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Abstract—Efficient and thorough data collection and its
timely analysis are critical for disaster response and recovery in
order to save peoples lives during disasters. However, access to
comprehensive data in disaster areas and their quick analysis
to transform the data to actionable knowledge are challenging.
With the popularity and pervasiveness of mobile devices,
crowdsourcing data collection and analysis has emerged as
an effective and scalable solution. This paper addresses the
problem of crowdsourcing mobile videos for disasters by
identifying two unique challenges of 1) prioritizing visual-
data collection and transmission under bandwidth scarcity
caused by damaged communication networks and 2) analyzing
the acquired data in a timely manner. We introduce a new
crowdsourcing framework for acquiring and analyzing the
mobile videos utilizing fine granularity spatial metadata of
videos for a rapidly changing disaster situation. We also develop
an analytical model to quantify the visual awareness of a
video based on its metadata and propose the visual aware-
ness maximization problem for acquiring the most relevant
data under bandwidth constraints. The collected videos are
evenly distributed to off-site analysts to collectively minimize
crowdsourcing efforts for analysis. Our simulation results
demonstrate the effectiveness and feasibility of the proposed
framework.
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I. INTRODUCTION

Enhancing situational awareness is of great importance

for disaster response and recovery. In the event of disasters,

situational awareness can be enhanced by data acquisition

and analysis. Data acquisition refers to the efficient collec-

tion of data in timely manner while data analysis represents

the process of identifying and understanding the critical

incidents from the collected data. Prompt and accurate data

acquisition and effective analysis empower decision makers,

which in turn can expedite disaster recovery, minimize

damages, and potentially save lives. For example, after

the 2010 Haiti earthquake, the Ushahidi-Haiti project (i.e.,

Mission “4636”) gathered more than 80,000 text messages

from on-site users (on-site rescuers, local people, etc.) of

which nearly 60,000 were translated into English by Haitians

and were sent to the first responders for search and rescue

and other emergency activities [10]. Using the collected data,

off-site volunteers created a post-disaster map of Haiti to

help on-site workers, revealing undamaged roads, buildings,

hospitals, and shelters.

Disaster data can be acquired in many ways such as from

automatic sensor readings, reports from field workers and

civilians, etc. In contrast to sensor readings, which is limited

to a fixed set of locations and suffer from infrastructure dam-

ages, crowdsourcing has been shown to be a cost-effective

and time-efficient way to acquire disaster data [9], [5] and

then to analyze the collected data [17], [19], [20], [21].

Among various media types (text, image, video, graphics,

etc.) from multiple data sources, videos and images are

most effective in understanding the disaster situation. Videos

can be watched and easily understood by international

analysts, independent of language and cultural barriers,

without wasting time for inaccurate interpretations [10].

However, there is little study in utilizing a large amount

of videos, especially from ubiquitous mobile devices, for

disaster situations. Hence, the primary focus of this paper

is on devising a unified crowdsourcing framework aiming

for both collection and analysis of user-generated mobile

videos.

There exist platforms for crowdsourcing the mobile video

collection along with fine granularity of spatial metadata,

such as MediaQ (mediaq.usc.edu) and GeoVid (geovid.org).

However, similar to aforementioned studies [9], [5], these

platforms neglect to consider prioritizing data acquisition
and thus may be subject to data overload, which is critical

especially under limited network resources due to catas-

trophic outage [13], [16], [14]. Data triage is a central issue

in disaster data collection since video data is large and often

redundant. During the critical first response time, redundant

data collection wastes not only communication bandwidth

to transmit unnecessary data but also analysts’ valuable time

for manual verification. In sum, more data do not necessarily

mean more effective situational awareness.

Once data are acquired, the next challenge is to analyze

the collected data in a timely manner and there exist several

studies in this area [17], [19], [20]. However, these studies

have focused on processing and integrating data, rather than

on assigning analysis tasks to analysts. An effective analysis
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refers to the assignment of analysis tasks to a number

of off-site analysts in a balanced way such that no analyst

becomes a bottleneck in a collective situational awareness.

To the best of our knowledge, the only system that dis-

tributes the analysis tasks among the available analysts is

GeoQ (geo-q.com/geoq/). GeoQ is a crowdsourcing platform

for disaster data developed by US National Geospatial-

Intelligence Agency. However, GeoQ statically assigns an

analyst to a certain geographical region and he will be in

charge of analyzing all the corresponding data. In this case,

the amount of data within each region represent the workload

assigned to each analyst. However, such a static assignment

is hardly effective as non-uniform distribution of data may

introduce regions with a wide variation of data, leading

to unbalanced workload per analyst. Thus, an effective

task assignment should consider the data distribution across

geospatial regions and among the analysts.

Combining MediaQ and GeoQ, while overcoming their

shortcomings, we introduce a new four-step framework that

seamlessly fuses fast and efficient data collection with effec-

tive analysis (Figure 1). First, to facilitate the real-time data

sensing, analysis and consequently time-sensitive decision-

making, we propose the so-called metadata first mechanism,

in which the geospatial metadata of videos such as camera

location and camera viewing direction [4] are automatically

captured and uploaded at the time videos are taken by on-

site users (Step 1). The geospatial metadata, which represent

the geographical properties of the captured videos with a far

less number of bytes than the actual videos, are transmitted

to the server first without delivering the large amount of the

corresponding video data. Next, we identify the problem of

prioritizing data transmission under bandwidth constraints

(Step 2), i.e., only relevant videos selected based on their

metadata will be transmitted in a priority order. Thereafter,

the collected data are assigned to analysts by partitioning a

large disaster area (e.g., the earthquake damage area can be

obtained from ShakeMap) into manageable regions, so called

work cell (Step 3); each work cell and its enclosed collected

data are assigned to one analyst. Finally, the analysts watch

the videos corresponding to their work cells to identify

incidents (e.g., a building on fire, a collapsed house, road

block) from which they evaluate the importance/urgency of

their assigned work cells in the form of an urgency map
(Step 4), i.e., the higher the assigned value, the more urgent

the situation in the cell.

Subsequently, we develop an analytical model to quantify

the situational awareness of a particular video, namely visual
awareness. In practice, the visual awareness of a video (or

a frame1) indicates how relevant the video is to the disaster

incidents. Whether the video covers the actual incidents’

locations or not is unknown to the control center at the

time when only metadata are uploaded. Hence, we define

1A video is represented by a sequence of its frames (Figure 2).
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Figure 1: The crowdsourcing framework for disaster response. The
loop is necessarily for dynamic data awareness, which may be
critical in a rapidly evolving situation.

the relevance of a video based on its coverage with respect

to the enclosed work cell and regional importance of the cell.

Consequently, we define the Visual Awareness Maximization
(VAM) problem that only selects a set of videos or frames

with maximum total visual awareness without exceeding

the bandwidth constraints. This maximizes the amount of

useful information obtained from a limited amount of videos

delivered under constrained bandwidth.

The bandwidth limit at a given time interval, referred to

as budget, determines the amount of content that can be

uploaded to the server. Our solutions consider the budget

constraints with two variations: entire video content needs

to be uploaded or individual video frames can be extracted

on mobile clients (i.e., keyframes to reduce the data size) and

then uploaded. Due to the budget constraints, an approach

that simply ranks videos/frames and selects the ones with the

highest information does not yield the optimal result. Thus,

we study the problem complexity of both variants and prove

that they are NP-hard. Particularly, when individual frames

can be selected, we propose a solution that minimizes overall

redundant coverage of the overlapped frames, therefore,

achieve the maximum total visual awareness.

The visual awareness of a video depends on the impor-

tance of its containing work cell. The challenge with the

spatial decomposition step is to ensure the maximum total

visual awareness of the selected videos, using any optimal

VAM solution. The baseline technique is to use a uniform

grid, in which the number of grid cells is determined by

the number of analysts. However, the shortcoming of the

uniform grid is that, similar to GeoQ, some analysts may

be overloaded while the others are underutilized. Therefore,

considering the spatial distribution of the videos, we propose

two partitioning techniques based on point Quadtree and

Kd-tree. These techniques not only result in almost equal

number of videos assigned to each analyst but also increase

the total visual awareness of the uploaded videos, as shown
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in Section VI. To summarize, the specific contributions of

this paper are as follows.
(i)) We identify two specific challenges in disaster re-

sponse, fast and efficient data acquisition and their

effective analysis with regards to two existing crowd-

sourcing projects, MediaQ and GeoQ, and propose a

unified crowdsourcing framework to overcome such

challenges by leveraging geo-tagged videos.

(ii)) We propose an analytical model to measure the prob-

ability that a video covers an actual disaster inci-

dent without knowing the locations of the incidents,

termed visual awareness of the video. We formulate

an optimization problem to select a set of videos with

the maximum visual awareness under bandwidth con-

straints, and propose to use a dynamic programming

algorithm to solve the problem.

(iii)) We extend our solution to the case where individual

video frames can be uploaded. The improved solu-

tion minimizes the redundant coverage in overlapped

frames, thus, yields an order of magnitude higher

visual awareness in comparison to the case of trans-

mitting the entire video.

(iv)) We propose adaptive spatial decomposition techniques

considering the spatial distribution of the videos to

automatically assign the uploaded videos within a

particular work cell to the corresponding analyst.

(v)) We conduct experiments on various synthetic datasets

to show the effectiveness and efficiency of the

proposed framework. We conclude that the data-

dependent partitioning techniques outperform the

baseline by two orders of magnitude.

The remainder of this paper is organized as follows. In

Section II, we review the related work. Section III discusses

the preliminaries necessary to present our framework. In

Section IV, we introduce the framework and define the con-

straint optimization problem, VAM. Thereafter, in Section

V, we present an enhancement to the VAM problem. We

present the experimental results in Section VI and make the

conclusion of the paper in Section VII.

II. RELATED WORK

Crowdsourcing Disaster Response: Crowdsourcing has

been widely regarded as a cost-effective and time-efficiency

means in disaster management, especially in data collection

and analysis under disaster situations [9], [5], [17], [17],

[19], [20], [21]. Firstly, early efforts in disaster data collec-

tion focused on geographic information provided voluntarily

by individuals [9]. Chu et al. [5] developed a disaster

surveillance and response system that provides the global

view of the situation of the off-site users (e.g., analysts)

with the help of on-site users (field commanders, local

people, etc.). Secondly, regarding crowdsourcing the analysis

of disaster data, Ortmann et al. [17] conducted a study on

processing and integration of data associated with disasters

by leveraging Linked Open Data (linkeddata.org). Schulz

et al. [19] proposed to combine human and machine in-

telligence for enhancing the situational picture of the off-

site users, resulting in an increased situational awareness.

In [20], the authors discussed the feasibility of harness-

ing collective knowledge in disaster relief and presented a

generic system architecture with examples of how this could

be accomplished. Yang et al. [21] proposed a platform that

provides real-time assistance to on-site users by leveraging

off-site users’ efforts. Despite of efficient data collection and

analysis, the credibility of the crowdsourced disaster data is

still a major concern [10], [9]. Our study aims to focus on

both efficient data collection and effective analysis of user-

generated videos concerning disasters to advance capabilities

for situational awareness. Fast and efficient data collection

is achieved by prioritizing data transmission under limited

bandwidth while effective analysis is obtained by evenly

distributing the collected data to the analysts.

Anti-disaster Systems: Recently, there has been a grow-

ing research interest in improving the resilience and respon-

siveness of emerging computer systems to facilitate real-

time data sensing [13], [16], [14], which is critical for

time-sensitive decision-making. In [13], the author presented

the infrastructure damage caused by the Great East Japan

Earthquake such as transmission cables, mobile stations,

etc., and Japan’s efforts in restoring such telecommunication

network. Liu [14] showed a comparison between typical

outages and catastrophic outages caused by disasters, i.e.,

inaccessible power, damaged or unavailable communication

network facilities. In [16], the authors surveyed several

studies on resilient information and communication tech-

nologies, such as satellite network platform and anti-disaster

information distribution platform. Among such systems,

unmanned aerial vehicles (UAV) have emerged as effective

controlled/autonomously systems in disaster imagery collec-

tion, especially in areas that are inaccessible on the road.

For example, Google built aerial drones that can deliver

medical equipments, food to people in need across the

country. Skybox (skyboximaging.com) developed a satellite

acquisition technology to collect real-time satellite imagery

and full-motion video from space on demand. In contrast

to these studies, our framework shows the possibility of an

anti-disaster information distribution platform that collects

a vast amount of videos concerning disasters. The collected

data, which can comes from various sources, such as mobile

phones, UAVs, conventional CCTVs, facilitate comprehen-

sion of the situation and better decision-making.

III. PRELIMINARIES

As this study was inspired by the two existing platforms,

MediaQ [12] for data acquisition and GeoQ for data analysis,

in this section, we introduce them and related concepts.
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A. MediaQ for Data Acquisition

Crowdsourcing disaster data contribute to stages of dis-

aster response in a scalable, cost-effective and real-time

manner. However, verifying crowdsourced information is

critical for decision-making in disaster response as time lost

responding to inaccurate reports may outweigh the benefit

of the provided information. For example, less than 6% of

the text messages published on the Ushahidi-Haiti crisis map

were tagged as “verified” by field reporters [10]. Fortunately,

visual data such as images and videos with spatial metadata

and content can be verified easily by off-site analysts without

the need of the field reporters. Thus, we developed MediaQ

for collecting videos with their metadata from community,

voluntarily or on-demand manner. With crowdsourcing, off-

site analysts can outsource their content requests at particular

locations that will automatically generate push messages to

nearby workers, i.e., individuals with mobile devices that

perform the requests by physically traveling to the specified

locations and taking videos.

Geo-tagged Videos: Mobile videos can be captured at a

fine granular level (e.g., frames) and their geospatial meta-

data (e.g., camera location, viewing direction) are transpar-

ently associated with each frame. This capability is referred

to as geo-tagged videos. Particularly, we represent a video

as a sequence of video frames, or frames for short, and each

frame is modeled as a field of view (FOV) [4]. In 2D space,

the field-of-view of a camera at a particular time forms a

pie-slice-shaped area as illustrated in Figure 2a. We formally

define a field of view.

Definition 1 (Field of View (FOV)): A FOV f is denoted

as (p,
−→
d ,R, θ), in which p is the camera location of

<latitude,longitude> coordinates, the camera direction
−→
d

is obtained based on the orientation angle provided by a

digital compass, the camera viewable angle θ describes the

angular extent of the scene imaged by the camera. The angle

θ is calculated based on the camera and lens properties for

the current zoom level, R is the maximum visible distance

at which a large object within the camera’s field-of-view can

be recognized.
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Figure 2: The Field Of View (FOV) model.

The viewable scene of a camera changes as it moves or

changes its orientation. In order to keep track of the FOVs of

a moving camera over time, we need to record its location p,

direction
−→
d and viewable angle θ with a certain frequency

and produce time-stamped metadata together with time-

stamped video streams. Our meta-data streams are analogous

to sequences of (p,
−→
d ,R, θ, t) quintuples, where t is the time

instant at which FOV information is recorded. Figure 2b

depicts FOVs of a 5-seconds video; one frame is sampled

per second. For simplicity, we assume that the video location

is the first point of a trajectory of video.

As shown in [4], one issue with such a representation is

the computational overhead. A more appropriate approach

is to define the FOV in the spatial domain with a pie-slice-

shaped area and then estimate it with a minimum bounding

rectangle (MBR) as shown in Figure 2b. Consequently, we

estimate the coverage area of a video as the overall coverage

of its FOVs’ MBRs. To efficiently compute the coverage of

the MBRs, we use cascaded union which is available in

various languages such as PostGIS and Python.

B. GeoQ for Data Analysis

The disaster data are often analyzed on a crisis map

to provide the overview of the disaster situation at the

control center. Crisis mapping techniques often evaluate and

annotate damage based on a geographical (district) map

imported from popular geospatial vector data formats such

as Shapefile. For instance, Figure 3a shows the color-coded

damage levels in Nepal Earthquake 2015. The darker the

color, the more damaged the districts. However, district-

based evaluation fails to represent the damage at fine gran-

ular level due to rigid pre-defined geographical regions.

Therefore, GeoQ uses a grid-based partition of the space

to enable fine-grained evaluation as illustrated in Figure 3b.

(a) ArcGIS’s district regions (b) GeoQ’s work cells

Figure 3: Crisis mapping tools used in Nepal Earthquake 2015.

GeoQ allows the analysts to collect geographic structured

observations across a large area, but manage the work in

smaller geographic regions. That is, a disaster area can be

partitioned into small regions (e.g., 1km squares), so called

work cells, and be assigned to the analysts. GeoQ also assists

the analysts to aggregate and analyze information from the

data concerning disasters. The role of the analysts is to

evaluate the available data sources in their allocated work

cells (e.g., video data from MediaQ, social data from Twitter

and Youtube, imagery data from satellites) to determine any

relevant incident associated with disasters (e.g, a building

on fire, road block) that needs to be marked on the GeoQ’s

crisis map. To become an analyst, volunteers need to pass
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required training classes on a particular disaster type (e.g.,

earthquake, wildfire).

We formally define a work cell and an analyst.

Definition 2 (Work Cell): A work cell w is a region with

an urgency value U that can be rated by an analyst.

Definition 3 (Analyst): An analyst is a trusted personnel

with expertise in situational crisis. By analyzing data within

a work cell, the analyst measures the severity of the disaster

and sets an urgency value to his assigned work cell.

IV. CROWDSOURCING DISASTER RESPONSE

We propose a unified framework that empowers MediaQ

and GeoQ, but overcomes their limitations in crowdsourcing

disaster data and data analysis. We first focus on efficient

mobile video acquisition and transmission.

A. Data Acquisition

1) Acquisition of Video Metadata and Content: First, one

critical issue in acquiring videos is the timely delivery of

data, especially under a potential catastrophic disruption

of communication during and after disaster. For example,

in 2010 Haiti Earthquake, 85% of Haitians could still

access to their mobile phones but 70% of cell towers

were destroyed [10]. Therefore, we propose “metadata first”

mechanism that prioritizes uploading metadata of videos

(the quintuples in Section III-A) over their content, in

which metadata are automatically captured and uploaded

when the videos are taken without delivering a large amount

of the corresponding video data themselves. The reason

for this is to enable time-sensitive acquisition and analysis

on the uploaded metadata, such as real-time data sensing,

visualization (e.g., video coverage map in Figure 1) and

decision-making (e.g., crowdsource more data in sparse-

video areas such as the Northeast in Figure 1). Other reasons

for separatly handling metadata first includes supporting data

governance as metadata often lives longer than its content,

preserving privacy and strict access control [7].

Due to the small size of metadata with respect to the

content2, they can be transmitted through various channels

such as Internet, SMS and WLAN. The acquired metadata

can be used in data management applications, which enable

other applications to access the metadata via RESTful APIs.

For example, using the RESTful metadata services, a range

query can find all video frames that overlap with a user-

specified region, or a direction query can find the objects

that are covered by a video with a specific viewing direction.

This kind of queries are particularly useful when analysts

have identified an incident and in search for more videos

that cover the event.

2The size of metadata of one FOV is around 300 bytes [1], thus, the
metadata of a ten-seconds video, with a sampling rate of one FOV per
second, is only 3KB. However, the size of a video is typically a few MBytes,
which is thousands times larger than its metadata.

Second, by leveraging the spatial metadata, the server

periodically selects a set of videos to be uploaded, e.g., every

five minutes. Once the videos are identified by the server,

to be discussed in the next sections, their contents can be

requested. That is, the server sends push notifications to the

mobile phone clients that hold the selected videos, triggering

the service to upload the videos. Mobile phone users can

choose to opt-in/opt-out the option of automatically trans-

mitting the video content when receiving the notifications;

otherwise, the users can directly upload the content. The

content once uploaded is matched to the corresponding

metadata stored in the server.

The above selective on-demand data collection efficiently

uses network bandwidth by minimizing redundant data trans-

mission. The total volume of uploaded videos, within a time

interval, is limited by the network capacity, namely budget
B. In practice, budget B captures the bandwidth constraints

from either the communication network or the cloud server

that stores the videos [1]. We formally define the budget.

Definition 4 (Budget): Budget B is the maximum amount

of data (MB) to be transmitted in a given time interval.

2) Visual Awareness of a Video: Given uploaded meta-

data, videos will be prioritized for their transmission so that

relevant or urgent ones can be delivered first. We develop

an analytical model that allows the server to quantify the

importance of a particular video or frame, namely visual-
awareness. In practice, the visual awareness of a video indi-

cates the probability that it covers any interesting incidents in

the enclosed work cell. Whether the video covers an actual

incident or not can be confirmed only when the video is

uploaded and evaluated by the analysts. Thus, it is intuitive

to define the visual awareness of the video based on its

geospatial metadata. Particularly, it is proportional to the

coverage ratio of the video with respect to the containing

cell, formally defined as follows.

VA(v) = U(w)
area(v)

area(w)
(1)

where area(v) is the coverage area of video v, calculated

using cascaded union as described in Section III-A; U(w)
is the urgency value of work cell w that encloses video v,

either manually entered by the analyst associated with w or

automatically computed as will be shown in Section IV-B2

(Equation 2). The intuition for Equation 1 is that VA(v) is

high if both the urgency of the containing work cell U(w)
and the coverage ratio area(v)/area(w) is large. Note that

we assume the video region is entirely enclosed within the

work cell that covers the video location v.l. This assumption

is reasonable as the work cell’s area is generally much larger

than the video region.

3) Visual Awareness Maximization: To decide the order

of video transmission, the server selects a set of videos with

the maximum total visual awareness without exceeding the

budget constraint.
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Problem 1 (Visual Awareness Maximization (VAMV )):
Given budget B for a time interval and the video set

V = {v1 , v2 , ...} the budget-constraint maximization of

visual awareness is the problem of selecting a set of videos

such that the total visual awareness
∑|V |

i=1 VA(vi)d(vi) is

maximized while satisfying
∑|V |

i=1 size(vi)d(vi) ≤ B.

d(vi) represents a decision to select the ith video: d(vi) = 1
if video vi is selected and d(vi) = 0 otherwise. By restric-

tion, we proof that the VAMV
3 problem is NP-hard by a

reduction from the 0-1 knapsack problem [2].

Theorem 1: The VAMV problem is NP-hard.

Proof: Suppose that the maximum weight we can carry

in the bag is W . With 0-1 knapsack, given n items, z1 to

zn where zi has a value value(zi) and weight weight(zi),
we need to maximize the sum of the values of the items

in the knapsack so that the sum of the weights must be

less than or equal to the knapsack’s capacity. More for-

mally, we maximize
∑n

i=1 value(zi)d(zi) while satisfying∑n
i=1 weight(zi)d(zi) ≤ W and d(zi) ∈ {0, 1}.

We prove the theorem by providing a one-to-one corre-

spondence from 0-1 knapsack to the VAMV problem. That

is, given an instance of the knapsack problem, there exists

a one-to-one mapping to an instance of VAMV . For every

item zi, we create a video vi with VA(vi) = value(zi) and

size(vi) = weight(zi). Also, the maximum weight W is

mapped to budget B. This simple mapping completes the

proof.

By a reduction from the 0-1 knapsack problem, we can

use any algorithm that computes 0-1 knapsack to solve

the VAMV problem. It has been shown in [15] that the

greedy algorithm gives 0.5-approximation ratio. Fortunately,

there is a pseudo-polynomial time algorithm using dynamic

programming to optimally solve 0-1 knapsack. This solution

runs in O(|V |B) time and O(B) space, where |V | is the

number of videos and B is the budget.

B. Data Analysis

Once the data are acquired, they are distributed to analysts

who then evaluate them (Step 4 in Figure 1. In this section,

we present the problems of task distribution and task analysis

in turn.

1) Task Assignment: To facilitate timely evaluation on the

acquired data, we investigate various partitioning techniques

to evenly assign work cells and the enclosed videos to the

analysts. We propose to adaptively partition a large disaster

region into work cells and automatically assign each work

cell to an analyst. As a result, each analyst is assigned

the videos within his work cell that have not been yet

reviewed. For simplicity, we assume that the disaster region

is a rectangle and one analyst is responsible to one and only

one work cell. In the following, we present the uniform grid

as a baseline and two other techniques based on Quadtree

3The subscript V denotes the video-level optimization problem.

and Kd-tree which take the spatial distribution of the videos

into consideration.

Data-independent Partitions: Given A analysts, we par-

tition the disaster region into an equal-size grid of size

�√A�× �√A� so that each work cell is assigned to at least

one analyst. For example, the disaster region will be split

into 6 × 6 grid given 36 analysts. As a data-independent

technique, the equal-size grid may suffer unbalanced alloca-

tion of videos, i.e., some work cells have many videos while

the others are empty. Consequently, the analysts with empty

work cells are idle while the others may be overloaded.

Data-dependent Partitions: To enable balanced assign-

ment, we propose data-dependent techniques based on

Quadtree and Kd-tree [18]. The point quadtree algorithm

recursively decomposes the space into adaptable cells. A cell

is split into four equal quadrants or regions if the number of

data points within the cell is larger than a maximum capacity.

We propose an algorithm for space partitioning based on

Quadtree and Kd-tree structures with a customized stop con-

dition (Algorithm 1). Unlike the stop condition of the point

quadtree, Algorithm 1 terminates when the number of cells is

greater than or equal to A−3 (Line 5). This is to ensure that

all work cells are assigned to the analysts. Furthermore, at

each stage of Algorithm 1, we split the cell with the highest

number of videos to maintain balanced workload between

the analysts (Line 6). When a parent node is split into four

equal quadrants, we move the data from the parent into

the corresponding child nodes, NW ,NE ,SW ,SE (Line 9).

Finally, Line 11 updates the current number of work cells.

Note that a work cell cannot be further partitioned if it has

no more than one video (Line 7).

Algorithm 1 QUADTREE (KD-TREE) ALGORITHM

1: Input: uploaded videos U = {u1 , u2 ...}, analyst count A
2: Initialize root work cell ROOT .data = U
3: Initialize work cell count cell count = 1
4: Initialize priority queue Q = {ROOT}, ranked by video count
5: While cell count ≥ A − 3 and size(Q) > 0:
6: Work cell with highest video count CELL ← Q
7: If CELL has more than one video:
8: Split CELL into four quadrants NW ,NE ,SW ,SE
9: Move data from NODE to its children

10: Update queue Q ← Q + {NW, NE, SW, SE}
11: Update work cell count cell count ← cell count + 3

The Kd-tree construction algorithm is similar to that of

Quadtree, except the splitting criteria in Line 8 needs to

be tailored with respect to the point kd-tree algorithm.

Instead of midpoint splitting as Quadtree, median splitting

is used, which results in approximately the same number of

videos per quadrant. The obvious advantage of Kd-tree over

Quadtree and the simple grid is that each analyst has roughly

the same number of videos, thus, facilitating concurrent data

analysis among them.
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2) Work Cell Analysis: With GeoQ, the analysts measure

the severity of the disaster by analyzing the data within

their corresponding work cells, then assign urgency values to

them. In the same fashion, we extend the idea of geographic

tasking in GeoQ to analyzing the video data. For example,

the analysts can count the number of damaged buildings or

mark emergency cases by watching their assigned videos.

In addition to these specific tasks, analysts can provide

an overview of the situation for the decision makers by

assigning an urgency value (i.e., priority) to each work

cell, e.g., zero means no damage while five means heavily

damaged (urgency map in Figure 1). The urgency values

may change over time as more videos are available and to

be watched by the analysts.
Due to the complexity of the disaster, we argue that

detecting critical incidents, such as fire, flood, smoke and

explosion should be semi-automatic. Either the analysts

manually watch the uploaded videos in their work cells to

identify the incidents, or the server automatically provide

descriptions of the events by means of computer vision or

machine learning techniques that analyze the videos. These

issues are beyond the focus of this work. However, the ur-

gency of the work cells can be automatically recommended

based on their importance and geosocial factors, weighed as

follows.

U(w) = Importance(w)α+RE(w)β (2)

While the former one is provided in form of a pre-defined

priority map, e.g., nuclear plant areas have higher priority

than residence areas, the geosocial factor is represented by

region entropy (RE) (entropy of a region is high if many

people visit the region). Intuitively, a high-population work

cell is more important than the one with fewer people, and

the priority of a work cell is high if many people visit,

such as schools and hospitals. Location entropy [6], which

measures the diversity of unique visitors of a location, can

be used to measure the spatial “popularity” of a location. A

location has a high entropy if many people visit that location

with equal proportions. We extend the concept of location

entropy to region entropy of a work cell.
For a given work cell w, let Ow be the set of visits to w.

Also, let Pw be the set of distinct people that visited w, and

Op,w be the set of visits that person p has made to the region

w. The probability that a random draw from Ow belongs to

Op,w is Pw (p) =
|Op,w |
|Ow | , which is the fraction of total visits

to w that belongs to person p. The region entropy for w is

computed as follows:

RE(w) = −
∑

p∈Pw

Pw(p)× logPw(p) (3)

RE(w) can be computed based on any geo-social dataset

such as Gowalla4. Consequently, we can associate a geoso-

cial priority to every work cell as shown in Equation 2.

4snap.stanford.edu/data/loc-gowalla.html

V. MINIMUM REDUNDANT COVERAGE

Thus far when a video is selected, the entire video content

needs to be uploaded. However, transmitting the content is

not only costly but also may render many frames useless,

i.e., redundant frames are generated when either users do

not move their cameras or videos cover the same area. To

reduce the bandwidth usage and therefore maximize the total

visual awareness, we propose to upload only keyframes and

their metadata to the server and simultaneously minimize

redundant coverage of these frames. While the acquisition

of metadata and content of a video frame (i.e., an image)

is similar to Section IV-A1, in the following, we focus on

identifying the keyframes across all videos.

A. Visual Awareness of a Frame

To compute the overlap regions, we divide the space into

small grid cells (e.g., 20m squares), so called unit cells;

each is identified by a number as shown in Figure 4a. With

this discretization, one FOV can be represented by a set of

covered unit cells. A unit cell is covered by a FOV (or a

work cell) if the unit cell’s center is within the FOV (or the

work cell). For instance, the FOV is represented by the set

of gray unit cells in Figure 4a.

30 31 32 33 34 35 
24 25 26 27 28 29 
18 19 20 21 22 23 
12 13 14 15 16 17 
6 7 8 9 10 11 
0 1 2 3 4 5 

(a) Discretization m×n

f 2 f 1 f 3 

(b) FOV overlap

Figure 4: Optimization at the frame level.

Intuitively, visual awareness has composition property,

which means that the visual awareness of a FOV is equal to

the sum of the enclosed unit cells’:

VA(f ) =
∑

c∈f

VA(c) (4)

where the visual awareness of the enclosed unit cell VA(c)
is similar to Equation 1.

VA(c) = U (w)
area(c)

area(w)
(5)

where w is the work cell that encloses unit cell c.

B. Visual Awareness Maximization

To prioritize the video frames for transmission, the server

selects a set of frames that maximizes the total awareness

without exceeding budget B. With the assumption that the

size of all video frames is the same, budget B is equivalent

to the maximum number of frames that can be transmitted,

K = �B/size of a frame�. We formally define the prob-

lem as follows.
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Problem 2 (Visual Awareness Maximization (VAMF )):
Given a budget K for a time interval and a collection of

video frames F = {f1 , f2 , ...}, each frame fi containing

a set of unit cells ck, the budget-constraint maximization

of visual awareness is the problem of selecting a set of

frames, denoted by L, such that the total visual awareness

of the covered unit cells
∑

ck∈
⋃

fi∈L
VA(ck ) is maximized

while satisfying |L| ≤ K.

By restriction, we proof that the VAMF
5 problem is NP-

hard by a reduction from the weighted maximum coverage

problem (MCP) [11].

Theorem 2: The VAMF problem is NP-hard.

Proof: We proof the theorem by providing a one-to-

one correspondence from MCP to the VAMF problem,

or MCP ≤p VAMF . Toward that end, given an instance

of MCP, denoted by Im, there exists an instance of the

VAMF problem, denoted by Iv , such that the solution to

Iv can be converted to the solution of Im in polynomial

time. The reduction is straightforward by matching from Im
components to Iv components.

In Figure 4b, given K = 2 and the visual awareness of all

unit cells is the same, VAMF selects f1 and f3 to minimize

redundant coverage.

As MCP is strongly NP-hard, a greedy algorithm is

proposed to achieve an approximation ratio of 0.63 [8]. The

algorithm chooses a set (i.e., a frame) at each stage that

contains the maximum weight (i.e., visual awareness) of un-
covered elements (i.e., unit cells). Feige and Uriel [8] show

that the greedy algorithm is the best-possible polynomial

time approximation algorithm for MCP.

VI. PERFORMANCE EVALUATION

We conducted several experiments on synthetic datasets

to evaluate the performance of our proposed approaches.

Below, we first discuss our experimental setup and then we

present our experimental results.

A. Experimental Methodology

We used the source code in [3] to generate synthetic video

metadata with realistic geospatial properties, based on the

behavioral patterns of mobile cameras when they move and

rotate. We generated three spatial distributions of the video

locations, Uniform, Gaussian and Zipfian, in a region of

10 × 10 square km at Los Angeles, USA. Uniform dataset

is randomly generated while Gaussian and Zipfian datasets

follows Gaussian (μ = 0, σ = 0.1) and Zipfian (skew

parameter s = 1) distributions, respectively. We discretized

the space into 500×500 unit grid cells; the size of each unit

cell is 20 square meter. We used a reasonable assumption

of pedestrian camera moving with speed limit is between

5 and 20 km per hour. We fixed the video sampling rate

to one frame per second, which means the metadata of a

5The subscript F denotes the frame-level optimization problem.

five-seconds video has five FOVs. We fixed the horizontal

viewable angle θ to 60 degrees and the visible distance R
to 200 m. We calculated the average rotation (in degrees/s)

of the camera at each trajectory point is about 12 degrees

while the maximum rotation is 55 degrees.

In all of our experiments, we varied the number of ana-

lysts A ∈ {16, 25, 36, 49, 64} and the bandwidth constraint

B ∈ {10, 15, 20, 25, 30} MBs per time interval. We fixed

the number of videos with metadata only |V | = 1000 and the

number of videos with content |U | = 250 whose locations

are randomly sampled from V . The video size follows

Zipfian distribution with skew parameter s. We varied the

skew parameter s ∈ {1.6, 1.8, 2.0, 2.2, 2.4}, resulting in the

corresponding mean values {16.7, 8.2, 4.6, 2.9, 1.4} MB.

Default values are shown in boldface. With such default

settings, the total coverage area of all FOVs is about 15

square km. Also, we assume one-second video weighs 1MB

and the size of each frame image is 100KB. We assigned the

urgency to each work cell by generating a random number

between 0 and 5. All measured results are averaged over ten

random seeds.

B. Experimental Results

We evaluate the performance of the proposed partitioning

techniques in terms of maximizing visual awareness. We

first present the results where the entire video needs to be

uploaded.

1) Visual Awareness Maximization: Figure 5 illustrates

the results by varying the number of analysts A. We observe

that with the increase of A, higher visual awareness is

obtained. The reason is that the higher the number of

analysts, the smaller the work cells; leading to the increase

in the visual awareness of the enclosed videos. Also, Kd-

tree generally performs best in terms of maximizing visual

awareness. As shown on Uniform (Figure 5a), Kd-tree in-

creases the visual awareness by up to 3 times in comparison

to Grid. The improvement is 6 times higher on Gaussian
(Figure 5b). In the same fashion, Figure 6 shows the similar

results when the urgency map is computed based on region

entropy (RE) (from Section IV-B2) rather than randomly

generated. The reason is that, unlike Grid and Quadtree, Kd-

tree produces roughly equal number of videos per work cell,

which contributes to the balanced workload of the analysts

(Figure 7). In contrast, it is almost certain that Grid and

Quadtree produce empty and over-populated cells. While

empty cells waste analyst resources and thus contribute to

the smaller visual awareness, highly populated cells are

susceptible to redundant coverage of the containing videos.

Figure 8 measures the impact of increasing budget B. As

expected, a higher budget yields higher visual awareness, as

more videos can be selected. Also, Kd-tree and Quadtree

outperform Grid, particularly in the Gaussian dataset (Fig-

ure 8b), which shows that Kd-tree and Quadtree adapt better
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Figure 5: Varying the number of analysts A.
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Figure 6: Gaussian. RE is calcu-
lated from Gowalla dataset
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Figure 7: Variance of the number
of videos per analyst.

to the non-uniform datasets. Figure 9 depicts this adaptation

by showing their structures on Gaussian.
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Figure 8: Varying the bandwidth constraint B (MB).

(a) Quadtree, Gau. (b) Kd-tree, Gau.

Figure 9: Structures of Quadtree, Kd-tree on Gaussian (A = 64).

2) Minimum Redundant Coverage: We evaluate the per-

formance of the Greedy algorithm from Section V where

individual video frames can be uploaded. Figure 10a shows

the results by varying the number of analysts on Uniform
dataset (similar results were observed for Gaussian). We

observe similar trend as in Figure 5a, except that the ob-

tained visual awareness is an order of magnitude higher. The

reason is that, for the same amount of bandwidth and analyst

count as in the video-level problem, frame-level optimization

selects the frames with minimal overlap and thus maximizes

the visual awareness. We also show the results by varying

the budget B in Figure 10b and observe similar trends as in

Figure 8a.
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Figure 10: Performance of greedy algorithm on Uniform.

3) The Effect of Skewed Data: We evaluate the perfor-

mance of partitioning techniques on the highly skewed Zip-
fian dataset. We observe from Figure 11a that the obtained

visual awareness of Quadtree and Kd-tree is much higher

than that of the baseline by nearly two orders of magnitude.

The reason is that Quadtree and Kd-tree produce many

tiny work cells and less large work cells in Zipfian when

compared with Uniform; and these tiny work cells lead

to excessive high visual awareness of the enclosed videos.

Similar results are revealed from frame-level optimization

(Figure 11b), the gap between Kd-tree and Grid are higher

when compared to that in Figure 10.
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Figure 11: Varying the analyst count A on the Zipfian dataset.

4) The Effect of Video Size: Figure 12a evaluates the

performance of the partitioning techniques on Uniform by

varying the skew parameter s. The figure shows that in-

creasing s or equivalently decreasing the average video size

marginally increases the visual awareness. This unexpected

result can be attributed to the fact that regardless of the skew

parameter most videos are small in size, which are highly

likely to be selected by the server.
5) Runtime Measurements: Figure 12b compares the con-

struction time of the partitioning techniques (Algorithm 1).

Their construction times are small and the differences are

insignificant. In addition, the average runtime of the dynamic

programming algorithm from Section IV-A3 is 1.1 seconds

while that of the greedy algorithm from Section V-B is 10

seconds. These results show the practicality of our proposed

framework.

VII. CONCLUSION

We introduced a crowdsourcing framework for collection

and analysis of video data under disaster situations. The
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Figure 12: The effect of skew parameter s for generating video
size and the construction times of the partitioning techniques.

framework automatically divides a large disaster area into

small work cells, each assigned to one analyst. We developed

an analytical model to quantify the visual awareness of a

particular video or frame and introduced the visual aware-

ness maximization problem. Two problem variants have been

studied, one with uploading the entire videos, the other

with uploading individual frames to reduce bandwidth usage

and avoid redundant coverage. Our experimental results on

synthetic data demonstrated that the proposed decomposition

techniques are effective and the optimization solutions are

practical. As future work, we will study crowdsourcing

strategies that collaboratively involve both the analysts at the

command center and the controlled workers at the disaster

site to answer some open questions, including who to ask

and where to collect data in disasters.
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