Introduction to Spatial Database Systems

by Cyrus Shahabi

from

Ralf Hart Hartmut Guting’s
VLDB Journal v3, n4, October 1994

Outline

• Introduction & definition
• Modeling
• Querying
• Data structures and algorithms
• System architecture
• Conclusion and summary
Introduction

Various fields/applications require management of geometric, geographic or spatial data:
- A geographic space: surface of the earth
- Man-made space: layout of VLSI design
- Model of rat brain

Common challenge: dealing with large collections of relatively simple geometric objects

Different from image and pictorial database systems:
- Containing sets of objects in space rather than images or pictures of a space
Definition

- A spatial database system:
 - Is a database system
 - A DBMS with additional capabilities for handling spatial data
 - Offers spatial data types (SDTs) in its data model and query language
 - Structure in space: e.g., POINT, LINE, REGION
 - Relationships among them: \((l \text{ intersects } r)\)
 - Supports SDT in its implementation
 - Providing at least spatial indexing (retrieving objects in particular area without scanning the whole space)
 - Efficient algorithm for spatial joins (not simply filtering the cartesian product)

Modeling

- WLOG assume 2-D and GIS application, two basic things need to be represented:
 - Objects in space: cities, forests, or rivers
 - \(\Rightarrow\) modeling single objects
 - Space: say something about every point in space (e.g., partition of a country into districts)
 - \(\Rightarrow\) modeling spatially related collections of objects
Modeling …

• Fundamental abstractions for modeling single objects:
 – Point: object represented only by its location in space, e.g., center of a state
 – Line (actually a curve orployline): representation of moving through or connections in space, e.g., road, river
 – Region: representation of an extent in 2d-space, e.g., lake, city

Modeling …

• Instances of spatially related collections of objects:
 – Partition: set of region objects that are required to be disjoint (adjacency or region objects with common boundaries), e.g., thematic maps
 – Networks: embedded graph in plane consisting of set of points (vertices) and lines (edges) objects, e.g. highways, power supply lines, rivers
Modeling …

A sample (ROSE) spatial type system

EXT={lines, regions}, GEO={points, lines, regions}

- Spatial predicates for topological relationships:
 - **inside**: geo x regions \(\rightarrow \) bool
 - **intersect, meets**: ext1 x ext2 \(\rightarrow \) bool
 - **adjacent, encloses**: regions x regions \(\rightarrow \) bool

- Operations returning atomic spatial data types:
 - **intersection**: lines x lines \(\rightarrow \) points
 - **intersection**: regions x regions \(\rightarrow \) regions
 - **plus, minus**: geo x geo \(\rightarrow \) geo
 - **contour**: regions \(\rightarrow \) lines

Modeling …

- Spatial operators returning numbers
 - **dist**: geo1 x geo2 \(\rightarrow \) real
 - **perimeter, area**: regions \(\rightarrow \) real

- Spatial operations on set of objects
 - **sum**: set(obj) x (obj \(\rightarrow \) geo) \(\rightarrow \) geo
 - A spatial aggregate function, geometric union of all attribute values, e.g., union of set of provinces determine the area of the country
 - **closest**: set(obj) x (obj \(\rightarrow \) geo1) x geo2 \(\rightarrow \) set(obj)
 - Determines within a set of objects those whose spatial attribute value has minimal distance from geometric query object
Modeling …

• Spatial relationships:
 – *Topological* relationships: e.g., adjacent, inside, disjoint. Are invariant under topological transformations like translation, scaling, rotation
 – *Direction* relationships: e.g., above, below, or north_of, southwest_of, …
 – *Metric* relationships: e.g., distance

• Enumeration of all possible topological relationships between two simple regions (no holes, connected):
 – Based on comparing two objects boundaries (δA) and interiors (A0), there are 4 sets each of which be empty or not = 2^4=16. 8 of these are not valid and 2 symmetric so:

• 6 valid topological relationships: disjoint, in, touch, equal, cover, overlap

Modeling …

• DBMS data model must be extended by SDTs at the level of atomic data types (such as integer, string), or better be open for user-defined types (OR-DBMS approach):

```plaintext
relation states (sname: STRING; area: REGION; spop: INTEGER)
relation cities (cname: STRING; center: POINT; ext: REGION; cpop: INTEGER);
relation rivers (rname: STRING; route: LINE)
```
Querying

• Two main issues:
 1. Connecting the operations of a spatial algebra (including predicates to express spatial relationships) to the facilities of a DBMS query language.
 2. Providing graphical presentation of spatial data (i.e., results of queries), and graphical input of SDT values used in queries.

Fundamental spatial algebra operations:
• Spatial selection: returning those objects satisfying a spatial predicate with the query object
 – “All cities in Bavaria”
 SELECT sname FROM cities c WHERE c.center inside Bavaria.area
 – “All rivers intersecting a query window”
 SELECT * FROM rivers r WHERE r.route intersects Window
 – “All big cities no more than 100 Kms from Hagen”
 SELECT cname FROM cities c WHERE dist(c.center, Hagen.center) < 100 and c.pop > 500k
 (conjunction with other predicates and query optimization)
Querying …

• **Spatial join**: A join which compares any two joined objects based on a predicate on their spatial attribute values.
 – “For each river pass through Bavaria, find all cities within less than 50 Kms.”
  ```sql
  SELECT r.rname, c.cname, length(intersection(r.route, c.area))
  FROM rivers r, cities c
  WHERE r.route intersects Bavaria.area and
  dist(r.route,c.area) < 50 Km
  ```

Querying …

• Graphical I/O issue: how to determine “Window” or “Bavaria” in previous examples (input); or how to show “intersection(route, Bavaria.area)” or “r.route” (output) (results are usually a combination of several queries).
• Requirements for spatial querying [Egenhofer]:
 – Spatial data types
 – Graphical display of query results
 – Graphical combination (overlay) of several query results (start a new picture, add/remove layers, change order of layers)
 – Display of context (e.g., show background such as a raster image (satellite image) or boundary of states)
 – Facility to check the content of a display (which query contributed to the content)
Querying …

- Extended dialog: use pointing device to select objects within a subarea, zooming, …
- Varying graphical representations: different colors, patterns, intensity, symbols to different objects classes or even objects within a class
- Legend: clarify the assignment of graphical representations to object classes
- Label placement: selecting object attributes (e.g., population) as labels
- Scale selection: determines not only size of the graphical representations but also what kind of symbol be used and whether an object be shown at all
- Subarea for queries: focus attention for follow-up queries