SQL: Update
Example Schema

Dept (DeptNo, Name, Location)

Emp (EmpNo, Name, Job, Sal, Comm, HireDate, Mgr, DeptNo)
Example Relations

Emp

<table>
<thead>
<tr>
<th>EMPNO</th>
<th>NAME</th>
<th>JOB</th>
<th>MGR</th>
<th>HIREDATE</th>
<th>SAL</th>
<th>COMM</th>
<th>DEPTNO</th>
</tr>
</thead>
<tbody>
<tr>
<td>7369</td>
<td>SMITH</td>
<td>CLERK</td>
<td>7902</td>
<td>17-DEC-80</td>
<td>800</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>7499</td>
<td>ALLEN</td>
<td>SALESMAN</td>
<td>7698</td>
<td>20-FEB-81</td>
<td>1600</td>
<td>300</td>
<td>30</td>
</tr>
<tr>
<td>7521</td>
<td>WARD</td>
<td>SALESMAN</td>
<td>7698</td>
<td>22-FEB-81</td>
<td>1250</td>
<td>500</td>
<td>30</td>
</tr>
<tr>
<td>7566</td>
<td>JONES</td>
<td>MANAGER</td>
<td>7839</td>
<td>02-APR-81</td>
<td>2975</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>7654</td>
<td>MARTIN</td>
<td>SALESMAN</td>
<td>7698</td>
<td>28-SEP-81</td>
<td>1250</td>
<td>1400</td>
<td>30</td>
</tr>
<tr>
<td>7698</td>
<td>BLAKE</td>
<td>MANAGER</td>
<td>7839</td>
<td>01-MAY-81</td>
<td>2850</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>7782</td>
<td>CLARK</td>
<td>MANAGER</td>
<td>7839</td>
<td>09-JUN-81</td>
<td>2450</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>7788</td>
<td>SCOTT</td>
<td>ANALYST</td>
<td>7566</td>
<td>19-APR-87</td>
<td>3000</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>7839</td>
<td>KING</td>
<td>PRESIDENT</td>
<td>17-NOV-81</td>
<td>5000</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7844</td>
<td>TURNER</td>
<td>SALESMAN</td>
<td>7698</td>
<td>08-SEP-81</td>
<td>1500</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>7876</td>
<td>ADAMS</td>
<td>CLERK</td>
<td>7788</td>
<td>23-MAY-87</td>
<td>1100</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>7900</td>
<td>JAMES</td>
<td>CLERK</td>
<td>7698</td>
<td>03-DEC-81</td>
<td>950</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>7902</td>
<td>FORD</td>
<td>ANALYST</td>
<td>7566</td>
<td>03-DEC-81</td>
<td>3000</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>7934</td>
<td>MILLER</td>
<td>CLERK</td>
<td>7782</td>
<td>23-JAN-82</td>
<td>1300</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Dept

<table>
<thead>
<tr>
<th>DEPTNO</th>
<th>NAME</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>ACCOUNTING</td>
<td>NEW YORK</td>
</tr>
<tr>
<td>20</td>
<td>RESEARCH</td>
<td>DALLAS</td>
</tr>
<tr>
<td>30</td>
<td>SALES</td>
<td>CHICAGO</td>
</tr>
<tr>
<td>40</td>
<td>OPERATIONS</td>
<td>BOSTON</td>
</tr>
</tbody>
</table>
INSERT Statement

To create a tuple in SQL the following ‘Insert’ command is required:

```
insert into R (attribute₁, attribute₂, … attributeₙ)
values (value₁, value₂, … valueₙ)
```

```
insert into Dept (deptno, name, location)
values (10, ‘Accounting’, ‘New York’)
```

```
insert into Dept (deptno, name, location)
values (30, ‘Sales’, ‘Chicago’)
```

```
insert into Emp (empno, name, job, sal, comm, hiredate, mgr, deptno)
values (7839, ‘King’, ‘President’, 5000, NULL, ‘17-Nov-81’, NULL, 10)
```

```
insert into Emp (empno, name, job, sal, comm, hiredate, mgr, deptno)
values (7698, ‘Blake’, ‘Manager’, 1600, NULL, ’01-May-81’, 7839, 30)
```

The insert order matters in terms of referential integrity constraints!
Group INSERT Statement

To create a set of tuples in SQL the following ‘Insert’ command can be used:

```sql
insert into R (attribute_1, attribute_2, ... attribute_n)
select (attribute_1, attribute_2, ... attribute_n)
from relation_1, relation_2, ... relation_n
[where condition-expression]
[group by attribute_1, attribute_2, ... attribute_n ]
[having condition-expression]
[order by attribute_1, attribute_2, ... attribute_n ]
```

Example: copy details of all employees that work in department 10 from the Emp relation into the DepA relation.

```sql
insert into DepA (staffno, name, job, hiredate)
select empno, name, job, hiredate
from Emp
where deptno = 10;
```

Each tuple to be inserted has to be unique!

Corresponding attributes have to be of the same type.
DELETE Statement

To delete a set of tuples in SQL the following ‘Delete’ command is used:

```
delete from R
[where condition-expression]
```

Example: remove details of all employees that work in department 10 from the Emp relation.

```
Delete from Emp
where deptno = 10;
```

If the where clause is omitted then all tuples in the relation will be removed!
UPDATE Statement

To alter a set of tuples in SQL the following ‘Update’ command is used:

```
update R
set attribute_1 = datavalue_1,
    attribute_2 = datavalue_2, ...
    attribute_n = datavalue_n
[where condition-expression]
```

Example: increase the salary of all employees that work in department 10 by 10%.

```
update Emp
set sal = sal * 1.1
where deptno = 10;
```

If the where clause is omitted then all tuples in the relation will be altered!
ORDER BY

select emp.name, dept.name
from Emp, Dept
where (emp.deptno = dept.deptno)
 and (emp.deptno = 10 or emp.deptno = 30)
order by emp.name asc;

select emp.name, dept.name
from Emp, Dept
where (emp.deptno = dept.deptno)
 and (emp.deptno = 10 or emp.deptno = 30)
order by dept.name desc;

select name
from Dept
order by name;

Blake Sales
King Accounting

Blake Sales
King Accounting

Remember in relations neither tuples nor attributes have any intrinsic order!
Views in SQL

- A SQL view is a virtual table that is derived from other base or virtual tables.
- Base tables are defined by CREATE TABLE command and are permanently stored in a database.
- Virtual tables are defined by the CREATE VIEW command to avoid defining complex SQL retrieval expressions repeatedly.
- The definition of a view is stored in the Catalog, but it is not stored in the database itself, so it is computed every time it is used in a query.
Example

- A possible view definition
  ```sql
  CREATE VIEW StudOccupied AS
  SELECT g.StudId, SUM(Hours) AS Occupied
  FROM Grades g, Course p
  WHERE g.CourId = p.CourId AND Grade IS NULL
  GROUP BY StudId;
  ```

- Deleting a view
  ```sql
  DROP VIEW StudOccupied;
  ```