VoR-Tree: R-trees with Voronoi Diagrams for Efficient Processing of Spatial Nearest Neighbor Queries

Instructor: Cyrus Shahabi
Outline

• Introduction
 – Motivation: I/O-efficient spatial query processing
• Our Index Structure: VoR-tree
 – Voronoi Diagram
 – R-tree
 – VoR-tree
• Query Processing Using VoR-tree
 – Related works
 – k Nearest Neighbor Query
 – k Aggregate Nearest Neighbor Query
 – Reverse k Nearest Neighbor Query
• Performance Evaluation
• Summary and Future Directions
Motivation

- **Index-based processing of Nearest Neighbor queries**
 - Spatial index provides fast access by hierarchical grouping
 - Algorithms utilize aggregate information to *minimize I/O* operations

Search Region of p:
- A possible better result must be inside this region

Step 1:
- Filtering through iterative pruning
 - R-trees

Step 2:
- Refinement through exploration
 - R-trees
Motivation

- **Index-based processing of Nearest Neighbor queries**

Traverse along edges of Delaunay graph to minimize/maximize a function \(f \) …

Search Region of \(p \): a possible better result must be inside this region

- **Step 1:**
 - Filtering through iterative pruning
 - R-trees

- **Step 2:**
 - Refinement through exploration
 - Voronoi diagrams
Voronoi Diagrams

- Given a set of spatial objects, a Voronoi diagram *uniquely* partitions the space into disjoint regions (cells).
- The region including object \(p \) includes all locations which are closer to \(p \) than to any other object \(p' \).

Ordinary Voronoi Diagram

Dataset:
- Points

Distance \(D(.,.) \):
- Euclidean (\(L_2 \))

Voronoi Cell of \(p \)

Voronoi Neighbors of \(p \)

Point \(q \) inside the cell of \(p \)

\[D(q, p) \leq D(q, p') \]
R-tree: Classic Spatial Index Structure

- Hierarchical grouping of objects into MBRs
- The best NN query processing algorithms utilize R-tree
- Algorithms utilize mindist()
VoR-tree = R-tree + Voronoi Diagram

- We incorporate Voronoi diagram into R-tree → VoR-tree
- Voronoi records are stored with the data of each point
- All R-tree-based algorithms are still applicable using VoR-tree
- VoR-tree facilitates exploring the space (e.g., p_4-p_{11})

$VN(p_4) = \{ p_5, p_6, p_{12}, p_{14}, p_8, p_7 \}$
$VN(p_4) = \{ a, b, c, d, e, f \}$

Voronoi Record of p_4
Query Processing using VoR-tree

👍 I/O-efficient query processing

- Use the information provided in VoR-tree to find the result with the least number of I/O operations
- When a candidate result \(p \) is found, examine only the points inside the search region of \(p \)

👎 Disk space overhead -> ok for enterprise applications
Related Work

• **k Nearest Neighbor (kNN)**
 – Roussopoulos et al., SIGMOD’95
 – Korn et al., VLDB’96
 – Cheung et al., SIGMOD Record, 1998
 – Seidl et al., SIGMOD’98
 – Hjaltson et al., TODS 42(2), 1999
 – Jung et al., IEEE TKDE 2002

• **Reverse k Nearest Neighbor (RkNN)**
 – Korn et al., SIGMOD’00
 – Yang et al., ICDE’01
 – Stanoi et al., VLDB’01
 – Benetis et al., VLDB Journal, vol. 15, 2006
 – Tao et al., VLDB’04
 – Wu et al., VLDB’08

• **k Aggregate Nearest Neighbor (kANN)**
 – Papadias et al., ICDE’04
 – Papadias et al., TODS 30(2), 2005

• **Spatial Skyline**
 – Borzsonyi et al., ICDE’01
 – Tan et al., VLDB’01
 – Kossmann et al., VLDB’02
 – Chomicki et al., ICDE’03
 – Papadias et al., SIGMOD’03
 – Sharifzadeh et al., VLDB’06, TODS’09
kNN: k Nearest Neighbor Query

- Given: point q and int k
- Goal: find the k closest data points to q; k points p_i in P where $D(q,p_i) \leq D(q,p)$ for all points p in $P \setminus \{p_1, \ldots, p_k\}$
- R-tree-based Algorithm:
 BFS [Hjaltson et al., TODS 1999]
- Our VoR-tree-based Algorithm:
 VR-kNN

![Diagram of kNN query with point q and set of points P. $3NN(q) = \{p_1, p_2, p_3\}$]
VR-1NN: step 1

\[\text{mindist}(N, q) = \text{Lower bound on the distance between } q \text{ and any point in } N \]
VR-1NN: step 1

minheap H

VLDB 2010 (Singapore)
VR-1NN: step 1

minheap H

VLDB 2010 (Singapore)
VR-1NN: step 1

candidate 1st NN = p_{14}

VR-1NN terminates but \textbf{BFS must examine} \(N_3\)

\(\Rightarrow D(q, p_{14}) = 5 > \text{mindist}(q, N_3)\)
Lemma: 2nd NN of q is one of Voronoi neighbors of the 1st NN of q.

candidate 2nd NNs = \{p_4, p_8, p_{13}, p_{12}\}

Finding more NNs by navigating Voronoi diagram

\(\Rightarrow 1st NN = p_{14}\)

\(\Rightarrow 2nd NN = p_4\)
Lemma: kth NN of q is Voronoi neighbor of one of 1st, 2nd, ..., k-1th NN of q.

candidate 3rd NNs = \{p_8, p_{13}, p_{12}, p_5, p_6, p_7\}
VR-kNN

Performance Improvements:
- Using Voronoi cells for 1NN
 - e.g., no access to N_3
- Using Voronoi neighbors for kNN
 - e.g., no access to N_2 and N_3 for $k < 5$

I/O Complexity:
$O(\Phi(|P|) + k)$ where $\Phi(|P|)$ is the complexity of finding the 1st NN of q
kANN: k Aggregate Nearest Neighbor

- Given: $Q = \{q_1, ..., q_n\}$, integer k, and aggregate distance f
- $adist(p, Q) = f(D(p, q_1), ..., D(p, q_n))$
- Goal: find k data points p with smallest $adist(p, Q)$
- $f = \text{sum} \rightarrow$ the points that minimize the total distance to Q
- $f = \text{max} \rightarrow$ the points that minimize max distance to Q
- Variations: weighted sum, ...
kANN

- R-tree-based Algorithm: MBM [Papadias et al, TODS’05]
- Similar to BFS for kNN
- Heuristics to prune nodes
 - Lower bounds on \(\text{adist}(p', Q) \):
 - \(\text{adist}(p', Q) = f(D(p', q_1), ...) \geq \text{amindist}(N, \text{MBR}(Q)) = f(\text{mindist}(N, \text{MBR}(Q)), ...) \)
 - \(\text{adist}(p', Q) = f(D(p', q_1), ...) \geq \text{amindist}(N, Q) = f(\text{mindist}(N, q_1), ...) \)
- Problem: too conservative
 - No optimal coverage of SR

Assume: candidate result = \(p \)

\(\text{MBR}(Q) \)

\(q_1 \)

\(q_2 \)

\(q_3 \)

\(N \)

\(p' \)

\(> \text{adist}(p, Q) \rightarrow \text{do not access } N \)

\(> \text{adist}(p, Q) \rightarrow \text{do not access } N \)
VR-kANN

- Search Region of p for $f=sum$
 p' where $\text{adist}(p', Q) \leq \text{adist}(p, Q)$
- Co-circular areas for many functions
- VR-kANN’s two steps:
 1. Find a point close to the 1$^{\text{st}}$ ANN of Q

 $q \in R^2 = \text{centroid of } Q \text{ that minimizes } \text{adist}() = \text{center of all SRs}$
 2. Traverse the space using Voronoi diagram to finalize the result
- To ensure the coverage
 $\text{adist}(p', Q) \geq \text{amin\text{dist}}(V(p), Q)$

Use to check that $V(p)$ is intersecting SR
VR-kANN

F(p): lower bound of sum(p’,Q) for p’ in V(p)

• find b, the closest point to centroid q (use VR-1NN)

• add b’s neighbors into a minheap H ordered by F()

• add each visited point to candidate result

• iterate: remove the top, add its neighbors to H

• STOP condition: return a candidate a when adist(a,Q) <= key of top of H (we’ve covered b’s SR)

• NOTE: key of top of H is lower bound on sum() for all points extracted points.

\[\min(\text{amindist}(V(p'),Q)) \Rightarrow \text{we have covered p’s SR} \]

Continue to cover more SRs and find more results
VR-kANN

Performance Improvements:

- Using Voronoi cells to cover SR
 - e.g., heuristics used by MBM
 [Papadias et al., TODS 30(2), 2005] suggests to examine N but no access to N in VR-kANN

I/O Complexity:

\[O(\Phi(|P|) + k) \]

where \(\Phi(|P|) \) is the complexity of finding the cell including centroid \(q \)
RkNN: Reverse k Nearest Neighbor Query

- **Given:** point q and int k
- **Goal:** find the data points that have q as one of their k NN; points p in P where $D(q,p) \leq D(q,p_k)$ where p_k is k-th NN of p
- **R-tree-based Algorithm:** TPL [Tao et al., VLDB’04]
- **VR-RkNN:** Locate q in VD, navigate to the points less than k points away from q, stop when q’s kNN in each sector is found.
 - $L1$: k-th RNN of q is in less than k distance from q
 - $L2$ [Stanoi et al., VLDB’01]: RkNN of q is one of q’s kNNs in each partition S
Spatial Skyline Query [VLDB’06, TODS’09]

- Given: \(Q = \{ q_1, ..., q_n \} \)
- Goal: find data points \(p \) for which there is no point closer than \(p \) to all \(q_i \)'s
- R-tree-based Algorithm:
 \(B^2S^2 \) [Sharifzadeh et al., VLDB’06]
- Voronoi-based Algorithm:
 \(VS^2 \) [Sharifzadeh et al., VLDB’06]
- VR-S\(^2\): similar to \(VS^2 \) and VR-kANN
- Improvement over \(B^2S^2 \) and \(VS^2 \)
 - I/O-optimality
 - Ability to report in the order of given function
Performance Evaluation

- **Real-world datasets (data points):**
 - **USGS** including one million locations in U.S.
 - **NE** including 124K locations in New York, Philadelphia and Boston

- **Methodology:** issuing 1000 NN queries of each type with random query points

- **Evaluating VoR-tree-based algorithms**
 - Number of accessed disk pages (I/O cost)

- **Parameters**
 - Size of result set (k) for kNN, RkNN, and kANN
 - Number of query points (|Q|) for kANN and SSQ
 - Extent of query points (size of MBR(Q)) for kANN and SSQ

- **Competitor approaches:**
 - BFS [Hjaltson et al., TODS 1999] for kNN
 - MBM [Papadias et al., TODS 30(2), 2005] for kANN
 - TPL [Tao et al., VLDB’04] for RkNN
Performance Evaluation

- Dataset: USGS
- I/O cost of VR-kNN
- Competitor approach:
 - BFS that utilizes an R-tree on data points

- VR-kNN examines less number of disk pages when k grows
- Up to 18% improvement for large k
Performance Evaluation

- Dataset: USGS
- I/O cost of VR-kANN
- Competitor approach:
 - MBM that utilizes an R-tree on data points

- Up to 64% improvement for VR-kANN
- VR-kANN’s I/O is almost half of MBM’s for small k
- for large k, they converge
Performance Evaluation

- Dataset: USGS
- I/O cost of VR-RkNN
- Competitor approach:
 - TPL that utilizes an R-tree on data points
 - Logarithmic scale
 - VR-RkNN’s I/O is much less than TPL (0.1% even for small k)
 - TPL uses a very conservative filter because the best theoretical filter is very complex to compute so it collects large candidate sets. VR-RkNN instead used Voronoi neighborhood information.
 - TPL examines almost all pages for large k
Summary and Future Directions

• We designed VoR-tree = R-tree + Voronoi diagram
• We developed I/O-efficient algorithms for NN queries
• We showed that our algorithms outperform their R-tree-based competitors
• Future Work:
 – Utilizing VoR-tree for other spatial spaces
 – Extending algorithms for non-point datasets
References