CONTINUOUS NEAREST NEIGHBOR SEARCH

Instructor: Cyrus Shahabi
OVERVIEW

• Introduction
• Preliminary & Related Work
• Continuous k-Nearest Neighbor Query (CkNN)
 – Definition
 – Problem Characteristics
 – R-tree algorithm
 – Query analysis
 – Complex CNN extension
• Experiments
• Discussion and Conclusion
INTRODUCTION

• Continuous Nearest Neighbor

• Why called “continuous”?
 – Nearest neighbor of every points in the trajectory
PRELIMINARY -- CONTINUOUS NEAREST NEIGHBOR

- Data: A set of points \(P = \{a, b, c, d, f, g, h\} \)
- Query: A line segment \(q = [s, e] \)
- Result: The nearest neighbor (NN) of every point on \(q \).
- Result representation: \(\{<a, [s, s_1]>, <c, [s_1, s_2]>, <f, [s_2, s_3]>, <h, [s_3, e]>\} \)
RELATED WORK – SAMPLING

• Try to convert the continuous-NN to point-NN
 – Every point on the line -> unlimited points
 – Sampling

• Drawback:
 – Sample Rate: low -> incorrect
 – Sample Rate: high -> overhead (still cannot guarantee accuracy)
• Step 1: Find the NN of the start point s, i.e., point a.
• Step 2: Use the TP technique: find the first point on the line segment (s_1) where there is a change in the NN (i.e., point c) will become the next NN – result: $<a, [s,s_1), c>$
• Can be thought as conventional NN query, where the goal is to find the point x with the minimum $\text{dist}(s,sx)$
• Step 3: Perform another TP NN to find:
• Starting from s1, the smallest distance we need to travel for the current NN (i.e., c) to change
• Repeat this until we finish the entire segment.
RELATED WORK – TP NN (CONT.)

• Not only NN, but support k-NN
• Still overhead: $n (= \text{split points})$ times NN queries, multiple scans of database
CKNN - DEFINITION

• Goal: Find all split points (as well as the corresponding NN for each segment) with a single traversal.

• Split List (SL): The set of split points (including s and e).
• Each split point \(s_i \in SL \) and all points in \([s_i, s_{i+1}]\) have the same NN, denoted as \(s_i.NN \) (e.g., \(s_1.NN \) is \(c \), which is also the NN for all points in interval \([s_1, s_2]\))
• \(s_i.NN \) (e.g., \(c \)) covers point \(s_i (s_1) \) and interval \([s_i, s_{i+1}] ([s_1, s_2])\).
• Vicinity Circle (VC): The circle that centers at split point \(s_i \) with radius \(\text{dist}(s_i, s_i.NN) \)
CKNN – PROBLEM CHARACTERISTICS

• Lemma 1: Given a split list \(SL \{s_0, s_1, ..., s_{|SL| - 1}\} \), and a new data point \(p \), then: \(p \) covers some point on query segment \(q \) if and only if \(p \) covers a split point.

Analyzing the first data point “a” (in alphabetical order)

Analyzing “b”: not in VC of \(s \) and \(e \), hence no point on \([s,e]\) closer to \(b \) than \(a \)

Result: \(\{<a, [s,s1]>, <c, [s1,e]> \} \)}

Analyzing “c”: in VC of \(e \), hence: Creating a new split point...

\(d \) not in any VC (note that it was in VC of \(e \) before adding \(c \))
CKNN - PROBLEM CHARACTERISTICS

• Lemma 2: (Covering Continuity)
 – The split points covered by a point p are continuous.
 – Namely, if p covers split point s_i but not s_{i-1} (or s_{i+1}),
 then p cannot cover s_{i-j} (or s_{i+j}) for any value of $j > 1$.
 – Below: p covers S_i, S_{i+1} and S_{i+2} (p falls in their vicinity circles),
 but not s_{i-1}, s_{i+3}, so no need to check p against any other split points.
CKNN - PROBLEM CHARACTERISTICS

- Finding new split points for b:
 - b covers S_{i-1} and f covers S_{i+2}; so we need to find the space that NN changes from b to p and then to g

When new data point “p” arrives...

Processing point “p” ...

\[
SL = \{ s_{i-1} (\text{NN}=a), s_i (\text{NN}=b), s_{i+1} (\text{NN}=p), s_{i+2} (\text{NN}=f) \}
\]

\[
SL = \{ s_{i-1} (\text{NN}=a), s_i (\text{NN}=b), s_{i+1} (\text{NN}=c), s_{i+2} (\text{NN}=d), s_{i+3} (\text{NN}=f) \}
\]
CKNN - PROBLEM CHARACTERISTICS

• How about the k-NN?
• Lemma 1: Fit || Lemma 2: Cannot Fit
• Eg:
 - K=3

h covers s_i, s_{i+3}
But not s_{i+1}, s_{i+2}

$$SL=\{s_i(\text{NN}_{1-3}=a, b, c), s_{i+1}(\text{NN}_{1-3}=a, b, d), s_{i+2}(\text{NN}_{1-3}=a, c, d), s_{i+3}(\text{NN}_{1-3}=c, d, f)\}$$
CKNN – R-TREE ALGORITHM

• General key notes:
 – Use branch-and-bound techniques to prune the search space.
 – R-tree traverse principle:
 • When a leaf entry (i.e., a data point) \(p \) is encountered, SL is updated if \(p \) covers any split point (i.e., \(p \) is a qualifying entry) – By Lemma 1.
 • For an intermediate entry, We visit its subtree only if it may contain any qualifying data point – Use heuristics.
 – Avoid accessing non qualified nodes
R-TREE ALGORITHM – HEURISTIC 1

- Given an intermediate entry E and query segment q, the sub-tree of E may contain qualifying points only if $\text{mindist}(E, q) < \text{SL}_{\text{MAXD}}$, where SL_{MAXD} is the maximum distance between a split point and its NN.

$\text{SL} = \{s (\text{NN}=a), s_1 (\text{NN}=b), e (\text{NN}=b)\}$

Compute $\text{Mindist}(E, q)$
R-TREE ALGORITHM – HEURISTIC 2
(AFTER 1)

- Given an intermediate entry E and query segment q, the subtree of E must be searched if and only if there exists a split point $s_i \in SL$ such that $\text{dist}(s_i, s_i.\text{NN}) > \text{mindist}(s_i, E)$.

\[\text{mindist}(E,s) = \text{mindist}(E,q) \]

\[SL = \{ s (\text{NN}=a), s_1 (\text{NN}=b), e (\text{NN}=b) \} \]
R-TREE ALGORITHM – HEURISTIC 3 (ORDER)

- Entries (satisfying heuristics 1 and 2) are accessed in increasing order of their minimum distances to the query segment q.

Before processing E_1, $SL=\{s (.NN=\alpha), e (.NN=\alpha)\}$

After processing E_1, $SL=\{s (.NN=\alpha), s_1 (.NN=e), e (.NN=e)\}$
R-TREE ALGORITHM – LEAF ENTRY

- Input: New entry p, SL =\{s_1, ..., s_{10}\}
 - 1) retrieve the split points covered by p
 - 2) update SL
- Binary search: 1) $[s_0, s_{10}] \rightarrow s_5$ 2) $[s_0, s_5] \rightarrow s_2$
 - Using bisector to judge the direction
CKNN – R-TREE ALGORITHM (EXAMPLE)

- Depth First (query segment: se)
OTHER

CNN QUERY

• kCNN query (k=2)

• Trajectory NN query (TNN)
 – q1 = [s,u]
 – q2 = [u,v]
 – q3 = [v,e]
 – Each segment has a SL
 – Treated one by one
EXP: PERFORMANCE VS QUERY LENGTH

- Node accesses
 - CNN
 - TP

- CPU cost (sec)
 - CNN
 - TP

- Total cost (sec)
 - CNN
 - TP
 - CPU percentage

- CPU time (sec)
 - CNN
 - TP

- Total cost (sec)
 - CNN
 - TP
 - CPU percentage
DISCUSSION AND CONCLUSION

• A fast algorithm for C-kNN query.
• Future work:
 – Rectangle data
 – Moving data points
 – Application to road networks (i.e., travel instead of Euclidean distance)
References

• A presentation by Penny Pan in csci587 Fall’2010
Sample question