Indexing Multi-dimensional Stream Data in a Cloud System

Afsin Akdogan, Ugur Demiryurek, Cyrus Shahabi

Integrated Media Systems Center
University of Southern California

Introduction

- The amount of geospatial data is rapidly growing and geospatial queries are time consuming problems especially with large datasets.

Application

- Internet-scale applications, where hundreds of servers are used to support terabytes of data and millions of users.
- Goals: Insert and search efficient distributed index structure.

Chord-Quadtree

- Indexing space by Quadtree to handle fast insertion rate.
- Quadtree might have long paths due to non-uniform data.
- Store a routing table at each node for faster search.
- Only split causes update of the routing tables which is very infrequent.

Advantages

- It can efficiently handle frequent inserts.
- It finds successor node in $O(\log N)$ where there are N nodes in a path from root to leaf. Fast search.
- No top-down search. We convert the Quadtree into an undirected graph. Better load-balancing due to the fact that any node can start the query.

Related Work

Centralized Algorithms

- Full replication of data.
- Cannot handle dynamic data. Update/insert should be done in all machines.
- Doesn't work if the data don't fit in a single machine.
- Doesn't take advantage of GBytes of distributed RAM.

Parallel Databases

- Controller keeps a global index. Global index is proportional to the data size of the data. It doesn't scale well.
- Inserts/Updates on the data should be sent to the controller too.
- All requests go to controller first since it manages query answering process.

Distributed Index Structures

- Top-down search overloads the nodes near the tree root.
- The balancing needs to fully rebuild the tree using multicast from all servers (distributed kd-tree).
- Traverse the tree from bottom-up. Avoids hotspots.
- Slightly costly to maintain the index for frequent inserts.

Insertion cost
Overlapping Coverage Cost
Split Cost
Balancing cost

Future Work

- Support point and window queries as the other approaches explained above since those are the queries used by internet applications the most.
- Conduct extensive experiments to test:
 - Insert/Update performance of the index.
 - Search performance of the index in the presence of millions of concurrent queries.