DISK BLOCK ALLOCATION
OF WAVELET COEFFICIENTS

The purpose of this section is to assign wavelet coefficients
to disk blocks in such a way that the number of blocks re-
quired for answering queries is minimized. We have already
seen that the wavelet tree captures the dependency among
coefficients. In particular, if a coefficient is required to be
retrieved then all coefficients on the path to the root must
also be retrieved. This property creates an access pattern of
wavelets that must be exploited by the disk block allocation
strategy.

Intuitively, a disk block should contain coefficients with
overlapping support intervals, so that the utilization of the
in-block coefficients is high. However, we must take under
consideration the fact that the disk block allocation strategy
should not allow redundancy, in that a wavelet coefficient
should belong to one block only. Under this restriction,
in order to be fair across all coefficients, we partition the
wavelet tree into binary subtree tiles and store each tile on
a disk block. Assuming that the disk block size B is a power
of 2, B = 2b, we achieve logarithmic utilization of the blocks.

At least b coefficients inside the block, lying in a path, are to
be utilized any time this disk block is needed. Logarithmic
utilization may seem low at first, but it is the best we can
hope for under our restrictions, as proven in [10].

One final issue is that the size of the binary subtree tiles is
2b − 1, whereas the block size is 2b. We are wasting space of
1 coefficient in our block allocation strategy. Therefore, we
choose to store the scaling coefficient corresponding to the
root of the subtree, along with the wavelet coefficients of the
tile. The extra scaling coefficients that we store are useful
for query answering, as they can dramatically reduce query
costs. An example of the disk block allocation strategy for
a wavelet tree of 32 coefficients is shown in Figure 4.

Figure 4: Disk Block Allocation Strategy

We continue our discussion by generalizing the disk block
allocation schema for both standard and non-standard mul-
tidimensional wavelet transformation in Section 3.2; but
first, we need to extend the wavelet tree notion to the mul-
tidimensional case.

3.1 Multidimensional Wavelet Trees
As mentioned before, there are two forms of multidimen-

sional wavelet decomposition, the standard and non-standard.
The non-standard form of decomposition involves fewer op-
eration and thus is faster to compute but does not compress
as efficiently as the standard form. Particularly, range ag-
gregate queries can be highly compressed using the standard
form as shown in [9]. In the database literature both trans-
formation forms have been used: standard by [13, 12, 9, 7]
and non-standard by [15, 2]. However, we are not aware of
any study on the extension of the wavelet tree concept for
either form of the multidimensional transformations. More
details on the multidimensional transformation forms can be
found in Appendix B.

In the standard multidimensional transformation each di-
mension is decomposed independently. Therefore, there can-
not be a single tree capturing the levels of decomposition.
In case of 2-d, considering a 1-d wavelet tree for each of the
decomposed dimensions, two 1-d wavelet trees are required.
Every coefficient in a transformed 2-d array has two indices,
one for each dimension. Each of these indices identifies a po-
sition in the 1-d tree, which as we have seen corresponds to
a decomposition level and to a translation inside that level.
Figure 5 shows a coefficient in an 8 × 8 2-d array and the
corresponding indices on the two wavelet trees.

The two 1-d trees can be used to determine which coeffi-
cients need to be retrieved for reconstructing data values on
the 2-d array. Subsequently, they provide information about
the access pattern of 2-d wavelets. A single data value on the
untransformed (original) 2-d array corresponds to a path in
each of the 1-d wavelet trees, or better, a set of 1-d indices,
as mentioned before. The cross product among all indices

1.
25

1.
25

Wavelet Tree for X

Wavelet Tree for Y

DWT

Y

X

Figure 5: Standard Form Wavelet Trees

across these sets, construct the 2-d indices whose coefficients
must be retrieved. For a N ×N array, where N = 2n, each
of the paths contains (n+1) 1-d indices, therefore there are
(n + 1)2 2-d indices. Figure 6 shows the two paths on the
1-d wavelet trees, as well as the required coefficient resulting
from the cross product between 1-d indices.

Figure 6: Standard Form Data Point Reconstruction

In contrast to the standard multidimensional transforma-
tion, a single wavelet tree can capture the levels of decom-
position and dependency among coefficients for the non-
standard transformation. The support intervals of the wavelet
coefficients form a quad-tree, as each support interval is fur-
ther decomposed in quadrants at the next level of decom-
position. At the j-th level of d-dimensional decomposition
we have (2d)j nodes, each containing 2d −1 coefficients with
support interval hypercubes with edge length 2j .

In the 2-d case, the support intervals of the coefficients
are squares with side length of power 2. There are 3 coeffi-
cients for each support interval, one for each of the wavelet
subspaces: W d, W v and Wh; thus, each quad tree node
contains its 3 corresponding coefficients. Figure 7 shows the
wavelet tree for an 8×8 array and zooms in on a multidimen-
sional tile, described in Section 3.2. The support interval of
the children nodes, which are the four quadrants of the sup-
port interval of the parent node, are shown in dark grey.
To reconstruct a point in the original 2-d array, one has to
traverse the quad tree bottom up and use all 3 coefficients
in each node.

3.2 Disk Block Allocation of Multidimensional
Wavelets

As in the single dimensional case, our main concern is to
pack coefficients in disk blocks so that we achieve the highest
possible block utilization on query time and thus decreasing
retrieval cost. The solution is to assign as many coefficients
with the same support to the same disk block as possible.

W

W1
(0) W W W

W v

W d

W h

U

Figure 7: Non-Standard Form Wavelet Tree

This results in different disk block allocation strategies for
the two multidimensional forms of decomposition. We as-
sume d-dimensional dataset, where each dimension has size
N = 2n. Furthermore, disk block size is Bd, where B = 2b.

In the standard multidimensional decomposition, each di-
mension can be treated independently. Therefore, for each
dimension we construct tiles of size B containing the B co-
efficients of a subtree, similar to the single dimensional case.
The cross product of these d sets of single dimensional bases
construct Bd multidimensional bases. The coefficients cor-
responding to these Bd bases are stored in the same block
and form a multidimensional tile.

In the non-standard multidimensional decomposition, tiles
are subtrees of the quad tree. The branching factor of a d-
dimensional quad tree is D = 2d and each node contains
D − 1 coefficients. Therefore, a tile of height b contains
Db−1
D−1

nodes or equivalently Db − 1 coefficients. By also
storing the scaling corresponding to the root node we create
tiles of Db = (2d)b = (2b)d = Bd coefficients which fit in a
disk block of size Bd. Figure 7 shows the tiling of a 8 × 8
array, for disk blocks of size 16.

4. SHIFT-SPLIT
In this Section we describe our general purpose opera-

tions, SHIFT and SPLIT, on wavelet transformed vectors.
Later, in Section 5, we discuss the applications that can ben-
efit from our operations.

There is a relationship among the coefficients in the trans-
form of a vector, a and in the transform of a dyadic region
b of the vector. This relationship is captured by shifting,
re-indexing, the wavelet coefficients (details) of b and by
splitting, calculating contributions from the scaling coeffi-
cient (average).

The SHIFT-SPLIT operations are better understood in
the context of wavelet trees. Let a be a vector of size N = 2n

and let b be the (k + 1)-th dyadic range of vector a with
size M = 2m. The wavelet coefficients of �a are denoted by

wa
j,l, whereas the wavelet coefficients of �b are denoted by

wb
j,l; similarly for scaling coefficients, ua

j,l and ub
j,l. Also, let

Ta and Tb denote the wavelet trees of �a and �b, respectively.
Figure 8 illustrates the above.

The support of the wavelet coefficient wa
m,k is the dyadic

Figure 8: Shift-Split Operations

range that b represents. Therefore, wa
m,k covers wb

m,0 and
vice versa, since their support is the same range of a; see Tb

in Figure 8. Furthermore, all children of wa
m,k in Ta have

common support with the corresponding children of wb
m,0

in Tb. Specifically, at the j-th level of decomposition, the
i-th coefficient wb

j,i of Tb has the same support with the�
k2m−j + i

�
-th coefficient wa

j,k2m−j+i.
Definition of SHIFT. Let a be a vector of size N = 2n

and let b be the (k + 1)-th dyadic range of vector a with
size M = 2m. Also, let f : Z → Z, f(i) =

�
k

2m−j + i
�
, be

a function that translates the indices i of �b to indices f(i)

of �a. The SHIFT operation on the transformed vector �b
is defined as the re-indexing of the wavelet coefficients by
function f .

The wavelet coefficients of �a that cover the interval repre-
sented by b contain a portion of the energy of the average of
vector b. To be exact, the value of the wavelet coefficients
wa

j,� k
2j−m � for j ∈ [m + 1, n], as well as the average ua

n,0

depend on the value of the average ub
m,0; these coefficients

lie in the path from wa
m,k to the root and are contained in

Tc of Figure 8. Essentially the value of the average ub
m,0 is

split across these n−m+ 1 coefficients, contributing either
positively, or negatively.

Definition of SPLIT. Let a be a vector of size N = 2n

and let b be the (k + 1)-th dyadic range of vector a with
size M = 2m. Also, let g : [m+ 1, n] → R,

g(j) =

�
1√

2
j−m u

b
m,k, if k mod 2j−m even

− 1√
2

j−m u
b
m,k, if k mod 2j−m odd

be the function that calculates the contribution of ub
m,k per

level j. The SPLIT operation on the transformed vector�b calculates the contribution of ub
m,k to the n −m wavelet

coefficients: δwa
j,� k

2j−m � = g(j) for j ∈ [m+ 1, n] and to the

average: δua
n,0 = 1√

2
n−m u

b
m,k.

To demonstrate the use of the SHIFT-SPLIT opera-
tions, let us look at two examples.

Example 1. Assume we are to transform a very large vec-
tor a of size N = 2n into the wavelet domain, where only
the subregion [k2m, (k + 1)2m − 1] of the vector contains
non-zero values. Let b be that non-zero subregion of size
M = 2m. Because of the fact that b forms a dyadic interval,
we can apply the SHIFT-SPLIT operations to construct �a
as follows. First, we obtain the wavelet transform �b in time
O(M). Next, we apply the SHIFT operation to place the

wavelet coefficients of �b in their corresponding position in �a.
Finally, we apply the SPLIT operation on the average of b
to obtain n−m+1 contributions and construct the remain-
ing n −m + 1 coefficients. We have completed the wavelet
transformation of a in time O(M+n−m) = O(M+log N

M
),

instead of O(N).

Example 2. Assume we have already transformed vector a
of size N = 2n into the wavelet domain. There are updates,
stored in vector b, coming for a subregion [k2m, (k+1)2m−1]
of a. The goal is to update the wavelet transform of a as
efficiently as possible. Each of |b| = M = 2m updates re-
quires n+ 1 values to be updated, leading to a total cost of
O(M logN). However, we can use the SHIFT-SPLIT op-
erations to batch updates and reduce cost, as follows. First,

we obtain the wavelet transform �b in time O(M). Next,
we apply the SHIFT operation to calculate the indices of
the wavelet coefficients of �a which need to be updated by

the wavelet coefficients of �b. Finally, we apply the SPLIT
operation on the average of b to obtain n −m + 1 contri-
butions and update the corresponding coefficients in �a. The
total update cost using SHIFT-SPLIT has been reduced
to O(M + log N

M
).

4.1 Multidimensional Shift-Split
The SHIFT-SPLIT operations in the multidimensional

decomposition exploit the relationship between the wavelet
coefficients of the entire dateset and those in a multidimen-
sional dyadic range. A multidimensional dyadic range is
formed by the cross product of single dimensional dyadic
intervals. For the non-standard decomposition we will only
consider cubic multidimensional dyadic ranges resulting from
dyadic intervals of equal length for all dimensions; arbitrary
multidimensional dyadic ranges can always be seen as a col-
lection of cubic intervals.

To perform the SHIFT-SPLIT operations for the stan-
dard multidimensional decomposition, one has to perform
the operations for each dimension separately. Any coeffi-
cient in the d-dimensional dyadic interval can only be shifted
or split in each dimension, and thus can sustain d oper-
ations in total. Consider as an example a d-dimensional
dataset, where each dimension has size N = 2n, and a cu-
bic dyadic range of edge M = 2m. The SHIFT operation
affects (M − 1)d coefficients and the SPLIT operation cal-
culates (M + n−m)d − (M − 1)d contributions.

With the non-standard multidimensional transformation,
all the wavelet coefficients in the cubic dyadic range must
be shifted similar to the standard transformation. However,
only the scaling coefficient has to be split and the contribu-
tions for the coefficients inside nodes on the path to the root
have to be calculated. Therefore, in the non-standard trans-
formation, the SHIFT operation affects Md −1 coefficients
and the SPLIT operation calculates (2d − 1)(n − m) + 1
contributions.

4.2 Shift-Split of Tiles
In this section we assume that the coefficients are stored

using the optimal block allocation strategy described in Sec-
tion 3. We will calculate the number of tiles affected by the
operations for the single dimensional and extend to the two
multidimensional wavelet transformations.

We start with the single dimensional case of a vector of
size N = 2n and its k+1-th dyadic interval of size M = 2m,

SHIFT SPLIT

Standard O
��M

B
�d
�

O
���M

B
� − �logB

N
M
��d − �M

B
�d
�

Non-Standard O
��M

B
�d
�

O
�
(2d − 1)�logB

N
M
��

Table 1: Shift-Split of Tiles

when the disk block size is B = 2b. The coefficients affected
by the SHIFT operation belong to a subtree of the wavelet
tree, and that subtree contains exactly �M

B
� tiles. On the

other hand, the SPLIT operation calculates log N
M

contri-
butions. Because these contributions lie on a single path to
the root inside every tile, there are logB coefficients affected
per tile. This results in exactly �logB

N
M
� tiles containing the

contributions of the SPLIT operation. To summarize for
the single dimensional case, the SHIFT operation affects B
times less tiles than coefficients, whereas the SPLIT oper-
ation affects logB times less tiles than coefficients.

Extending to d-dimensional tiles of size Bd = (2b)d and
applying the observation for the single dimensional case, we
derive the number of d-dimensional tiles affected by the op-
erations in each multidimensional form. The results are
summarized in Table 1. For the remainder of this paper
we will drop the ceiling operations to increase readability.

5. SHIFT-SPLIT APPLICATIONS
In this section, we describe some of the applications where

the SHIFT-SPLIT operations prove useful and draw com-
parisons to the existing alternatives.

5.1 Transformation of Massive Multidimen-
sional Datasets

One of the most important application of the SHIFT-
SPLIT operations is I/O efficient transformation of mas-
sive multidimensional datasets. In the following, we assume
that the dataset is d-dimensional with each dimension hav-
ing a domain of size N = 2n, so that the hypercube has
Nd cells. The available memory for performing the trans-
formation is Md, where M = 2m, measured in units of coef-
ficients. Therefore, at any point in time, there can only be
Md 	 Nd coefficients in main memory. Given these restric-
tions we need to construct an efficient, in terms of required
I/O operations, algorithm for decomposing the dataset. We
begin by assuming that one I/O operation involves a single
data value, or coefficient. Later, we measure I/O operations
in units of disk blocks, as we consider the optimal disk block
allocation strategy described in Section 3.2.

The intuition behind our approach is simple. We assume
that the data are either organized and stored in multidimen-
sional chunks of equal size and shape, or that the chunk-
organization process has been performed, similar to [2, 12].
We transform each chunk and use the SHIFT operation to
relocate the coefficients and the SPLIT operation to up-
date the stored coefficients. The chunks are hypercubes of
size Md so that they fit in main memory. Figure 9 shows
a one dimensional example, for N = 16 and M = 4, where
the current chunk is C. The transformation of C results in
the wavelet coefficients inside the box needing to be shifted.
The scaling coefficient of C must be split to calculate the
contributions to the coefficients shown in grey. With black
are shown the coefficients that have a finalized value; that
is, coefficients that will not be affected by C or by chunks

coming after C. With white are shown the coefficients that
do not cover any of the chunks seen so far.

Figure 9: Transformation by Chunks

Result 1. The I/O complexity for transforming a d-dimensional
dataset with each dimension having domain size N = 2n into
the standard form of decomposition using memory of Md co-

efficients is O
��

N
B

+ N
M

logB
N
M

�d
�

disk blocks of size Bd.

Proof. As mentioned in Section 4.1, the SHIFT op-
eration, for the standard decomposition, affects (M − 1)d

coefficients, whereas the SPLIT operation affects (M +n−
m)d − (M − 1)d coefficients. Consequently, each chunk re-
quires O

�
(M + n−m)d

�
= O

�
(M + log N

M
)d
�

I/O opera-

tions. Summing for all
�

N
M

�d
chunks, we derive the I/O

complexity for the standard multidimensional wavelet trans-

formation measured in coefficients: O
��
N + N

M
log N

M

�d
�
.

Now, let us consider disk blocks of size Bd, for B = 2b.
In this case, the I/O cost per chunk in units of disk blocks

is: O
��

M
B

+ logB
N
M

�d
�
. Summing for all chunks we de-

rive the I/O complexity, measured in terms of disk blocks,
for the standard multidimensional wavelet transformation:
O
��

N
B

+ N
M

logB
N
M

�d
�

Vitter et al. [12, 13] use the standard form to decompose
multidimensional datasets, without taking under considera-
tion, however, our optimal block allocation strategy. They
transform a dense d-dimensional dataset in O(Nd

z logM N)disk
I/O operations; in the case of sparse data with Nz non-zero
values the I/O complexity is O(Nd

z logM N). We can modify
our SHIFT-SPLIT approach to accommodate for sparse-
ness similar to the latter case, where only Nz non-zero values

exist; the modified I/O complexity is O
��
Nz + Nz

M
log N

M

�d
�
.

However, for comparison purposes we omit the effect of
sparseness in the original data. The I/O complexities are
summarized in Table 2.

Result 2. The I/O complexity for transforming a d-dimensional
dataset with each dimension having domain size N = 2n

into the non-standard form of decomposition using memory

of Md + (2d − 1) log N
M

coefficients is O
��

N
B

�d
�

disk blocks

of size Bd.

Proof. In the case of the non-standard multidimensional
wavelet transformation, the SHIFT operation affectsMd−1
coefficients, whereas the SPLIT operation affects (D−1)(n−
m)+1coefficients, where D = 2d. The per chunk I/O cost is

O
�
Md + (D − 1) log N

M

�
. Summing for all

�
N
M

�d
chunks, we

derive the I/O complexity, measured in terms of coefficients,
for the non-standard multidimensional wavelet transforma-
tion: O

�
Nd + (D − 1)

�
N
M

�d
log N

M

�
. When tiling is used,

the I/O cost per chunk in units of disk blocks becomes:

O
��

M
B

�d
+ (D − 1) logB

N
M

�
. Summing for all chunks we

derive the I/O complexity, measured in terms of disk blocks,
for the non-standard multidimensional wavelet transforma-
tion: O

��
N
B

�d
+ (D − 1)

�
N
M

�d
logB

N
M

�
. However, if we en-

force a particular access pattern on the chunks, namely a
z-ordering, and allow some extra amount of memory (2d −
1) log N

M
to store those coefficients that are affected by the

splitting of the scaling coefficient of the chunks, we can re-
duce the cost to the optimal O(Nd), as seen in Table 2. A
similar approach has been suggested in [2], where a recur-
sive procedure is used to ensure values come in the particular
access pattern.

5.2 Appending to Wavelet Decomposed Trans-
forms

In this section we investigate the problem of appending
new data to existing transformed data. Appending is fun-
damentally different from updating in that it results in the
increase of the domain of one or more dimensions. As a
result, the wavelet decomposed dimensions also grow, new
levels of transformation are introduced and therefore the
transform itself changes. We would like to perform append-
ing directly in the wavelet domain, preserving as much of the
transformed data as possible and avoiding reconstruction of
the original data. The SHIFT-SPLIT operations helps us
achieve this goal. To make complexity analysis easier, we
omit the effect of the optimal disk block allocation strategy,
or equivalently assume disk block size of 1 coefficient. Also,
we use the standard form of decomposition, as analysis for
the non-standard form is similar.

As a motivation, consider the scenario where a massive
multidimensional dataset containing measurements over 10
years is decomposed into the wavelet domain to expedite
query processing. A new set of data for the following year
has become available, which results in appending to the time
domain and possibly on other measure dimensions. Let us
assume that the 10-year decomposed d-dimensional dataset
has size of Nd, and that the available memory is Md, for
N = 2n and M = 2m.

Our SHIFT-SPLIT approach to the problem is the fol-
lowing, repeating for each Md data values that we gather in
memory. We start by performing the d-dimensional DWT
on the gathered data. Next, if required, we make the nec-
essary space on the original transformed data (expand) to
accommodate for the new data to be appended. The final
step is to shift and split the gathered data to update the ex-
panded data. The second step is the most important in the
appending application. Let us assume that we must expand
on one of the dimensions to accommodate for the coefficients
held in memory. The expansion means that the wavelet tree
for that dimension has to increase its height by 1, and thus
double its domain range. This expansion process is carried
out by shifting and splitting the decomposed data in this

dimension. Figure 10 shows expansion in one dimension,
where Told becomes Tnew and |Tnew| = 2|Told|. The expan-
sion step creates the necessary space for the current chunk
of Md coefficients in memory, as well as for some of the next
chunks. Therefore, this step, although costly, is rather rare.

Figure 10: Wavelet Tree Expanding

The I/O cost of expanding transformed data in one dimen-
sion is O(Nd) as all coefficients have to be shifted to con-
struct the new data cube of size 2Nd. Note, that although
the asymptotic cost is high, the required SHIFT-SPLIT
operations are very fast, which leads to fast execution times
for expanding the domain of one dimension. This phenom-
enon is amplified by the use of tiling and is demonstrated in
Section 6.2. Moreover, this operation, unlike reconstruction,
does not require memory to process. The I/O cost of apply-
ing the SHIFT-SPLIT operations on the memory chunk

of size Md is O
��
M + log N

M

�d
�
.

5.3 Data Stream Approximation
In this section, we revisit the appending problem, this

time in the context of stream query processing: we wish
to maintain a wavelet approximation of a multidimensional
datastream in the time-series model, when dimension sizes
are unbounded and new data are coming. The focus here is
to construct a space and time efficient algorithm for main-
taining the best K-term synopsis. We show that we can-
not, in general, maintain a K-term synopsis for multidimen-
sional datasets decomposed using the standard form under
bounded space. However, if certain conditions are met we
can maintain a K-term synopsis effectively.

Let us start with the simple one dimensional case. As
shown in [5], we can maintain the best K-term approxima-
tion of a data of length N = 2n by using space K+logN+1.
We always store the K highest coefficients encountered so
far, plus those coefficients whose value can change by subse-
quent data arrivals. These coefficients, termed wavelet crest
in [8], lie on the path from the current value to the root of
the wavelet tree and therefore, they are exactly logN + 1 .
Equivalently, if we consider a range containing just the data
values under consideration, the SPLIT operation results in
contributions lying in the wavelet crest. Therefore, at any
time we have to keep the coefficients that can be affected by
the SPLIT operation in memory.

Result 3. A K-term wavelet synopsis of a data stream
of size N in the time series model can be maintained using
memory of O(K +B + log N

B
) coefficients with O

�
1
B

log N
B

�
per-item computational cost.

Proof. If we keep in memory a buffer of size B = 2b

we can reduce per-item processing time at the expense of

Transformation Method I/O cost (in coefficients) I/O cost (in blocks)

Vitter et al. (Standard) O
�

Nd logM N
�

Shift-Split (Standard) O
��

N + N
M log N

M

�d
�

O
��

N
B + N

M logB
N
M

�d
�

Shift-Split (Non-Standard) O
�

Nd
�

O
��

N
B

�d
�

Table 2: I/O Complexities

extra space. We collect B coefficients in the buffer, trans-
form them and apply the SHIFT operation to obtain the
B−1 relocated wavelet coefficients. Next, we compare these
coefficients with the K highest, to obtain the new set of K
highest coefficients. Finally, we have to update the coeffi-
cients that can change by using the contributions derived
from the SPLIT operation. The number of contributions
for a buffer of size B is log N

B
and thus the space required

for the coefficients on the crest is log N
B

. The total com-
putational cost for the buffer, which includes the cost for
transformation and the cost for updating the coefficients on
the crest, is O

�
B + log N

B

�
. As a result, the per-item com-

putational cost is O
�

1
B

log N
B

�
reduced from O(logN), at

the expense of extra space of B.

The key for being able to maintain a wavelet approxima-
tion in the one dimensional case is the fact that only a single
path to the root of the wavelet tree has to be maintained
at any time. Let us turn our attention to the multidimen-
sional case. We assume that the data needs to be appended
in only one dimension (usually the time dimension), which
is the case for multidimensional data streams of the time
series model. To separate the continuously increasing di-
mension, we let T denote its current size, whereas the other
dimensions have a constant size of N . Therefore, the d-
dimensional data stream has a size of Nd−1T . The amount
of space, besides the K terms, required to maintain a K-
term approximation depends on the number of coefficient
that can be affected by a SPLIT operation. We calculate
the number of these coefficients for each of the multidimen-
sional forms, assuming that we have extra storage to buffer
Md coefficients, where M = 2m. Note that when M = 1, we
achieve maximum efficiency in terms of space, in the expense
of increasing the per-item processing time.

Result 4. A K-term standard wavelet synopsis of a d-
dimensional data stream growing in the T dimension can
be maintained using memory of O

�
K +Md +Nd−1 log T

M

�
coefficients.

Proof. In the standard form, there are d − 1 wavelet
trees of size N and a single wavelet tree of size T . Since, the
stream expands on the dimension of size T , we only have to
keep a path to the root for the wavelet tree corresponding
to that dimension. However, a new data value can arrive in
any position on the other trees, which means that we have
to keep all the paths to the root for the d− 1 trees. To re-
cap, we need to keep all N 1-d basis functions from the d−1
trees of size N and only log T

M
1-d basis functions for the

tree corresponding to the dimension which increases. The
cross product between these sets of 1-d basis functions re-
sults in Nd−1 log T

M
d-dimensional basis functions and thus

that many coefficients have to be maintained, besides the K
highest coefficients and the extra storage space of Md co-
efficients used for buffering. Therefore, the required space

of O
�
K +Md +Nd−1 log T

M

�
coefficients is prohibitive, ex-

cept in the case where the constant dimensions have very
small domain size, so that Nd−1 is small.

Result 5. A K-term non-standard wavelet synopsis of a
d-dimensional data stream growing in the T dimension can
be maintained using memory of
O
�
K +Md + (2d − 1) log N

M
+ log T

N

�
coefficients.

Proof. Since the dimension with size T is constantly ex-
panding, we have to deal with non equal dimension sizes,
similar to [2]. Such a data stream can be seen as a T

N
hy-

percubes of size Nd, where each of these hypercubes can
be decomposed with the non-standard form. Each of these
T
N

hypercubes results in a wavelet tree capturing the non-
standard decomposition, where there exists a single aver-
age as the root of each of these trees. We apply the single
dimensional transformation on the T

N
data constructed by

these averages. The final result consists of T
N

non-standard
multidimensional trees and a single one dimensional tree
which has as leaf nodes the averages of the non-standard
trees. We assume the z-ordered access pattern, described
in Section 5.1, and we allow for extra buffering space of
Md coefficients. Under these restrictions, the coefficients
we have to retain lie in a path to the root in the last tree
of the hypercubes, and in the path to the root in the sin-
gle dimensional wavelet tree. Therefore we need to keep
(2d − 1) log N

M
coefficients from the non-standard tree and

log T
N

coefficients from the 1-d tree, resulting in a total space

cost of O
�
K +Md + (2d − 1) log N

M
+ log T

N

�
.

5.4 Partial Reconstruction from Wavelet Trans-
forms

In this section, we discuss the problem of reconstructing
a set of values specified by a range on a multidimensional
dataset. The problem is equivalent to translating the se-
lection operation of relational algebra to the wavelet do-
main. Chakrabarti et al. [2] have provided a solution for
the non-standard form, in which they identify the coeffi-
cients who cover the range and calculate their contribution.
Here, we present a similar approach, based on the inverse of
SHIFT-SPLIT operations, which generalizes to both forms
of decomposition. The inverse of SHIFT is essentially the
inverse index translation, whereas the inverse of SPLIT is
Lemma 1, which shows how to reconstruct a value from con-
tributions on a path to the root. Therefore, the cost of the
inverses of these operations is the same.

We focus our discussion here to multidimensional ranges
that are dyadic ranges; an arbitrary selection range can be
seen as a number of such dyadic ranges. Therefore, our prob-
lem degenerates to the reconstruction of a d-dimensional
dyadic range of size Md, given the transformation of the en-
tire data of size Nd. The scaling coefficients of the dyadic
range are calculated using the inverse SHIFT, whereas the

rest of the coefficients are simply calculated from the co-
efficients in the original dataset by re-indexing, using the
inverse SPLIT.

Result 6. The time complexity for reconstructing a d-
dimensional dyadic range of size Md from a wavelet trans-

formed signal of size Nd is O
��
M + log N

M

�d
�

for the stan-

dard form and O
�
Md + (D − 1) log N

M

�
for the non-standard.

Proof. It follows from the complexity of the SHIFT-
SPLIT operations.

6. EXPERIMENTS
In this section, we study the performance of the SHIFT-

SPLIT operations in three real world scenarios. First, we
use these operations to transform a large dataset into the
wavelet domain. Next, we show how SHIFT-SPLIT op-
erations are employed for the maintenance of transformed
data in an appending scenario. Finally, we show the sig-
nificant improvement in the update cost for maintaining a
wavelet synopsis in a data stream application by employing
additional memory as buffer. We would like to emphasize
that the experiments are accurate implementations of the
operations on real disks with real disk blocks (see [6] for
further information).

8

9

10

11

12

13

14

15

16

17

18

0 256 512 768 1024

B
ill

io
ns

Memory size(MB)

I/O
 c

os
t (

nu
m

be
r

of
 c

oe
ff

ic
ie

nt
s) Vitter et. al.

Shift-Split (Standard)
Shift-Split (Non-standard)

d= 4
Dataset= 16 GB

Figure 11: Effect of Larger Memory

6.1 Transformation of Massive Multidimen-
sional Datasets

In this set of experiments, we transform a large dataset,
TEMPERATURE, into the wavelet domain using limited
available memory. The TEMPERATURE dataset is a
real-world dataset provided to us by JPL that measures the
temperatures at points all over the globe at different alti-
tudes for 18 months, sampled twice every day. We construct
a 4-dimensional cube with latitude, longitude, altitude and
time as dimension attributes, and temperature as the mea-
sure attribute, with the total size of the cube being 16GB.

Figure 11 shows that larger memory considerably reduces
transformation cost of SHIFT-SPLIT in the Standard form
but it does not noticeably affect SHIFT-SPLIT in the Non-
Standard form. The reason behind this is that the cost of
the SPLIT operation is considerably different for the two
forms of multidimensional wavelet transformation. Increas-
ing memory size causes a significant decrease in SPLIT cost
and consequently a major decrease of the Standard form
transformation as there are many coefficients affected by the

contributions of the SPLIT operation. However, SPLIT
cost is almost negligible in the Non-Standard form (see Ta-
ble 1). Finally, this figure also states that our SHIFT-
SPLIT approach outperforms the Vitter et al. [12] algo-
rithm for any memory size.

-

100

200

300

400

500

600

700

0 64 128 192 256

M
ill

io
ns

Dataset size(GB)

I/O
 c

os
t (

nu
m

be
r

of
 b

lo
ck

s)

Standard (Tile=1 KB)
Non-Standard (Tile=1 KB)
Standard (Tile=4 KB)
Non-Standard (Tile=4 KB)

d= 2
Memory= 64

Figure 12: Effect of Larger Tiles

As we have shown in Section 3, not only Tiling is the opti-
mal wavelet coefficient blocking for query processing, but it
is also a SHIFT-SPLIT friendly schema which introduces
significant cost improvements in the transformation process.
Figure 12 demonstrates this fact by using different tile sizes
and thus illustrates the scalability of the SHIFT-SPLIT al-
gorithms.

6.2 Appending to Wavelet-Transformed Data
We examine our proposed appending technique on the

PRECIPITATION [14] dataset, where we incrementally
receive new sets of data every month. PRECIPITATION
is a real-life dataset that measures the daily precipitation for
the Pacific NorthWest for 45 years. We built a 3-dimensional
cube with latitude, longitude and time as dimensional at-
tributes, and precipitation as the measure attribute for every
day. The sizes of these dimensions are 8, 8 and 32 respec-
tively for each month. Figure 13 demonstrates the SHIFT-
SPLIT I/O cost as new sets of data are appended. The
sudden jumps in the figure correspond to the expansion
process, where all coefficients must be shifted to accommo-
date for new data values. One can observe that this expan-
sion process is not such a dominating factor as described in
Section 5.2, especially for larger disk block sizes.

-

5

10

15

20

25

30

0 2000 4000 6000 8000 10000 12000 14000 16000

Th
ou

sa
nd

s

Time (day)

I/O
 c

os
t (

nu
m

be
r

of
 b

lo
ck

s)

Tile size=2K
Tile size=4K
Tile size=8K

Appending Rate=One Month

Figure 13: SHIFT-SPLIT in Appending

6.3 Data Stream Approximation
In this scenario we only need to preserve the synopsis of

the PRECIPITATION dataset, limited to a memory foot-
print of 40KB. Figure 14 demonstrates the computational
cost versus the extra storage trade-off described in Section
5.3. As the figure suggests, the update cost can be improved
by 88% by employing additional memory buffer of only 6%
of the total synopsis size.

-

150

300

450

600

750

900

0.0% 25.0% 50.0% 75.0% 100.0% 125.0% 150.0%

Extra Memory(%)

N
um

be
r

of
 U

pd
at

es
 p

er
 It

em
88

%
 c

os
t r

ed
uc

tio
n

6% extra memory

Figure 14: SHIFT-SPLIT in Multidimensional
Streaming

7. CONCLUSIONS
We have introduced two general purpose operations, termed

SHIFT and SPLIT, that work directly in the wavelet do-
main and can also be applied in combination with the op-
timal disk block allocation strategy. We analyze their costs
for both the single dimensional case and the two forms of
multidimensional transformation.

There is a significant number of applications that can ben-
efit from these operations. We have revisited some data
maintenance scenarios, such as transforming massive multi-
dimensional datasets and reconstructing large ranges from
wavelet decomposed data, and utilized the SHIFT-SPLIT
operations to draw comparisons with the current state of the
art techniques. Furthermore, we have provided solutions to
some previously un-explored maintenance scenarios, namely,
appending data to an existing transformation and approxi-
mation of multidimensional data streams. We demonstrated
the effectiveness of the proposed techniques both analyti-
cally and experimentally, and we conjecture that the intro-
duced operations can prove useful in a plethora of other
applications, as the SHIFT-SPLIT operations stem from
the general properties and behavior of wavelets.

8. REFERENCES
[1] A. Bulut and A. K. Singh. SWAT: Hierarchical stream

summarization in large networks. In Proceedings of
ICDE, pages 303–314, 2003.

[2] K. Chakrabarti, M. N. Garofalakis, R. Rastogi, and
K. Shim. Approximate query processing using
wavelets. In Proceedings of VLDB, pages 111–122,
2000.

[3] A. Deligiannakis and N. Roussopoulos. Extended
wavelets for multiple measures. In Proceedings of
ACM SIGMOD, pages 229–240, 2003.

[4] M. Garofalakis and P. B. Gibbons. Wavelet synopses
with error guarantees. In Proceedings of ACM
SIGMOD, 2002.

[5] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and
M. Strauss. Surfing wavelets on streams: One-pass
summaries for approximate aggregate queries. In
Proceedings of VLDB, pages 79–88, 2001.

[6] M. Jahangiri and C. Shahabi. ProDA: A Suite of
WebServices for Progressive Data Analysis. In
Proceedings of ACM SIGMOD (demonstration), 2005.

[7] D. Lemire. Wavelet-based relative prefix sum methods
for range sum queries in data cubes. In Proceedings of
CASCON. IBM, October 2002.

[8] S. Papadimitriou, A. Brockwell, and C. Faloutsos.
Awsom: Adaptive, hands-off stream mining. In
Proceedings of VLDB, 2003.

[9] R. Schmidt and C. Shahabi. Propolyne: A fast
wavelet-based technique for progressive evaluation of
polynomial range-sum queries. In Proceedings of
EDBT, 2002.

[10] C. Shahabi and R. Schmidt. Wavelet disk placement
for efficient querying of large multidimensional data
sets. In Department of Computer Science Technical
Reports. University Of Southern California, 2004.

[11] E. J. Stollnitz, T. D. Derose, and D. H. Salesin.
Wavelets for computer graphics: theory and
applications. Morgan Kaufmann Publishers Inc., 1996.

[12] J. S. Vitter and M. Wang. Approximate computation
of multidimensional aggregates of sparse data using
wavelets. In Proceedings of ACM SIGMOD, pages
193–204, 1999.

[13] J. S. Vitter, M. Wang, and B. R. Iyer. Data cube
approximation and histograms via wavelets. In
Proceedings of CIKM, pages 96–104, 1998.

[14] M. Widmann and C.Bretherton. 50 km resolution
daily precipitation for the pacific northwest, 1949-94.

[15] Y.-L. Wu, D. Agrawal, and A. E. Abbadi. Using
wavelet decomposition to support progressive and
approximate range-sum queries over data cubes. In
Proceedings of CIKM, pages 414–421, 2000.

APPENDIX

A. WAVELET TRANSFORM
Let us define wavelet transformation more precisely. Given

a lowpass scaling function φ and a highpass wavelet func-
tion ψ, we can define a family of functions by scaling and
translating:

φj,k(t) ≡ 2−j/2φ(2−jt− k), ψj,k(t) ≡ 2−j/2ψ(2−jt− k),

where j indexes scale and k indexes position in time. The
scales and translations of these functions form an orthog-
onal basis for L2. Therefore any function f ∈ L2 can be
represented in the wavelet domain:

f = 〈f, φ0,0〉φ0,0 +
	

j

	
k

〈f, ψj,k〉ψj,k

The wavelet decomposition of a vector a of size 2n con-
sists of the scaling coefficient (average) un,0 = 〈f, φn,0〉 and
2n−1 wavelet coefficients (details) across all levels of decom-
position; for each level of decomposition j, there are 2n−j

wavelet coefficients wj,k = 〈f, ψj,k〉 (See Figure 1). We,

also, represent all scaling and wavelet coefficients of level j
with vectors of Uj and Wj where Uj and Wj are spanned by
φj,k and ψj,k respectively. Therefore, we can demonstrate
wavelet decomposition by a series of vector decompositions
as following:

U0 = U3 ⊕W3 ⊕W2 ⊕W1

B. MULTIDIMENSIONAL WAVELET TRANS-
FORMATION

To perform the wavelet decomposition of multidimensional
datasets we need multidimensional wavelets and scaling func-
tions. For illustration purposes, we focus our discussion on
2-dimensional transformations. The extension to higher di-
mensionality is straightforward. In general, the multidimen-
sional wavelets and scaling spaces are constructed from ten-
sor products of single dimensional wavelets Wj and scaling
vectors Uk, where j and k index scale, or equivalently, levels
of decomposition.

The tensor product of the vectors Uj and Uk results in a
2-dimensional subspace Uj,k = Uj ⊗ Uk. Similarly for Wj

and Wk we shape the subspace W d
j,k = Wj ⊗Wk. Tensor

products among scaling and wavelet vectors result in 2 more
sets of subspaces: Wh

j,k = Uj ⊗Wk and W v
j,k = Wj ⊗ Uk.

These 4 sets of 2-d subspaces, Uj,k, W d
j,k, Wh

j,k, W v
j,k can

decompose 2-d space. However there are 2 ways to perform
multidimensional wavelet decomposition, the standard and
the non-standard.

W1 W1

U2 U2

U2 W2

W2 U2

W2 W2

U2 W1
W2 W1

W1 U2

W1 W2

U2 U2

W1 W1

W1 U1

U1 W1

W2 W2U2 W2

W2 U2

a. Standard Form b. Non-Standard Form

Figure 15: 2-level decomposition

B.1 Standard Form
To decompose a 2-d array of size N2 using the standard

form, we first completely decompose one dimension and then
the other, with the order not being important. This means
that we first transform each of the N rows of the array to
construct a new array and then take each of the N columns
of the new array and again perform 1-d DWT on them.
The final array is the 2-d standard transform of the original
array.

In terms of subspaces, each 1-d untransformed vector is
initially expressed using the 0-th level vector U0. Therefore,
each cell in the untransformed array is expressed by the 2-d
space U0,0 = U0 ⊗ U0

Decomposing both vectors U0 to the first level of decom-
position U0 = W1 ⊕U1 and distributing the tensor product,

we get:

U0,0 = U0 ⊗ U0

= (W1 ⊕ U1) ⊗ (W1 ⊕ U1)

= (W1 ⊗ W1) ⊕ (W1 ⊗ U1) ⊕ (U1 ⊗ W1) ⊕ (U1 ⊗ U1)

= W d
1,1 ⊕ W v

1,1 ⊕ W h
1,1 ⊕ U1,1

Decomposing both vectors U0 to the second level of decom-
position U0 = W1 ⊕ W2 ⊕ U2 and distributing the tensor
product, we get:

U0,0 = U0 ⊗ U0

= (W1 ⊕ W2 ⊕ U2) ⊗ (W1 ⊕ W2 ⊕ U2)

= (W1 ⊗ W1) ⊕ (W1 ⊗ W2) ⊕ (W1 ⊗ U2)

⊕(W2 ⊗ W1) ⊕ (W2 ⊗ W2) ⊕ (W2 ⊗ U2)

⊕(U2 ⊗ W1) ⊕ (U2 ⊗ W2) ⊕ (U2 ⊗ U2)

= W d
1,1 ⊕ W d

1,2 ⊕ W v
1,2 ⊕ W d

2,1 ⊕ W d
2,2 ⊕ W v

2,2

⊕W h
2,1 ⊕ W h

2,2 ⊕ U2,2

Figure 15a shows how the 2-d array is partitioned to 9
subspaces for 2 level decomposition.

B.2 Non-Standard Form
The non-standard form differs in that the decomposition

is not happening on each dimension separately. Rather, af-
ter each level of decomposition only the coefficients corre-
sponding to the Uj,j subspace are further decomposed. The
first level of decomposition results from decomposing each
dimension to the first level, exactly as in the standard form:

U0,0 = U0 ⊗ U0

= (W1 ⊕ U1) ⊗ (W1 ⊕ U1)

= (W1 ⊗ W1) ⊕ (W1 ⊗ U1) ⊕ (U1 ⊗ W1) ⊕ (U1 ⊗ U1)

= W d
1,1 ⊕ W v

1,1 ⊕ W h
1,1 ⊕ U1,1

By decomposing the scaling vector U1 into the next level
of decomposition U1 = W2 ⊕ U2 we decompose only U1,1

subspace.

U0,0 = W d
1,1 ⊕ W v

1,1 ⊕ W h
1,1 ⊕ U1,1

= W d
1,1 ⊕ W v

1,1 ⊕ W h
1,1 ⊕ (U1 ⊗ U1)

= W d
1,1 ⊕ W v

1,1 ⊕ W h
1,1 ⊕ ((W2 ⊕ U2) ⊗ (W2 ⊕ U2))

= W d
1,1 ⊕ W v

1,1 ⊕ W h
1,1 ⊕

(W2 ⊗ W2) ⊕ (W2 ⊗ U2) ⊕ (U2 ⊗ W2) ⊕ (U2 ⊗ U2)

= W d
1,1 ⊕ W v

1,1 ⊕ W h
1,1 ⊕ W d

2,2 ⊕ W v
2,2 ⊕ W h

2,2 ⊕ U2,2

Figure 15b shows how the 2-d array is partitioned to 7
subspaces for 2 level decomposition.

