An Optimal and Progressive Algorithm for Skyline Queries

Instructor: Cyrus Shahabi
Outline

• Introduction
 – Skyline queries
 – Existing solutions
 – Motivation
• Algorithms BBS
• Other discussions
• Experiments
• Conclusion
Finding the Cheapest & Closest Hotels

Which one is better?

- i and h?
- i, because its price and distance \textit{dominate} those of h.
- i and k?
- We do not know.
Skyline Objects

- A set of objects not dominated by any other object.

- Dominance region
Existing Solutions

- Block Nested Loop (BNL)
- Divide-and-Conquer (D&C)
- Bitmap method
- Index method
- Nearest Neighbor (NN)

Elementary skyline algorithms

Progressive skyline algorithms
Existing Solutions

• **Block Nested Loop (BNL)**
 – Scan the dataset and keep a list of candidate skyline points.
 – Compare a point p with every other point in the list.

• **Advantages**
 – Applicable for any dimensionality
 – Does not need sorting or indexing of data file

• **Disadvantages**
 – Numerous comparisons
 – Inadequacy for on-line processing
Existing Solutions

- **Divide-and-Conquer (D&C)**
 - Divide the dataset into several partitions.
 - Compute partial skylines in each partition.
 - Compute global skylines by merging them.

![Diagram showing skylines](image)
Existing Solutions

- Nearest Neighbor (NN)
 - Find nearest neighbor point -> skyline
 - Prune all the points in the dominance region of this point
 - Divide the space by the nearest neighbor point -> to-do lists
 - Compute recursively until empty space.
Existing Solutions

- NN over three or more dimensions
 - Has overlapped partitions in divided subspaces.
 - Needs duplicate elimination.

NN partitions for 3 dimensions
Motivation

• Advantages of NN algorithm
 – Fast running time to finding the first result
 – Progressiveness

• Disadvantages of NN algorithm
 – Redundant I/O computation
 • Gets worse as dimensionality increases
 – Explosive to-do list size
Contents

• Introduction
• Algorithms BBS
 — Preliminary: R-Tree
 — How BBS works
 — Example
• Other Discussions
• Experiments
• Conclusion
Branched and Bound Skyline (BBS)

- Assume all points are indexed in an R-tree.
- **Top-down Approach**
- \(\text{mindist} = \) the \(L_1 \) distance between its lower-left corner and the origin.

\[
f(x, y) = x + y
\]
Branched and Bound Skyline (BBS)

• Data structure
 – *Heap* sorted by min distance
 – *List* to maintain the current skyline

• Dominance check condition
 – Before expanding, compare to current skylines.
 – Before inserting an object, also check for internal objects.

• Stop condition: empty heap
Algorithm BBS (R-tree R)
1. $S=\emptyset$ // list of skyline points
2. insert all entries of the root R in the heap
3. while heap not empty
4. remove top entry e
5. if e is dominated by some point in S discard e
6. else // e is not dominated
7. if e is an intermediate entry
8. for each child e_i of e
9. if e_i is not dominated by some point in S
10. insert e_i into heap
11. else // e is a data point
12. insert e_i into S
13. end while
End BNN
Example of BBS

- Each heap entry keeps the mindist of the MBR.
Example of BBS

- Process entries in ascending order of their mindists.

action
- access root
- expand `e7`

heap contents
- `<e_7,4><e_6,6>`
- `<e_3,5><e_6,6><e_5,8><e_4,10>`

S
- `∅`

R
- `e_6 e_7`

N_6
- `e_1 e_2`

N_1
- `a b c`

N_2
- `d e f`

N_3
- `g h i`

N_4
- `l k`

N_5
- `m n`

N_7
- `e_3 e_4 e_5`
Example of BBS

action
access root
expand e7
expand e3

heap contents
\(<e_7,4><e_6,6>\)
\(<e_3,5><e_6,6><e_5,8><e_4,10>\)
\(<i,5><e_6,6><e_5,8><e_4,10>\)

\(S\)
\(\emptyset\)
\(\emptyset\)
\({i}\)
Example of BBS

action
access root
expand e7
expand e3
No-insert e2

heap contents
S
\emptyset
\emptyset
$\{i\}$
$\{i\}$
Example of BBS

- **action**
 - access root
 - expand e7
 - expand e3
 - expand e6
 - remove e5

- **heap contents**
 - S
 - access root
 - expand e3
 - expand e6
 - remove e5
 - \emptyset
 - \emptyset
 - $\{i\}$
 - $\{i\}$
 - $\{i\}$

- **R**
 - e6
 - e7

 - N6
 - e1
 - e2

 - N1
 - a
 - b
 - c

 - N2
 - d
 - e
 - f

 - N3
 - g
 - h
 - i

 - N4
 - l
 - k

 - N5
 - m
 - n
Example of BBS

- **Action**
 - Access root
 - Expand e7
 - Expand e3
 - Expand e6
 - Remove e5
 - Expand e1

- **Heap Contents**
 - $S = \emptyset$
 - \emptyset
 - $\{i\}$
 - $\{i\}$
 - $\{i\}$
 - $\{i, a\}$
 - $<e_7,4><e_6,6>$
 - $<e_3,5><e_6,6><e_5,8><e_4,10>$
 - $<i,5><e_6,6><e_5,8><e_4,10>$
 - $<e_5,8><e_1,9><e_4,10>$
 - $<e_1,9><e_4,10>$
 - $<a,10><e_4,10>$

- **Diagram**
 - Nodes: $N_1, N_2, N_3, N_4, N_5, N_6, N_7$
 - Elements: $a, b, c, d, e, f, g, h, i, l, k, m, n$
Example of BBS

- **Action**: access root, expand e7, remove e6, expand e5, expand e1, expand e4
- **Heap contents**:
 - S
 - \emptyset
 - $\{i\}$
 - $\{i\}$
 - $\{i\}$
 - $\{i,a\}$
 - $\{i,a,k\}$
Contents

• Introduction
• Algorithms BBS
• Other Discussions
 – Constrained skyline queries
 – K-dominating queries
• Experiments
• Conclusion
Constrained Skyline Queries

 constrain: $4 \leq y \leq 7$

action
access root
expand e7

heap contents
$\langle e7, 4 \rangle, \langle e6, 6 \rangle$
$\langle e3, 5 \rangle, \langle e6, 6 \rangle, \langle e4, 10 \rangle$

S
\emptyset

R
$e_6 \quad e_7$

N_6
$e_1 \quad e_2$
$a \quad b \quad c$

N_1

d \quad e \quad f$

N_2

g \quad h \quad i$

N_3

l \quad k$

N_4

m \quad n$

N_5

N_7
Constrained Skyline Queries

constrain: $4 \leq y \leq 7$

- **action**
 - access root
 - expand e_7
 - expand e_3

- **heap contents**
 - $<e_7, 4>, <e_6, 6>$
 - $<e_3, 5>, <e_6, 6>, <e_4, 10>$
 - $<e_6, 6>, <e_4, 10>, <g, 11>$

- **S**
 - \emptyset
 - \emptyset
 - \emptyset

Diagram

The diagram illustrates the constrained skyline queries with nodes labeled a to m and corresponding coordinates and actions are marked on the nodes and edges of the graph. The nodes are connected in a hierarchical structure, and the actions performed are indicated by the labels on the edges.
Constrained Skyline Queries

constraint: $4 \leq y \leq 7$
Constrained Skyline Queries

constrain: \(4 \leq y \leq 7\)
Constrained Skyline Queries

\[4 \leq y \leq 7 \]

action	**heap contents**	**S**
access root | \(<e7, 4>, <e6, 6>\) | \(\emptyset\)
expand e7 | \(<e3, 5>, <e6, 6>, <e4, 10>\) | \(\emptyset\)
expand e3 | \(<e6, 6>, <e4, 10>, <g, 11>\) | \(\emptyset\)
expand e6 | \(<e4, 10>, <g, 11>, <e2, 11>\) | \(\emptyset\)
expand e4 | \(<g, 11>, <e2, 11>, <l, 14>\) | \{g\}
expand e2 | \(<f, 12>, <d, 13>, <l, 14>\) | \{g, f, l\}
K-dominating Queries

- Retrieve 3 points that dominate the largest number of other points.

- $\text{num}(i) = 9$, $\text{num}(a) = 2$, $\text{num}(k) = 2$

- $\text{h and m may dominate at most 7 points. (num}(i) - 2)$
K-dominating Queries

num(h) = 7, num(m) = 5, num(a) = 2, num(k) = 2

2-dominating result: \{i, h\}

3-dominating result: \{i, h, m\}

c and g may dominate at most 5 points. (num(h) – 2)
Contents

• Introduction
• Algorithms BBS
• Other Discussions
• Experiments
• Conclusion
Experiments (Comparing BBS with NN)

• Datasets:
 – Independent (uniform), anti-correlated

• Dimensionality:
 – In range [2,5]

• Cardinality:
 – In range [100k,10M]

• Machine:
 – Pentium 4 CPU
 – 2.4 GHz
 – 512MB Ram
EXP 1: Effect of dimensionality

Figure 5.1: Node accesses vs. d ($N=1M$)

Figure 5.2: CPU-time vs. d ($N=1M$)
EXP 1: Observations

- NN could not terminate successfully for $d > 4$ (independent), $d > 3$ (anti-correlated)
 - Due to prohibitive size of the *to-do* lists

- Degradation of NN is caused mainly by
 - Growth of the number of partitions
 - Growth of number of duplicates

- Degradation of BBS is due to
 - Growth of skyline points
 - Poor performance of R-tree in higher dimensions
EXP 2: Effect of cardinality

Figure 5.5: Node accesses vs. $N (d=3)$

Figure 5.6: CPU-time vs. $N (d=3)$
EXP 3: Progressive behavior

Figure 5.7: Node accesses vs. # points returned ($N=1M$, $d=3$)

Figure 5.8: CPU-time vs. # points returned ($N=1M$, $d=3$)
Experiments - Key Notes

• In General BBS outperforms NN significantly
• For dimensionality
 – NN does not terminate when d increases due to explosive to do list
• For cardinality
 – NN does not terminate here as well if N>=5M due to to do list
• For Progressive behavior
 – NN requires more node access and CPU time to return number of reported points
Contents

- Introduction
- Algorithms BBS
- Other Discussions
- Experiments
- Conclusion
Conclusion and Future Work

• All existing database algorithms for skyline computation have several deficiencies.
• BBS overcomes all these deficiencies
 – it is efficient for both progressive and complete skyline computation, independently of the data characteristics
 – it can easily handle numerous alternative skyline queries (e.g. constrained, k-dominating)
 – it can be used for any subset of the dimensions
 – it has limited main memory requirements
• Future work
 – Investigate alternatives for high dimensional spaces where R-Trees are inefficient.
 – Approximate skyline queries
References

1. Papadias, D.; Tao, Y.; Fu, G. & Seeger, B.

2. A presentation by Ali Khodaei in csci587 Fall’2010