
A Benchmark to Evaluate

Mobile Video Upload to Cloud Infrastructures

Afsin Akdogan, Hien To, Seon Ho Kim, and Cyrus Shahabi

Integrated Media Systems Center

University of Southern California, Los Angeles, USA

{aakdogan, hto, seonkim, shahabi}@usc.edu

Abstract. The number of mobile devices (e.g., smartphones, tablets, wearable

devices) is rapidly growing. In line with this trend, a massive amount of mobile

videos with metadata (e.g., geospatial properties), which are captured using the

sensors available on these devices, are being collected. Clearly, a computing in-

frastructure is needed to store and manage this ever-growing large-scale video

dataset with its structured data. Meanwhile, cloud computing service providers

such as Amazon, Google and Microsoft allow users to lease computing re-

sources with varying combinations of computing resources such as disk, net-

work and CPU capacities. To effectively use these emerging cloud platforms in

support of mobile video applications, the application workflow and resources

required at each stage must be clearly defined. In this paper, we deploy a mo-

bile video application (dubbed MediaQ), which manages a large amount of us-

er-generated mobile videos, to Amazon EC2. We define a typical video upload

workflow consisting of three phases: 1) video transmission and archival, 2)

metadata insertion to database, and 3) video transcoding. While this workflow

has a heterogeneous load profile, we introduce a single metric, frames-per-

second, for video upload benchmarking and evaluation purposes on various

cloud server types. This single metric enables us to quantitatively compare main

system resources (disk, CPU, and network) with each other towards selecting

the right server types on cloud infrastructure for this workflow.

Keywords: Mobile Video Systems, Spatial Databases, Cloud Computing, Big

Video Data, Benchmarking

1 Introduction

With the recent advances in video technologies and mobile devices (e.g., smartphones, tablets,

wearable devices), massive amounts of user generated mobile videos are being collected and

stored. According to Cisco’s forecast [7], there will be over 10 billion mobile devices by 2018

and 54% of them will be smart devices, up from 21% in 2013. Accordingly, mobile video will

increase 14-fold between 2013 and 2018, accounting for 69% of total mobile data traffic by the

end of the forecasted period. Clearly, this vast amount of data brings a major scalability prob-

lem in any computing infrastructure. On the other hand, cloud computing provides flexible

resource arrangements that can instantaneously scale up and down to accommodate varying

workloads. It is projected that the total economic impact of cloud technology could be $1.7

trillion to $6.2 trillion annually in 2025 [8]. Thus, the large IT service providers such as Ama-

zon, Google, and Microsoft, are ramping up cloud infrastructures.

One key question is how to evaluate the performance of mobile video applications on these

cloud infrastructures and select the appropriate set of resources for a given application. Suppose

a mobile user wants to upload a video to a cloud server along with its metadata (e.g., geospatial

properties of video such as camera location and viewing direction), which are captured and

extracted using the sensors embedded on the mobile devices. Note that this kind of geospatial

metadata enables advanced data management, especially in very large-scale video repositories.

For example, the performance of a spatial query such as a range query, which can find all video

frames that overlap with a user-specified region [2], can be significantly enhanced using spatial

metadata. When we upload captured videos with metadata from mobile device to cloud, this

upload operation consists of three stages which require different computing system resources:

1) network to transfer videos from mobile clients to the cloud servers (i.e., network bandwidth),

2) database to insert metadata about the uploaded videos (i.e., database transaction), and 3)

video transcoding to change the resolution of uploaded videos to use less storage and band-

width (i.e., CPU processing power). These phases are executed in sequence; therefore, ineffi-

ciency in any step slows down the performance of video applications. A benchmark to evaluate

such an application needs to identify the system resources used at each stage, compare them

with one another quantitatively and spot which resource(s) becomes the bottleneck in the work-

flow of the application. Once the bottlenecks are detected, the servers with the right specifica-

tions can be selected and configured accordingly on cloud.

There exists a challenge in evaluating the performance of a large scale video application on

cloud because most of the benchmarking studies in the cloud computing context focus on eval-

uating either the performance of Big Data processing frameworks such as Hadoop and Hive

[25, 26] or NoSQL data-stores rather than considering all system resources a mobile video

application requires. In particular, some benchmarks are designed for social networking appli-

cations [17], online transaction processing (OLTP) [9, 10, 19] and simple key-value based put-

get operations [16, 18]. These benchmarks only emphasize the impact of the database system

on the overall performance. In addition, a recent study measures the impact of virtualization on

the networking performance in the data centers [6]. However, this study only measures packet

delays and TCP/UDP throughput, and packet loss among virtual machines.

In this paper, we define a single (cross-resource) metric to evaluate the uploading workflow of

video applications on cloud and present an end-to-end benchmark. In particular, we use a

throughput, the number of processed frames per second, as the metric and compare the perfor-

mance of system resources (e.g., network, disk, CPU) with one another. To this extent, we

deployed one exemplary mobile video application called MediaQ, which we developed on the

Amazon EC2 platform, and conducted extensive experiments on various server types. Specifi-

cally, we used the smallest and the largest instance at each server group (e.g., disk-optimized,

CPU-optimized, general-purpose) to identify the lower and upper performance bound. Our

experimental results show that CPU drastically slows down the entire system and becomes the

bottleneck in the overall performance. Our experiments also show that simply selecting high-

end CPU-optimized servers does not resolve the problem entirely. Therefore, we propose two

techniques to enhance the CPU throughput: 1) reducing video quality and 2) enabling multi-

threading. Our study serves as the first step towards understanding the end-to-end performance

characteristics of cloud resources in terms of resource-demanding video applications.

The remainder of this paper is organized as follows. Section 2 provides the necessary back-

ground. The benchmark design and experimental results are presented in Sections 3 and 4,

respectively. Related work is discussed in Section 5. Subsequently Section 6 concludes the

paper with the directions for future work.

2 Background

Before we present our results and findings, we briefly introduce a typical example of resource

intensive mobile video application (MediaQ) and available server types in the data centers to

prepare for the rest of the discussion.

2.1 MediaQ: Mobile Multimedia Management System

MediaQ [2, 3] is an online media management framework that includes functions to collect,

organize, search, and share user-generated mobile videos using automatically tagged geospatial

metadata. MediaQ consists of a MediaQ server and a mobile app for smartphones and tablets

using iOS and Android. User-generated-videos (UGV) can be uploaded to the MediaQ server

from users’ smartphones and they are then displayed accurately on a map interface according to

their automatically collected geo-tags and other metadata information such as the recorded real

time, camera location, and the specific direction the camera was pointing. Media content can be

collected in a casual or on-demand manner. Logged in participants can post specific content

requests that will automatically generate an alert with other participants who are near a desired

content assignment location to entice them to record using their phones.

The schematic design of the MediaQ system is summarized in Figure 1. Client-side compo-

nents are for user interaction, i.e., the Mobile App and the Web App. The Mobile App is mainly

for video capturing with sensed metadata and their uploading. The Web App allows searching

the videos and issuing spatial crowdsourcing task requests to collect specific videos. Server-

side components consist of Web Services, Video Processing, GeoCrowd Engine, Query Pro-

cessing, Account Management, and Data Store. The Web Service is the interface between cli-

ent-side and server-side components. The Video Processing component performs transcoding

of uploaded videos so that they can be served in various players. At the same time, uploaded

videos are analyzed by the visual analytics module to extract extra information about their

content such as the number of people in a scene. We can plug in open source visual analytics

algorithms here to achieve more advanced analyses such as face recognition among a small

group of people such as a user's family or friends. Automatic keyword tagging is also per-

formed at this stage in parallel to reduce the latency delay at the server. Metadata (captured

sensor data, extracted keywords, and results from visual analytics) are stored separately from

uploaded media content within the Data Store. Query Processing supports effective searching

for video content using the metadata in the database. Finally, task management for spatial

crowdsourcing can be performed via the GeoCrowd engine.

Fig. 1. Overall structure of MediaQ system

Mobile App

Web App

Client Side

Uploading
API

Search and
Video

Playing API

GeoCrowd
API

Server Side
Web Services

Query processing

Content
repository

Metadata
repository

MySQL MongoDB

Data Store

DatabasesGeoCrowd Engine

Account
Management

Transcoding

Visual Analytics

Keyword Tagging

Video Processing

User API

2.2 Cloud Server Type Classification

Recently the computing resources on cloud have become more granular since service providers

use virtualization techniques to manage physical servers and provide a wide selection of server

types optimized to fit different use cases [1]. These types comprise varying combinations of

CPU, memory, storage, and networking capacity and give users the flexibility to choose an

appropriate combination of resources. Specifically, server types are clustered into six groups

where each group consists of several options with varying computational capabilities. Table 1

depicts a classification of the server groups presently offered by the biggest three service pro-

viders along with the prices (dollars/hour) of the smallest and the largest server at each group.

As shown, the pricing varies widely across the server types within each service provider. For

example, the most expensive machine in Microsoft Azure is 245 times more costly than the

cheapest one (4.9/0.02). This ratio is 97 for Amazon EC2 and 102 for Google Compute Engine,

respectively. Clearly, such a huge discrepancy across the server types makes the selection of
appropriate set of resources critical in hosting an application on these cloud platforms.

Type

Amazon EC2 Microsoft Azure Google Compute

price ($/hour) price ($/hour) price ($/hour)

smallest largest smallest largest smallest largest

General purpose (m) 0.07 0.56 0.02 0.72 0.077 1.232

Compute optimized (c) 0.105 1.68 2.45 4.9 0.096 0.768

Memory optimized (r) 0.175 2.8 0.33 1.32 0.18 1.44

Disk optimized (i) 0.853 6.82 - - - -

Micro (t) 0.02 0.044 - - 0.014 0.0385

GPU 0.65 0.65 - - - -

Table 1. Categorization of the server types with the prices (dollars/hour) of the smallest and the

largest servers at each group.

3 Benchmark Design

In this section, we first explain our measurement methodology and then discuss the metric we

used in the experimental evaluation.

3.1 Methodology

There are three main components in the performance evaluation of large scale mobile video

systems such as MediaQ which requires different system resources: 1) network to transfer

videos from mobile clients to a cloud server (i.e., network bandwidth), 2) database to insert

metadata about the uploaded videos (i.e., database transaction), and 3) video transcoding to

change the resolution of uploaded videos which is a common operation in video services (i.e.,

CPU processing power). Specifically, we measure the upload performance which involves

these three phases that are executed in sequence. Upon recording a video, mobile clients re-

trieve metadata (i.e., GPS signals, field of views, etc.) from the video. Subsequently, along with

the video data, they upload the metadata in JSON format to the server. Once a video is upload-

ed, the metadata is inserted into the database and the video is transcoded, which is required to

either support different formats (e.g., MP4, WAV) or to reduce video quality due to limited

network bandwidth when being displayed later. Therefore, the videos are not retrievable until

transcoding task is completed, and hence overhead in any component can degrade the overall

performance of video applications. Our goal is to define a single metric, examine these compo-

nents individually using this metric, and detect which phase slows down the system. To this

extent, we deployed MediaQ server side code on the EC2 servers running a video upload ser-

vice implemented in PHP. The service can receive multiple video files simultaneously. We then

run multiple clients which transfer large amount of videos concurrently using the upload ser-

vice.

3.2 Metric

We introduce a single metric, processed-frames-per-second, to evaluate the performance of

three main components. For network performance, we straightforwardly report the number of

transferred frames per second. For database performance, we report the number of frames in-

serted per second. Note that we do not insert the video data but its spatio-temporal metadata to

the database. The metadata are collected at video capturing time by mobile devices and trans-

ferred to the server, thus the database cost is only composed of inserting a set of metadata (i.e.,

per frame) from memory into database. Similar to the standalone version of MediaQ, we select-

ed MySQL database installed on EC2 servers. For transcoding performance, we use the number

of transcoded frames per second. Once a video arrives at the server, MediaQ transcodes it using

FFMPEG [13], which is a widely used video solution. In order to measure the maximum

throughput, we perform a stress test on the cloud server by generating a large amount of real

videos and uploading them to the server simultaneously and continuously for a significant

amount of time.

Table 2. Hardware specifications of the smallest and largest servers of 4 server types on EC2.

4 Performance Evaluation

In this section, we first present an overall cost analysis of the three components in the workflow

and show how the server types impact the performance. Subsequently, we evaluate transcoding

and database components in more detail, and finally present performance-cost results.

4.1 Overall Cost Analysis

In this set of experiments, we used the smallest servers on Amazon EC2 in four instance fami-

lies: general purpose (m), compute-optimized (c), memory-optimized (r) and disk-optimized (i)

and measured the throughputs (See Table 2 for hardware specifications of Amazon EC2). To

fully utilize multi-core CPUs available at the servers, we enabled multi-threading on database

and transcoding parts. Specifically, we first run the experiments using one thread (T=1), and

then increase the number of threads T by one to run the experiment again. The point where

throughput cannot be improved further is the maximum throughput that the server can achieve.

Note that there is no index built on the metadata table in the database and we take advantage of

Type Memory CPU Disk Network Bandwidth

m-small 3.75 GB 1 VCPU 4 GB SSD no info.

c-small 3.75 GB 2 VCPUs 32 GB SSD no info.

r-small 15.25 GB 2 VCPUs 32 GB SSD no info.

i-small 30.5 GB 4 vCPUs 800 GB SSD no info.

m-large 30 GB 8 VCPU 160 GB SSD no info.

c- large 60 GB 32 VCPUs 640 GB SSD no info.

r- large 244 GB 32 VCPUs 2 x 320 GB SSD 10 Gigabit Ethernet

i- large 244 GB 32 vCPUs 8x800 GB SSD 10 Gigabit Ethernet

0

1

10

100

1,000

18 24 30

Network Database Transcoding

v
id

eo
 l

en
g
th

 (
m

in
)

fps

a) Impact of fps (log-scale)

bulk insert, where 1,000 rows are written into disk as one transaction which reduces the disk

I/O significantly. For transcoding tasks, we reduce the video resolution from 960x540 to

480x270.

Figure 2a illustrates the throughput comparison where a single large video with 24 fps (frame

per second) was uploaded to the server. We observed that other than general purpose instance,

the performance difference between the optimized servers (c, r, i) is not significant even though

the prices vary widely such that i-small is 8 times more expensive than c-small. As shown,

database can handle almost two and three orders of magnitude more frames than network and

transcoding, respectively.

Fully utilizing the network bandwidth, real systems can handle concurrent video uploads to the

server; therefore, in the next experiments, we did a stress test where multiple videos were up-

loaded simultaneously until the network bandwidth was saturated. As illustrated in Figure 2b,

network throughput increases significantly; however, database and transcoding remain almost

constant. This is because we already enabled bulk insert and multi-threading to ensure the max-

imum performance even in the case of a single video upload. Another observation is that trans-

coding, which shows the lowest throughput, becomes a major bottleneck in the workflow.

The frames per second (fps) value in video recording has a direct impact on the performance in

our experiments. However, database throughput is independent of fps in our target application

MediaQ. This is because, fps value ranges from 15 to 120 in new generation smartphone cam-

eras; however, regardless of fps, we select one metadata per each second using a sampling

technique [3] and store it for all the frames in the corresponding second. This is a real-world

phenomenon since metadata includes geospatial attributes such as the camera location and

viewing direction which do not change significantly within a second. This approach widens the

fps Network Database Transcoding

24 - 25.1% %0 - 23.3%

30 - 39.8% %0 - 38.3%

b) Decrease over fps=18

Fig. 3. The video length (min) that each component can process in a second for various fps.

Fig. 2. Comparison of system components on smallest servers of 4 server types (log-scale).

1

10

100

1000

10000

100000

m-small c-small r-small i-small

Network Database Transcoding

th
ro

u
g
h

p
u

t

a) single video

1

10

100

1000

10000

100000

m-small c-small r-small i-small

Network Database Transcoding

th
ro

u
g
h

p
u

t

b) multiple videos

gap between the throughput of database and those of other components even further. Figure 3a

depicts a comparison of the system resources under various fps values on a c-small instance,

where the metric is total length of videos (minute) that each component can process within a

unit time (second). For this experiment, we only changed the fps values [14] of videos and kept

the original resolution. As shown, database throughput remains constant as fps increases while

others diminish and the percentage of decrease over fps=18 is listed in Figure 3b. For higher

frame rates, the length of video that network can handle decreases since the size of the videos

grow and saturate the fixed bandwidth capacity. Similarly, transcoding can process a shorter

amount of video per second as fps increases since its throughput on a specific server is fixed. In

conclusion, these preliminary experiments verify that transcoding slows down the workflow

dramatically; therefore, in the following section we propose several approaches to enhance this

piece and measure the impact of each proposed technique.

4.2 Transcoding performance

It is crucial to improve the transcoding performance because newly uploaded videos are not

retrievable for use until their transcoding tasks are completed. That is the main reason behind

the delay between the uploading and viewing time in many video-based applications. There are

two ways to make transcoding faster: 1) enabling multi-threading, and 2) reducing the size of

the output file, which results in a lower video quality. We explain these two approaches in turn.

Multi-threading. One natural way to improve the performance is utilizing multi-core CPUs

available in the servers and scale-up. There are two techniques to increase the throughput on

cloud. First, running a multi-threaded ffmpeg process (MT) on a single video and decrease the

total amount of time to transcode it. Second, running a single-threaded ffmpeg processes in

parallel on multiple videos (PST). In the following set of experiments, we use the largest com-

pute-optimized (c3.xlarge) server with 32 vCPU’s.

Figure 4a illustrates the effect of varying number of threads while transcoding a video. In this

specific experiment, we used a 230 MB video in AVI format as input and reduced the resolution

from 960x540 to 480x270 in two different video output types, MP4 and AVI. As shown, the

total time does not decrease linearly as the number of threads increases. As stated in Amdahl’s

Law [6], a parallel algorithm is as fast as its sequential, non-parallelizable portion which domi-

nates the total execution time. For ffmpeg, after 4 threads the performance gain becomes insig-

nificant no matter how many CPUs are used, which verifies that ffmpeg does not scale up.

Another way to increase throughput is running single-thread ffmpeg processes in parallel where

each thread handles a single video. Figure 4b depicts the throughput performance of these two

0

10

20

30

40

50

60

0 4 8 12 16 20 24 28 32 36

MP4 AVI

Thread Count

to
ta

l
ti

m
e

(s
ec

)

a) multi-thread ffmpeg on the same video

for different video output types

32 vCPU

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

0 4 8 12 16 20 24 28 32 36 40

MT PST

Thread Count

th
ro

u
g
h

p
u

t

b) multi-thread (MT) vs.

parallel single-thread (PST) ffmpegs

32 vCPU

Fig. 4. Scale up performance of transcoding.

techniques. Since ffmpeg does not scale well as the number of threads increases, the throughput

remains almost constant. However, throughput increases almost linearly for PST until all 32

CPUs are fully utilized. That is because while MT technique suffers from low parallelism, PST

can utilize available CPUs better. After the CPUs are saturated, the performance goes down for

both MT and PST due to resource contention across the threads.

Reducing video quality. In this set of experiment, we investigate the impact of resolution and

type of the outputted video on the performance. Table 3 presents the transcoding throughputs

for converting a video with dimensions 960x540 to smaller resolutions. The percentage of

increase in the throughput is listed as well for clarity of the presentation. As expected, the result

shows that throughput increases significantly as the resolution decreases. However, the per-

centage improvement diminishes when the output video resolution becomes too smaller (i.e.,

60x32) because loading the input video, frame by frame, is a constant cost which largely con-

tributes to the total transcoding cost. In addition, we also observe that the results are similar for

different output formats (mp4 and avi).

Table 3. Transcoding throughput for mp4 and avi types with various output resolutions. The

input video is in .m4v format with 960x540 resolution.

4.3 Database performance

In this section, we measure the database throughput on both the smallest and largest instances

at each server group to show the lower and upper performance bounds. In addition, we investi-

gate the impact of indexing on throughput and test if it changes the best performer server.

Throughput is measured using iterative multi-threading approach. First, we run the experiment

with a single thread and repeat the experiment increase the number of threads by one until no

throughput improvement is observed. Then, we report the maximum throughput as the result.

Metadata information is stored in video_metadata database table which consists of 13 columns

where average length of a row is 319 bytes. Figure 5a and 5b illustrate the effect of server types

on the database throughput where the smallest and largest instances in general purpose (m),

compute-optimized (c), memory-optimized (r) and disk-optimized (i) are clustered together. As

shown in Figure 5a, where there is no index on video_metadata table, the smallest disk-

optimized server (i) slightly outperforms others. With the largest instances, compute-optimized

(c) server provides slightly better performance than others. This is because while small servers

contain 2 to 4 CPUs, large ones have 8 to 32 CPUs and compute-optimized machines might be

better in managing concurrent threads. Note that, even though metadata insertion is an I/O-

intensive task, disk-optimized machines do not expressively outperform other instances. The

reason is that video data is mostly append-only, where the updates to the dataset are rare after

the insertion. Disk-optimized instances are tuned to provide fast random I/O; however, in ap-

pend-only datasets random access is not much used. Another observation is that optimized

machines perform at least 2.5 times better than the general purpose one.

Output resolution MP4 AVI

 throughput % improvement throughput % improvement

480x270 623 - 626 -

240x136 842 35% 839 34%

120x68 980 57% 982 57%

60x34 1038 66% 1048 67%

Effect of Indexing. To investigate how indexing influences throughput at each server, we built

2 indices on video_metadata table. Specifically, a B-tree index on the time field and hash index

on the keywords fields, which is a good indexing strategy that allows efficient range search

over the time and effective equality search on the keywords associated with the videos. As

depicted in Figure 5b, for both smallest and largest server groups, compute-optimized instances

show better performance unlike the no-index scenario. The reason is that indices are kept in

memory and index update is a CPU intensive task. Another observation is that indexing de-

grades the performance considerably, where throughput approximately drops to 1/3 of the no-

index scenario due to extra high index maintenance cost.

Fig. 6. Number of frames that can be processed for each dollar spent (log-scale).

4.4 Performance-Cost Analysis

In this section, we discuss how the performance-to-price ratios of different server types. Figure

6 illustrates the number of frames per dollar that each component can process using the smallest

servers in each server group. In this specific example, we uploaded multiple videos with 24 fps

to the servers and enabled multithreading mode both on database insertion and transcoding.

Note that performance-price ratio is sensitive to the total amount of data we upload since more

nodes need to be employed when the storage capacity of a single server is exceeded. In Figure

6a, we present the result for 4GB of data which can fit all server types (See Table 2 for server

1

10

100

1,000

10,000

100,000

1,000,000

m-small c-small r-small i-small

Network Database Transcoding

#
 f

ra
m

es
 /

 d
o
ll

ar

a) 4GB of data

1

10

100

1000

10000

100000

1000000

m-small c-small r-small i-small

Network Database Transcoding

#
 f

ra
m

es
 /

 d
o
ll

ar

b) 32GB of data

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

smallest servers largest servers

m c r i

a) no index

th
ro

u
g
h

p
u

t

0

5,000

10,000

15,000

20,000

25,000

smallest servers largest servers

m c r i

b) with index

th
ro

u
g
h

p
u

t
Fig. 5. Database insertion throughput on the smallest and largest servers in 4 instance families.

specifications). As shown in Figure 6a, compute-optimized server (c-small) outperforms other

server types in all aspects. In addition, disk-optimized server (i-small) is not cost efficient for

video uploads since there is not much need for random disk access as discussed in the previous

section and the data size is small. In Figure 6b, we present the results for 32GB of data which 8

times exceeds the m-small node. In this scenario, we need allocate 8 small servers; therefore,

cost efficiency dramatically drops for m-small server.

5 Related Work

With the increasing popularity of Big Data processing frameworks, several benchmarks have

been proposed to evaluate various offline operations (e.g., grep, sort, aggregation, etc.) on pop-

ular frameworks such as Hadoop and Hive [25, 26]. Meanwhile, a number of benchmarks have

been developed to measure the scalability of NoSQL and NewSQL databases. These bench-

marks only emphasize the impact of the database system on the overall performance rather than

considering all the resources an end-to-end mobile video application requires. In particular,

some benchmarks are designed for social networking applications [17], online transaction pro-

cessing (OLTP) [9, 10, 19] and simple key-value based put-get operations, which are heavily

used in web applications [16, 18]. In addition, there are a few recent studies that measure the

impact of virtualization on the networking performance in the data centers [6, 20]. However,

these studies only measure packet delays and TCP/UDP throughput, and packet loss among

virtual machines. Similar to our approach, CloudCmp [21] measures the performance of elastic

computing and persistent storage services offered by cloud service providers. However, Cloud-

Cmp separates computing and storage instances, and employs different metrics for performance

evaluation and cross-platform comparisons. Moreover, while we focus on multimedia applica-

tions CloudCmp covers a wide range of web applications where the workloads are composed of

put and get requests. In addition, a few measurement techniques have been studied to assess the

energy consumption of cloud platforms [12].

In the multimedia context, several benchmarking approaches have been proposed as well.

ALPBench [24] focuses on multi-core architecture, and measures the thread and instruction-

level parallelism of complex media applications such as speech and face recognition. Also

traditional benchmark suites such as SPEC [22] and MiBench [21] are not adequate to charac-

terize the performance of all system resources used in the workflow from mobile clients to

cloud servers.

6 Conclusion and Future Directions

In this paper, we proposed a single frame-based metric which can measure the performance of

three main system components on cloud infrastructure for a large-scale mobile video applica-

tion, especially for uploading videos from mobile clients to cloud servers. To this extent, we

first deployed our mobile video management system, MediaQ, to Amazon EC2, separated

video upload workflow into three phases and identified the system resources used at each stage.

Using our metric, we spotted CPU as the main bottleneck that slows down the entire system

performance. Subsequently, we proposed several approaches to enhance CPU throughput and

concluded that running multiple single-threaded transcoding processes increases throughput

linearly with the number of CPUs. In addition, to benchmark various server types available on

EC2, we conducted our experiments on four different server families, specifically, on the

smallest and the largest instance of servers to identify the lower and upper performance bound.

Our experimental results show that compute-optimized machines provide the best performance

for a resource intensive mobile video application.

We believe that our approach will help users to make more informed decisions in choosing

server types while deploying mobile video applications to cloud infrastructures. In addition,

such a cross-resource metric can be used to calculate performance-to-price ratios. As a next

step, we plan to extend our frame-based metric to measure: 1) mobile devices’ computing and

storage capabilities, and 2) other server side processes such as query processing (e.g., range

query). Moreover, we also would like to partition our dataset and scale out to multiple servers.

7 Acknowledgements

This research has been funded in part by NSF grants IIS-1115153 and IIS-1320149, the USC

Integrated Media Systems Center (IMSC), and unrestricted cash gifts from Google, Northrop

Grumman, Microsoft, and Oracle. Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the author(s) and do not necessarily reflect the views of

any of the sponsors such as the National Science Foundation.

8 References

1. Amazon EC2, http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html

2. MediaQ Framework, http://mediaq.usc.edu

3. Kim S. H., Lu Y., Constantinou G., Shahabi C, Wang G, Zimmermann R.: MediaQ: mobile

multimedia management system. In: 5th ACM Multimedia Systems Conference, pp. 224-

235. ACM, New York, NY, USA (2014).

4. Oracle, http://docs.oracle.com/cd/B12037_01/appdev.101/b10795/adfns_in.htm

5. Wang G. and Eugene T. S.: The impact of virtualization on network performance of amazon

EC2 data center. In: 29th Conference on Information Communications (INFOCOM), pp.

1163-1171. IEEE Press, Piscataway, NJ, USA (2010).

6. Amdahl G.: Validity of the Single Processor Approach to Achieving Large-Scale Compu-

ting Capabilities. In: Spring Joint Conference (AFIPS), pp. 483-485. ACM, New York, NY,

USA (1967)

7. Cisco’s Forecast, http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-

ip-next-generation-network/white_paper_c11-481360.pdf

8. Mc Kinsey’s Forecast, http://www.mckinsey.com/insights/business_technology/disruptive_

technologies

9. Curino C., Difallah D. E., Pavlo A., Cudre-Mauroux P.: Benchmarking OLTP/Web Data-

bases in the Cloud: the OLTP-bench framework. In: 4th International Workshop on Cloud

Data Management, pp. 17-20. ACM, New York, NY, USA (2012)

10. Kossmann D., Kraska T., Loesing S.: An Evaluation of Alternative Architectures for Trans-

action Processing in the Cloud. In: International Conference on Management of Data

(SIGMOD), pp. 579-590. ACM, New York, NY, USA (2010)

11. TPC. TPC-W 1.8. TPC Council, (2002)

12. Cuzzocrea A., Kittl C., Simos D. E., Weippl E., Xu L.: Availability, Reliability, and Securi-

ty in Information Systems and HCI. LNCS, vol. 8127, pp. 28-43. Springer, Heidelberg

(2013)

13. Ffmpeg Library, www.ffmpeg.org

14. Android, http://developer.android.com/reference/android/hardware/Camera.Parameters.html

#setPreviewFpsRange

15. Venkata S., Ahn I., Jeon D., Gupta A., Louie C., Garcia S., Belongie S., Taylor M.: Sd-vbs:

The San Diego Vision Benchmark Suite. In: International Symposium on Workload Charac-

terization (IISWC), pp. 55-64. IEEE, Washington, DC, USA (2009)

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
http://mediaq.usc.edu/
http://docs.oracle.com/cd/B12037_01/appdev.101/b10795/adfns_in.htm
http://www.mckinsey.com/insights/business_technology/disruptive_%20technologies
http://www.mckinsey.com/insights/business_technology/disruptive_%20technologies
http://link.springer.com/search?facet-author=%22Alfredo+Cuzzocrea%22
http://link.springer.com/search?facet-author=%22Christian+Kittl%22
http://link.springer.com/search?facet-author=%22Dimitris+E.+Simos%22
http://link.springer.com/search?facet-author=%22Lida+Xu%22
http://link.springer.com/book/10.1007/978-3-642-40511-2
http://link.springer.com/book/10.1007/978-3-642-40511-2
http://link.springer.com/bookseries/558
http://www.ffmpeg.org/
http://developer.android.com/reference/android/hardware/Camera.Parameters.html

16. Cooper B. F., Silberstein A., Tam E., Ramakrishnan R., Sears R.: Benchmarking Cloud

serving systems with YCSB. In: 1st ACM symposium on Cloud Computing (SoCC), pp.

143-154. ACM, New York, NY, USA (2010)

17. Barahmand S, Ghandeharizadeh S.: BG: A Benchmark to Evaluate Interactive Social Net-

working Actions. In: Sixth Biennial Conference on Innovative Data Systems Research

(CIDR), Asilomar, CA, USA (2013)

18. Patil S., Polte M., Ren K, Tantisiriroj W., Xiao L., López J, Gibson G, Fuchs A., Rinaldi B.:

YCSB++: benchmarking and performance debugging advanced features in scalable table

stores. In: 2nd ACM Symposium on Cloud Computing (SOCC). ACM, New York, NY,

USA (2011)

19. Gray J.: The Benchmarking Handbook for Database and Transactions Systems. Morgan

Kaufman, San Francisco, CA, USA (1992)

20. Ballani H., Costa P., Karagiannis T., Rowstron A.: Towards predictable datacenter net-

works. In: 17th International Conference on Data Communications (SIGCOMM), pp. 242-

253. ACM, New York, NY, USA (2011)

21. Li A., Yang X., Kandula S., Zhang M.: CloudCmp: comparing public cloud providers.

In: 10th International SIGCOMM Conference on Internet Measurements, pp. 1-14. ACM,

New York, NY, USA (2010)

22. The Standard Performance Evaluation Corporation (SPEC), www.specbench.org

23. Guthaus M., Ringenberg J., Ernst D., Austin T., Mudge T., Brown R.: Mibench: A free,

commercially representative embedded benchmark suite. In: International Symposium on

Workload Characterization, pp. 3 – 14.

24. Li M. L., Sasanka R., Adve S. V., Chen Y.K., Debes E.: The ALPBench benchmark suite

for complex multimedia applications. In: International Symposium on Workload Characteri-

zation, pp. 34-45. IEEE, Washington, DC, USA (2005)

25. Luo C., Zhan J., Jia Z., Wang L., Lu G., Zhang L. Xu C.Z., Sun N.: CloudRank-D: bench-

marking and ranking cloud computing systems for data processing applications. J. Frontiers

of Computer Science. 6(4), 347-362 (2012)

26. Wang L., Zhan J., Luo C., Zhu Y., Yang Q., He Y., Gao W., Jia Z., Shi Y., Zhang S., Zheng

C., Lu G., Zhan K., Li X., Qiu B.: BigDataBenchd: a Big Data Benchmark Suite from Inter-

net Services. In: 20th IEEE International Symposium On High Performance Computer Ar-

chitecture, pp. 488-499, Orlando, Florida, USA (2014)

http://www.specbench.org/
http://arxiv.org/find/cs/1/au:+Wang_L/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Zhan_J/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Luo_C/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Zhu_Y/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Yang_Q/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+He_Y/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Gao_W/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Jia_Z/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Shi_Y/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Zhang_S/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Zheng_C/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Lu_G/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Zhan_K/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Li_X/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Qiu_B/0/1/0/all/0/1

