Query Processing in Spatial Network Databases

Instructor: Cyrus Shahabi
Outline

• Introduction
• Related work
 – Disk-based graph representations: 2DMatrix, CCAM structure
 – R-tree
• Spatial query in network databases
 – Architecture
 – Spatial queries:
 • Nearest neighbor query
 – Incremental Euclidean Restriction (IER) method
 – Incremental Network Expansion (INE) method
 • Range query
 – Range Euclidean Restriction (RER) method
 – Range Network Expansion (RNE) method
• Experiments
• Summary
Introduction

- Euclidean distance

Where is the nearest Starbucks?????
Introduction

- Euclidean distance

Where is the nearest Starbucks ??????
Introduction

- Euclidean distance

Only 8 miles... yaaaayyy!!

Closest...
Introduction

- Network distance

Considering the underlying road network, is the nearest Starbucks still the same?
Introduction

- Network distance

Closest...

NO !!!
Introduction

- Euclidean distance vs. Network distance

Any relationship?

\[d_E \leq d_N \]

the Euclidean distance between two points is equal or smaller than their network distance.
Introduction

- How can we represent a road network?
- Graphs
Outline

• Introduction
• Related work
 – Disk-based graph representations: 2DMatrix, CCAM structure
 – R-tree
• Spatial query in network databases
 – Architecture
 – Spatial queries:
 • Nearest neighbor query
 – Incremental Euclidean Restriction (IER) method
 – Incremental Network Expansion (INE) method
 • Range query
 – Range Euclidean Restriction (RER) method
 – Range Network Expansion (RNE) method
• Experiments
• Summary
Disk-based graph representations

- A graph can be represented as
 - Two-dimensional matrix
 - An adjacency list
Disk-based graph representations: 2D Matrix

- Two-dimensional matrix

- Disadvantage?

Adjacency matrix

<table>
<thead>
<tr>
<th></th>
<th>n1</th>
<th>n2</th>
<th>n3</th>
<th>n4</th>
<th>n5</th>
</tr>
</thead>
<tbody>
<tr>
<td>n1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>n2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>n3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>n4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>n5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Disk-based graph representations: 2D Matrix

– Two-dimensional matrix

– Disadvantage?
 Sparse, More I/O

Adjacency matrix

<table>
<thead>
<tr>
<th></th>
<th>n1</th>
<th>n2</th>
<th>n3</th>
<th>n4</th>
<th>n5</th>
</tr>
</thead>
<tbody>
<tr>
<td>n1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>n2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>n3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>n4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>n5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Disk-based graph representations: CCAM structure

• The Connectivity-clustered Access Method (CCAM) structure
 – Each node has a list that stores its neighbors
 – Stores the lists of neighbor nodes together
Disk-based graph representations: CCAM structure

• An example
Disk-based graph representations: CCAM structure

- An example

A graph

Index: a B-tree in order of node id

Disk: Adjacency lists

Adjacency list of n1

null
Disk-based graph representations- CCAM structure

• CCAM vs. 2D Matrix?
• CCAM is preferable for applications, such as road networks, where the graphs are sparse.
Outline

• Introduction
• Related work
 – Disk-based graph representations: 2DMatrix, CCAM structure
 – R-tree
• Spatial query in network databases
 – Architecture
 – Spatial queries:
 • Nearest neighbor query
 – Incremental Euclidean Restriction (IER) method
 – Incremental Network Expansion (INE) method
 • Range query
 – Range Euclidean Restriction (RER) method
 – Range Network Expansion (RNE) method
• Experiments
• Summary
Spatial query processing in Euclidean Space

- An R-tree index
 - Multidimensional extension of B-tree
Outline

• Introduction
• Related work
 – Disk-based graph representations- 2DMatrix, CCAM structure
 – R-tree
• Spatial query in network databases
 – Architecture
 – Spatial queries:
 • Nearest neighbor query
 – Incremental Euclidean Restriction (IER) method
 – Incremental Network Expansion (INE) method
 • Range query
 – Range Euclidean Restriction (RER) method
 – Range Network Expansion (RNE) method
• Experiments
• Summary
Architecture

- Underlying network and spatial entities are separated
- Index the entity datasets (e.g., hotels) separately by R-trees (called Objects R-tree)
- For the network: preserve connectivity (adjacency comp) & location (network R-tree)
Functions

- **check_entity(seg, p)**: is a Boolean function that returns true if point (entity) \(p \) lies on the network segment \(seg \) (i.e., \(seg \) covers \(p \))
 - MBR of \(seg \) is used for filtering and its poly-line representation for refinement.

- **find_segment(p)**: outputs the segment that covers point \(p \) by performing a point location query on the network R-tree.

- **find_entities(seg)**: returns entities covered by segment \(seg \).
 - first finds all the candidate entities that lie in the MBR of \(seg \), and then eliminates the false hits using the poly-line of \(seg \).

- **compute_ND(p1, p2)**: returns the network distance of two arbitrary points \(p1, p2 \) in the network,
 - by applying a (secondary-memory) Dijkstra's algorithm to compute the shortest path from \(p1 \) to \(p2 \).
Nearest Neighbor - IER

- Example: NN of q?

- Step 1: Find Euclidean NN p_{E1} of q on the entity R-tree
- Step 2: Compute the network distance $d_N(q, p_{E1})$ of p_{E1}
- Step 3: Euclidean lower-bound. Objects closer to q than p_{E1} should be within Euclidean distance $d_{E_{max}} = d_N(q, p_{E1})$ from q. Only check SHADED AREA!
Nearest Neighbor - IER

- Example: NN of q?

- Step 1: Find Euclidean NN p_{E1} of q on the entity R-tree
- Step 2: Compute the network distance $d_{N}(q, p_{E1})$ of p_{E1}
- Step 3: Euclidean lower-bound. Objects closer to q than p_{E1} should be within Euclidean distance $d_{E_{\text{max}}} = d_{N}(q, p_{E1})$ from q. Only check SHADED AREA!

- Step 4: Find 2nd Euclidean NN p_{E2} within range $d_{E_{\text{max}}}$.
- Step 5: $d_{N}(q, p_{E2}) < d_{N}(q, p_{E1})$. Current NN is p_{E2}.
- Step 6: Set $d_{E_{\text{max}}} = d_{N}(q, p_{E2})$. Range is now smaller.
- Step 7: Next NN p_{E3} is out of $d_{E_{\text{max}}}$ range. Terminate!
IER: Shortcoming

- IER performs well if the ranking of the data points by their Euclidean distance is similar to that with respect to the network distance. Otherwise, a large number of Euclidean NNs may be inspected before the network NN is found.

- E.g., P5 is the closest in network distance but farther than p1 to p4 in Euclidean distance.

Since $p5$ has the largest Euclidean distance, it will be examined after all other entities, i.e., $p1$ to $p4$ correspond to false hits, for which the network distance computations are redundant.
Nearest Neighbor - IER

- Example with Numbers: NN of q?

 - Step 1: 1st Euclidean NN of q is p_{E1}. $d_E(q, p_{E1}) = 50$
 - Step 2: Compute the network distance $d_N(q, p_{E1}) = 100$. Hence $d_{E_{max}} = 100$.
 - Step 3: Objects closer to q than p_{E1} should be within a Euclidean range of 100.
Nearest Neighbor - IER

• Example with Numbers: NN of q ?

• Step 1: 1st Euclidean NN of q is p_{E1}.
 $d_E(q, p_{E1}) = 50$

• Step 2: Compute the network distance
 $d_N(q, p_{E1}) = 100$. Hence $d_{E_{max}} = 100$.

• Step 3: Objects closer to q than p_{E1} should be within a Euclidean range of 100.

• Step4: 2nd Euclidean NN of q is p_{E2}.
 $d_E(q, p_{E2}) = 75$

• Step 5: Compute the network distance
 $d_N(q, p_{E2}) = 90$. $d_N(q, p_{E2}) < d_N(q, p_{E1})$. Current NN is p_{E2}.

• Step 6: Set $d_{E_{max}} = 90$. Range is now smaller.

• Step 7: Next NN p_{E3} is out of $d_{E_{max}}$ range. Terminate!
Nearest Neighbor – INE

- Incremental Network Expansion (INE) performs network expansion (starting from q), and examines entities in the order they are encountered.

- n_1, n_2, n_3, n_4, n_5
- q
- p_1, p_2

- -> Network node
- -> Object (entity)
- -> Query point
Nearest Neighbor – INE

Find NN for a given query point q.

Min Heap
Nearest Neighbor – INE

Find the edge that q is on using Network R-tree, initiate heap

Min Heap
(n₁, 2), (n₅, 3)
Nearest Neighbor – INE

For each edge e in heap, find entities that are on e and add e’s neighboring edges into heap.
Nearest Neighbor – INE

Add n_2 and n_4 into heap

Min Heap

$(n_5, 3), (n_2, 4), (n_4, 9)$
Nearest Neighbor – INE

Add n_4 into heap

Min Heap

$(n_2, 4), (n_4, 7), (n_4, 9)$
Nearest Neighbor – INE

- $d_N(q, p_1) = d_{N_{\text{max}}} = 4$
- The next entry in the heap n_2 doesn’t have a smaller distance than $d_{N_{\text{max}}}$. Thus, the algorithm terminates.

$\begin{align*}
\text{Min Heap} \\
(n_2, 4), (n_4, 7)
\end{align*}$

p_1 is found on the edge (n_5, n_4)
Outline

• Introduction
• Related work
 – Disk-based graph representations: 2DMatrix, CCAM structure
 – R-tree
• Spatial query in network databases
 – Architecture
 – Spatial queries:
 • Nearest neighbor query
 – Incremental Euclidean Restriction (IER) method
 – Incremental Network Expansion (INE) method
 • Range query
 – Range Euclidean Restriction (RER) method
 – Range Network Expansion (RNE) method
• Experiments
• Summary
Range Queries – ER

• Range query: given a query point q, a range e and a spatial dataset S, find all objects that are within network distance e from q.

• **Range Euclidean Restriction (RER) method:**

 – Perform a range query at the entity dataset and find the set of objects S' within (Euclidean) distance e from q.

 • S' is guaranteed to avoid false misses using lower-bound property ($d_N(q,p) \leq e \Rightarrow d_E(q,p) \leq e$).

 • But it may contain a large number of false hits.

 – RER examines all segments within network distance e from q. Points of S' that fall on some segment, are removed from S' and returned to the user as result.

 – The process terminates when all the segments in the range are exhausted, or when S' becomes empty.
Range Queries – NE

- **Range Network Expansion (RNE) algorithm**
 - First compute the set QS of qualifying segments within network range e from q.
 - Retrieve the data entities falling on these segments (intersection-join between QS and objects)

Problem? QS may be large
Start traversing the object R-tree from root.

1. Compute QS_i for each entry E_i in the current R-tree node.
 - Ex: $QS_1 = \{\}$, $QS_2 = \{\text{all segments except } n_5 n_8 \text{ and } n_1 n_4\}$, $QS_5 = \{n_q n_2, n_2 n_5, n_2 n_6\}$
 - For each entry E_i
 - If $QS_i \neq \{\}$, recurse down the tree
2. If current node is a leaf (suppose E_6), its points only be checked against QS_6.
3. Return entities falling on the segments in QS_i (QS_6). Note that c is not a qualifying object.
Outline

• Introduction
• Related work
 – Disk-based graph representations: 2DMatrix, CCAM structure
 – R-tree
• Spatial query in network databases
 – Architecture
 – Spatial queries:
 • Nearest neighbor query
 – Incremental Euclidean Restriction (IER) method
 – Incremental Network Expansion (INE) method
 • Range query
 – Range Euclidean Restriction (RER) method
 – Range Network Expansion (RNE) method
• Experiments
• Summary
Experiments - NN queries

- IER (Incremental Euclidean Restriction) vs. INE (Incremental Network Expansion).
- Cost as a function of the ratio entity/edge cardinality
- Number of neighbours to be retrieved $k=10$
Experiments - Range Search

• RER (Range Euclidean Restriction) vs. RNE (Range Network Expansion).
• Cost as a function of the ratio entity/edge cardinality
• Length of the range $e=1\%$ of the data universe side length

\[\text{Page Accesses}\]

\[\text{CPU time - msecs}\]

\[\text{cardinality ratio - } |S|/|N|\]
Outline

• Introduction

• Related work
 – Disk-based graph representations: 2DMatrix, CCAM structure
 – R-tree

• Spatial query in network databases
 – Architecture
 – Spatial queries:
 • Nearest neighbor query
 – Incremental Euclidean Restriction (IER) method
 – Incremental Network Expansion (INE) method
 • Range query
 – Range Euclidean Restriction (RER) method
 – Range Network Expansion (RNE) method

• Experiments

• Summary
Summary

• Network distance is a more realistic metric than Euclidean distance.

• *Euclidean restriction* assumes the lower bounding property, which may not always hold in practice (if, for instance, the edge cost is defined as the expected travel travel time). On the contrary, *network expansion* permits a wide variety of costs associated with the edges.

• *Network expansion* has superior performance for nearest neighbour and range queries.
References

• Dimitris Papadias, Jun Zhang, Nikos Mamoulis, Yufei Tao: Query Processing in Spatial Network Databases. VLDB 2003:802-813

• A presentation by Afsin Akdogan in csci587 Fall’2010