Reverse kNN search in Arbitrary Dimensionality

Instructor: Cyrus Shahabi
Algorithms for finding NN

- Elementary methods:
 - Search Algorithm
 - Indexing Data Structure
 - BF
 - DFS
 - R-tree
 - R*-tree
 - NN solution

- More advanced methods:
 - Search Algorithm
 - Branch & Bound Methods
 - Indexing Data Structure
 - NN solution
 - Mindist
 - Maxdist
 - Minmaxdist
Reverse Nearest Neighbors Queries

What are the fire locations I’m nearest to?

Which houses I’m the closest restaurant to?
RNN Definition

- A data point p is the reverse nearest neighbor of query point q, if there is no point p' such that $\text{dist}(p', p) < \text{dist}(q, p)$, i.e. q is the NN of p.

$\text{NN}(p_2) = \text{NN}(p_3) = q$
$\text{RNN}(q) = \{p_2, p_3\}$

- Is RNN a symmetric relation?
Related Work

Main idea
- Pre-computing
- Filter/refinement

Methods
- KM
- YL
- SAA
- SFT

RNN Algorithms
KM

- Original RNN method
 For all \(p \):
 1. Pre-compute \(\text{NN}(p) \)
 2. Represent \(p \) as a vicinity circle
 3. Index the MBR of all circles by an R-tree

 (Named RNN-tree)
 4. \(\text{RNN}(q) \) = all circles that contain \(q \)

- Needs two trees: RNN-tree & R-tree
KM (Cont.)

• YL: Merges the trees
• What happens if we insert p_5?
 $RNN(p_5)=$?

 1. Find all points that have p_5 as their new NN
 2. Update the vicinity circles of those points in the index
 3. Compute $NN(p_5)$ and insert the corresponding circle in the index
• Drawbacks?

Techniques that rely on pre-processing cannot deal efficiently with updates
SAA

• Elimination of the need for pre-computing all NNs in filter/ refinement methods

• SAA:
 – Divide the space around query into six equal regions
 – Find NN(q) in all regions (candidate keys)
 (prove by contradiction: p1 rNN(q) but p2 not!
 – Either (i) or (ii) holds for each candidate key p
 • (i) p is in RNN(q)
 • (ii) No RNN(q) in Si
 – RNN(q) = \{p_6\}

• Any Drawbacks?

The number of regions increases exponentially with the dimensionality
SFT

1. Find the \(k \)NNs of the query \(q \) (\(k \) candidates)
2. Eliminate the points that are closer to other candidates than \(q \).
3. Apply *Boolean range queries* to determine the actual RNNs
 - A Boolean range query terminates as the first data point is found
 - Drawbacks?

False misses
Choosing a proper \(k \)
Concluding former methods:

<table>
<thead>
<tr>
<th>Method</th>
<th>Dynamic data</th>
<th>Arbitrary dimensionality</th>
<th>Exact result</th>
</tr>
</thead>
<tbody>
<tr>
<td>KM, YL</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SAA</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>SFT</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
Half-plane pruning

• Can p' be an RNN of q?

• If p_1, p_2, \ldots, p_n are n data points, then any node whose MBR falls inside $\bigcup_{i=1..n} \Pi p_i(p_i, q)$ cannot contain any RNN result.

• E.g., points inside N2 would have either p_1 or p_2 as their NN, hence they are not RNN of q
• Pruning an R-tree MBR:

• Drawbacks?

\[O(n^2) \] processing time in terms of bisector trimming for computing \(N^{res} \)
Computation of intersections does not scale with dimensionality
• Approximating the residual MBR
• An MBR can be pruned if its residual region is empty

• The approximation is a superset of the real residual region

• We can prune an MBR if its approximate residual is empty

• Good news:

\[O(n) \] processing time for computing \(N^{resM} \)

No more hyper-polyhedrons to make the intersection computation complex
TPL Algorithm

- The big picture
 - Uses best-first search
 - Utilizes one R-tree as the data structure
 - Includes filtering/ refinement phases
 - Uses candidate points to prune entries
 - Filters visited entries to obtain the set S_{cnd} of candidates
 - Adds pruned entries to set S_{rfn}
 - S_{rfn} is used in the refinement step to eliminate false hits
TPL Example

* Figures of this example are obtained from [2]
Filtering step

Action	Heap	S_{cnd}	S_{rfn}
Visit root | $\{N_{10}, N_{11}, N_{12}\}$ | {} | {}
<table>
<thead>
<tr>
<th>Action</th>
<th>Heap</th>
<th>S_{cnd}</th>
<th>S_{rfn}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visit N_{10}</td>
<td>${N_3, N_{11}, N_2, N_1, N_{12}}$</td>
<td>${}$</td>
<td>${}$</td>
</tr>
<tr>
<td>Action</td>
<td>Heap</td>
<td>S_{cmd}</td>
<td>S_{rfn}</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Visit N_3</td>
<td>${N_{11}, N_2, N_1, N_{12}}$</td>
<td>${p_1}$</td>
<td>${p_3}$</td>
</tr>
<tr>
<td>Action</td>
<td>Heap</td>
<td>S_{cmd}</td>
<td>S_{rfn}</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------------</td>
<td>-----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Visit N_{11}</td>
<td>${N_5, N_2, N_1, N_{12}}$</td>
<td>${p_1}$</td>
<td>${p_3, N_4, N_6}$</td>
</tr>
<tr>
<td>Action</td>
<td>Heap</td>
<td>S_{cmd}</td>
<td>S_{rfn}</td>
</tr>
<tr>
<td>------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Visit N_5</td>
<td>${N_2, N_1, N_{12}}$</td>
<td>${p_1, p_2}$</td>
<td>${p_3, N_4, N_6, p_6}$</td>
</tr>
<tr>
<td>Action</td>
<td>Heap</td>
<td>S_{cnd}</td>
<td>S_{rfn}</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Visit N_1</td>
<td>${N_{12}}$</td>
<td>${p_1, p_2, p_5}$</td>
<td>${p_3, N_4, N_6, p_6, N_2, p_7}$</td>
</tr>
<tr>
<td>Action</td>
<td>Heap</td>
<td>S_{cnd}</td>
<td>S_{rfn}</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>{}</td>
<td>${p_1, p_2, p_5}$</td>
<td>${p_3, N_4, N_6, p_6, N_2, p_7, N_{12}}$</td>
</tr>
</tbody>
</table>
Refinement Heuristics

- Let P_{rfn} be the set of points and N_{rfn} be the set of nodes in S_{rfn}
- A candidate point can be eliminated if it is closer to another candidate point than to the query
- A point p from S_{cnd} can be discarded as a false hit if either of the following hold:
 (i) there is a point $p' \in P_{rfn}$ such that $\text{dist}(p, p') < \text{dist}(p, q)$
 (ii) There is a node MBR $N \in N_{rfn}$ such that $\text{minmaxdist}(p, N) < \text{dist}(p, q)$
- A point p from S_{cnd} can be reported as an actual result if the following conditions hold:
 (i) There is no point $p' \in P_{rfn}$ such that $\text{dist}(p, p') < \text{dist}(p, q)$
 (ii) For every node $N \in N_{rfn}$: $\text{mindist}(p, N) \geq \text{dist}(p, q)$
- If none of the above works, visit all node MBRs $N \in N_{rfn}$ where $\text{mindist}(p, N) < \text{dist}(p, q)$ and use the mentioned heuristics considering the newly visited entries
<table>
<thead>
<tr>
<th>Action</th>
<th>Scnd</th>
<th>Srfn</th>
<th>Actual results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invalidate p_1</td>
<td>${p_2, p_5}$</td>
<td>${N_4, N_6, N_2, N_{12}}$</td>
<td>${}$</td>
</tr>
<tr>
<td>Validate p_5</td>
<td>${p_2}$</td>
<td>${N_4, N_6, N_2, N_{12}}$</td>
<td>${p_5}$</td>
</tr>
<tr>
<td>Remove N_6, N_2</td>
<td>${p_2}$</td>
<td>${N_4, N_{12}}$</td>
<td>${p_5}$</td>
</tr>
<tr>
<td>Action</td>
<td>Scnd</td>
<td>Srfn</td>
<td>Actual results</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Access N_4</td>
<td>${p_2}$</td>
<td>${N_4, N_{12}}$</td>
<td>${p_5}$</td>
</tr>
<tr>
<td>Invalidate p_2</td>
<td>${}$</td>
<td>${p_4, p_8, N_{12}}$</td>
<td>${p_5}$</td>
</tr>
</tbody>
</table>
RkNN pruning

- Return all points that have q as one of their \(k \) nearest neighbors

- Let \(\{\sigma_1, \sigma_2, \ldots, \sigma_k\} \) be a subset of \(\{p_1, p_2, \ldots, p_n\} \). Each of the \(\binom{n}{k} \) subsets, prunes the area \(\bigcap_{i=1}^{k} \text{PL} \sigma_i(\sigma_i, q) \).

\(N_1 \)

\(\perp(p_1, q) \)

\(\perp(p_2, q) \)

\(q \)

\(p \)

\(p_1 \)

\(p_2 \)

\(\perp(p_2, q) \)

\(q \)

\(p_2 \)

\(p_3 \)

\(\perp(p, q) \)

\(\perp(p_1, q) \)

\(\perp(p_2, q) \)

\(\perp(p_3, q) \)
kTPL Algorithm

• Same filtering as TPL
• Same refining with the following exceptions:
 – A point can be pruned if k points are found within distance $dist(p,q)$ from p
 – A counter is associated with each point (initialized to k) and decreases when such a point is found
 – A candidate is eliminated if counter $= 0$
 – No prior knowledge of number of points in a node, so no application of $\min\max dist(p, N) < dist(p, q)$ in pruning
 – A point p can be pruned if a node N is found such that $\max dist(p, N) < dist(p, q)$ and $\min_card(N) \geq \text{counter}(p)$
Experiments

- RNN queries on real data
Conclusion

• TPL is good in that it
 – Supports arbitrary values of k
 • KM
 – Can deal efficiently with database updates
 • KM
 – Is applicable to data of dimensionality more than two
 • SAA
 – Retrieves exact results
 • SFT
 – Results in fast results!
References

2. A presentation by Jalal Kazemitabar in csci587 Fall’2010