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Abstract. The number of mobile devices (e.g., smartphones, tablets, wearable 

devices) is rapidly growing. In line with this trend, a massive amount of mobile 

videos with metadata (e.g., geospatial properties), which are captured using the 

sensors available on these devices, are being collected. Clearly, a computing in-

frastructure is needed to store and manage this ever-growing large-scale video 

dataset with its structured data. Meanwhile, cloud computing service providers 

such as Amazon, Google and Microsoft allow users to lease computing re-

sources with varying combinations of computing resources such as disk, net-

work and CPU capacities. To effectively use these emerging cloud platforms in 

support of mobile video applications, the application workflow and resources 

required at each stage must be clearly defined. In this paper, we deploy a mo-

bile video application (dubbed MediaQ), which manages a large amount of us-

er-generated mobile videos, to Amazon EC2. We define a typical video upload 

workflow consisting of three phases: 1) video transmission and archival, 2) 

metadata insertion to database, and 3) video transcoding. While this workflow 

has a heterogeneous load profile, we introduce a single metric, frames-per-

second, for video upload benchmarking and evaluation purposes on various 

cloud server types. This single metric enables us to quantitatively compare main 

system resources (disk, CPU, and network) with each other towards selecting 

the right server types on cloud infrastructure for this workflow. 

Keywords: Mobile Video Systems, Spatial Databases, Cloud Computing, Big 

Video Data, Benchmarking 

1 Introduction 

With the recent advances in video technologies and mobile devices (e.g., smartphones, tablets, 

wearable devices), massive amounts of user generated mobile videos are being collected and 

stored. According to Cisco’s forecast [7], there will be over 10 billion mobile devices by 2018 

and 54% of them will be smart devices, up from 21% in 2013. Accordingly, mobile video will 

increase 14-fold between 2013 and 2018, accounting for 69% of total mobile data traffic by the 

end of the forecasted period. Clearly, this vast amount of data brings a major scalability prob-

lem in any computing infrastructure. On the other hand, cloud computing provides flexible 

resource arrangements that can instantaneously scale up and down to accommodate varying 

workloads. It is projected that the total economic impact of cloud technology could be $1.7 



trillion to $6.2 trillion annually in 2025 [8]. Thus, the large IT service providers such as Ama-

zon, Google, and Microsoft, are ramping up cloud infrastructures.  

One key question is how to evaluate the performance of mobile video applications on these 

cloud infrastructures and select the appropriate set of resources for a given application. Suppose 

a mobile user wants to upload a video to a cloud server along with its metadata (e.g., geospatial 

properties of video such as camera location and viewing direction), which are captured and 

extracted using the sensors embedded on the mobile devices. Note that this kind of geospatial 

metadata enables advanced data management, especially in very large-scale video repositories. 

For example, the performance of a spatial query such as a range query, which can find all video 

frames that overlap with a user-specified region [2], can be significantly enhanced using spatial 

metadata. When we upload captured videos with metadata from mobile device to cloud, this 

upload operation consists of three stages which require different computing system resources: 

1) network to transfer videos from mobile clients to the cloud servers (i.e., network bandwidth), 

2) database to insert metadata about the uploaded videos (i.e., database transaction), and 3) 

video transcoding to change the resolution of uploaded videos to use less storage and band-

width (i.e., CPU processing power). These phases are executed in sequence; therefore, ineffi-

ciency in any step slows down the performance of video applications. A benchmark to evaluate 

such an application needs to identify the system resources used at each stage, compare them 

with one another quantitatively and spot which resource(s) becomes the bottleneck in the work-

flow of the application. Once the bottlenecks are detected, the servers with the right specifica-

tions can be selected and configured accordingly on cloud.  

There exists a challenge in evaluating the performance of a large scale video application on 

cloud because most of the benchmarking studies in the cloud computing context focus on eval-

uating either the performance of Big Data processing frameworks such as Hadoop and Hive 

[25, 26] or NoSQL data-stores rather than considering all system resources a mobile video 

application requires. In particular, some benchmarks are designed for social networking appli-

cations [17], online transaction processing (OLTP) [9, 10, 19] and simple key-value based put-

get operations [16, 18]. These benchmarks only emphasize the impact of the database system 

on the overall performance. In addition, a recent study measures the impact of virtualization on 

the networking performance in the data centers [6]. However, this study only measures packet 

delays and TCP/UDP throughput, and packet loss among virtual machines. 

In this paper, we define a single (cross-resource) metric to evaluate the uploading workflow of 

video applications on cloud and present an end-to-end benchmark. In particular, we use a 

throughput, the number of processed frames per second, as the metric and compare the perfor-

mance of system resources (e.g., network, disk, CPU) with one another. To this extent, we 

deployed one exemplary mobile video application called MediaQ, which we developed on the 

Amazon EC2 platform, and conducted extensive experiments on various server types. Specifi-

cally, we used the smallest and the largest instance at each server group (e.g., disk-optimized, 

CPU-optimized, general-purpose) to identify the lower and upper performance bound. Our 

experimental results show that CPU drastically slows down the entire system and becomes the 

bottleneck in the overall performance. Our experiments also show that simply selecting high-

end CPU-optimized servers does not resolve the problem entirely. Therefore, we propose two 

techniques to enhance the CPU throughput:  1) reducing video quality and 2) enabling multi-

threading. Our study serves as the first step towards understanding the end-to-end performance 

characteristics of cloud resources in terms of resource-demanding video applications. 

The remainder of this paper is organized as follows. Section 2 provides the necessary back-

ground. The benchmark design and experimental results are presented in Sections 3 and 4, 

respectively. Related work is discussed in Section 5. Subsequently Section 6 concludes the 

paper with the directions for future work.  



2 Background 

Before we present our results and findings, we briefly introduce a typical example of resource 

intensive mobile video application (MediaQ) and available server types in the data centers to 

prepare for the rest of the discussion.   

2.1 MediaQ: Mobile Multimedia Management System 

MediaQ [2, 3] is an online media management framework that includes functions to collect, 

organize, search, and share user-generated mobile videos using automatically tagged geospatial 

metadata. MediaQ consists of a MediaQ server and a mobile app for smartphones and tablets 

using iOS and Android. User-generated-videos (UGV) can be uploaded to the MediaQ server 

from users’ smartphones and they are then displayed accurately on a map interface according to 

their automatically collected geo-tags and other metadata information such as the recorded real 

time, camera location, and the specific direction the camera was pointing. Media content can be 

collected in a casual or on-demand manner. Logged in participants can post specific content 

requests that will automatically generate an alert with other participants who are near a desired 

content assignment location to entice them to record using their phones. 

The schematic design of the MediaQ system is summarized in Figure 1. Client-side compo-

nents are for user interaction, i.e., the Mobile App and the Web App. The Mobile App is mainly 

for video capturing with sensed metadata and their uploading. The Web App allows searching 

the videos and issuing spatial crowdsourcing task requests to collect specific videos. Server-

side components consist of Web Services, Video Processing, GeoCrowd Engine, Query Pro-

cessing, Account Management, and Data Store. The Web Service is the interface between cli-

ent-side and server-side components. The Video Processing component performs transcoding 

of uploaded videos so that they can be served in various players. At the same time, uploaded 

videos are analyzed by the visual analytics module to extract extra information about their 

content such as the number of people in a scene. We can plug in open source visual analytics 

algorithms here to achieve more advanced analyses such as face recognition among a small 

group of people such as a user's family or friends.  Automatic keyword tagging is also per-

formed at this stage in parallel to reduce the latency delay at the server. Metadata (captured 

sensor data, extracted keywords, and results from visual analytics) are stored separately from 

uploaded media content within the Data Store. Query Processing supports effective searching 

for video content using the metadata in the database. Finally, task management for spatial 

crowdsourcing can be performed via the GeoCrowd engine. 

 

Fig. 1. Overall structure of MediaQ system 
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2.2 Cloud Server Type Classification 

Recently the computing resources on cloud have become more granular since service providers 

use virtualization techniques to manage physical servers and provide a wide selection of server 

types optimized to fit different use cases [1]. These types comprise varying combinations of 

CPU, memory, storage, and networking capacity and give users the flexibility to choose an 

appropriate combination of resources. Specifically, server types are clustered into six groups 

where each group consists of several options with varying computational capabilities. Table 1 

depicts a classification of the server groups presently offered by the biggest three service pro-

viders along with the prices (dollars/hour) of the smallest and the largest server at each group. 

As shown, the pricing varies widely across the server types within each service provider. For 

example, the most expensive machine in Microsoft Azure is 245 times more costly than the 

cheapest one (4.9/0.02). This ratio is 97 for Amazon EC2 and 102 for Google Compute Engine, 

respectively. Clearly, such a huge discrepancy across the server types makes the selection of 
appropriate set of resources critical in hosting an application on these cloud platforms. 

Type 

Amazon EC2 Microsoft Azure Google Compute  

price ($/hour) price ($/hour) price ($/hour) 

smallest largest smallest largest smallest largest 

General purpose (m) 0.07 0.56 0.02 0.72 0.077 1.232 

Compute optimized (c) 0.105 1.68 2.45 4.9 0.096 0.768 

Memory optimized (r) 0.175 2.8 0.33 1.32 0.18 1.44 

Disk optimized (i) 0.853 6.82 - - - - 

Micro (t) 0.02 0.044 - - 0.014 0.0385 

GPU 0.65 0.65 - - - - 

Table 1. Categorization of the server types with the prices (dollars/hour) of the smallest and the 

largest servers at each group. 

3 Benchmark Design 

In this section, we first explain our measurement methodology and then discuss the metric we 

used in the experimental evaluation. 

3.1 Methodology 

There are three main components in the performance evaluation of large scale mobile video 

systems such as MediaQ which requires different system resources: 1) network to transfer 

videos from mobile clients to a cloud server (i.e., network bandwidth), 2) database to insert 

metadata about the uploaded videos (i.e., database transaction), and 3) video transcoding to 

change the resolution of uploaded videos which is a common operation in video services (i.e., 

CPU processing power). Specifically, we measure the upload performance which involves 

these three phases that are executed in sequence. Upon recording a video, mobile clients re-

trieve metadata (i.e., GPS signals, field of views, etc.) from the video. Subsequently, along with 

the video data, they upload the metadata in JSON format to the server. Once a video is upload-

ed, the metadata is inserted into the database and the video is transcoded, which is required to 

either support different formats (e.g., MP4, WAV) or to reduce video quality due to limited 

network bandwidth when being displayed later. Therefore, the videos are not retrievable until 

transcoding task is completed, and hence overhead in any component can degrade the overall 

performance of video applications. Our goal is to define a single metric, examine these compo-



nents individually using this metric, and detect which phase slows down the system. To this 

extent, we deployed MediaQ server side code on the EC2 servers running a video upload ser-

vice implemented in PHP. The service can receive multiple video files simultaneously. We then 

run multiple clients which transfer large amount of videos concurrently using the upload ser-

vice. 

3.2 Metric 

We introduce a single metric, processed-frames-per-second, to evaluate the performance of 

three main components. For network performance, we straightforwardly report the number of 

transferred frames per second. For database performance, we report the number of frames in-

serted per second. Note that we do not insert the video data but its spatio-temporal metadata to 

the database. The metadata are collected at video capturing time by mobile devices and trans-

ferred to the server, thus the database cost is only composed of inserting a set of metadata (i.e., 

per frame) from memory into database. Similar to the standalone version of MediaQ, we select-

ed MySQL database installed on EC2 servers. For transcoding performance, we use the number 

of transcoded frames per second. Once a video arrives at the server, MediaQ transcodes it using 

FFMPEG [13], which is a widely used video solution. In order to measure the maximum 

throughput, we perform a stress test on the cloud server by generating a large amount of real 

videos and uploading them to the server simultaneously and continuously for a significant 

amount of time. 

Table 2. Hardware specifications of the smallest and largest servers of 4 server types on EC2. 

4 Performance Evaluation 

In this section, we first present an overall cost analysis of the three components in the workflow 

and show how the server types impact the performance. Subsequently, we evaluate transcoding 

and database components in more detail, and finally present performance-cost results. 

4.1 Overall Cost Analysis 

In this set of experiments, we used the smallest servers on Amazon EC2 in four instance fami-

lies: general purpose (m), compute-optimized (c), memory-optimized (r) and disk-optimized (i) 

and measured the throughputs (See Table 2 for hardware specifications of Amazon EC2). To 

fully utilize multi-core CPUs available at the servers, we enabled multi-threading on database 

and transcoding parts. Specifically, we first run the experiments using one thread (T=1), and 

then increase the number of threads T by one to run the experiment again. The point where 

throughput cannot be improved further is the maximum throughput that the server can achieve. 

Note that there is no index built on the metadata table in the database and we take advantage of 

Type Memory CPU Disk Network Bandwidth 

m-small 3.75 GB 1 VCPU 4 GB SSD no info. 

c-small 3.75 GB 2 VCPUs 32 GB SSD no info. 

r-small 15.25 GB 2 VCPUs 32 GB SSD no info. 

i-small 30.5 GB 4 vCPUs 800 GB SSD no info. 

m-large 30 GB 8 VCPU 160 GB SSD no info. 

c- large 60 GB 32 VCPUs 640 GB SSD no info. 

r- large 244 GB 32 VCPUs 2 x 320 GB SSD 10 Gigabit Ethernet 

i- large 244 GB 32 vCPUs 8x800 GB SSD 10 Gigabit Ethernet 
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bulk insert, where 1,000 rows are written into disk as one transaction which reduces the disk 

I/O significantly. For transcoding tasks, we reduce the video resolution from 960x540 to 

480x270. 

Figure 2a illustrates the throughput comparison where a single large video with 24 fps (frame 

per second) was uploaded to the server. We observed that other than general purpose instance, 

the performance difference between the optimized servers (c, r, i) is not significant even though 

the prices vary widely such that i-small is 8 times more expensive than c-small. As shown, 

database can handle almost two and three orders of magnitude more frames than network and 

transcoding, respectively. 

Fully utilizing the network bandwidth, real systems can handle concurrent video uploads to the 

server; therefore, in the next experiments, we did a stress test where multiple videos were up-

loaded simultaneously until the network bandwidth was saturated. As illustrated in Figure 2b, 

network throughput increases significantly; however, database and transcoding remain almost 

constant. This is because we already enabled bulk insert and multi-threading to ensure the max-

imum performance even in the case of a single video upload. Another observation is that trans-

coding, which shows the lowest throughput, becomes a major bottleneck in the workflow. 

The frames per second (fps) value in video recording has a direct impact on the performance in 

our experiments. However, database throughput is independent of fps in our target application 

MediaQ. This is because, fps value ranges from 15 to 120 in new generation smartphone cam-

eras; however, regardless of fps, we select one metadata per each second using a sampling 

technique [3] and store it for all the frames in the corresponding second. This is a real-world 

phenomenon since metadata includes geospatial attributes such as the camera location and 

viewing direction which do not change significantly within a second. This approach widens the 

fps Network Database Transcoding  
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b) Decrease over fps=18 

Fig. 3. The video length (min) that each component can process in a second for various fps. 

 

Fig. 2. Comparison of system components on smallest servers of 4 server types (log-scale). 
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gap between the throughput of database and those of other components even further. Figure 3a 

depicts a comparison of the system resources under various fps values on a c-small instance, 

where the metric is total length of videos (minute) that each component can process within a 

unit time (second). For this experiment, we only changed the fps values [14] of videos and kept 

the original resolution. As shown, database throughput remains constant as fps increases while 

others diminish and the percentage of decrease over fps=18 is listed in Figure 3b. For higher 

frame rates, the length of video that network can handle decreases since the size of the videos 

grow and saturate the fixed bandwidth capacity. Similarly, transcoding can process a shorter 

amount of video per second as fps increases since its throughput on a specific server is fixed. In 

conclusion, these preliminary experiments verify that transcoding slows down the workflow 

dramatically; therefore, in the following section we propose several approaches to enhance this 

piece and measure the impact of each proposed technique. 

4.2 Transcoding performance 

It is crucial to improve the transcoding performance because newly uploaded videos are not 

retrievable for use until their transcoding tasks are completed. That is the main reason behind 

the delay between the uploading and viewing time in many video-based applications. There are 

two ways to make transcoding faster: 1) enabling multi-threading, and 2) reducing the size of 

the output file, which results in a lower video quality. We explain these two approaches in turn.  

Multi-threading.  One natural way to improve the performance is utilizing multi-core CPUs 

available in the servers and scale-up. There are two techniques to increase the throughput on 

cloud. First, running a multi-threaded ffmpeg process (MT) on a single video and decrease the 

total amount of time to transcode it. Second, running a single-threaded ffmpeg processes in 

parallel on multiple videos (PST). In the following set of experiments, we use the largest com-

pute-optimized (c3.xlarge) server with 32 vCPU’s. 

Figure 4a illustrates the effect of varying number of threads while transcoding a video. In this 

specific experiment, we used a 230 MB video in AVI format as input and reduced the resolution 

from 960x540 to 480x270 in two different video output types, MP4 and AVI. As shown, the 

total time does not decrease linearly as the number of threads increases. As stated in Amdahl’s 

Law [6], a parallel algorithm is as fast as its sequential, non-parallelizable portion which domi-

nates the total execution time. For ffmpeg, after 4 threads the performance gain becomes insig-

nificant no matter how many CPUs are used, which verifies that ffmpeg does not scale up. 

Another way to increase throughput is running single-thread ffmpeg processes in parallel where 

each thread handles a single video. Figure 4b depicts the throughput performance of these two 
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techniques. Since ffmpeg does not scale well as the number of threads increases, the throughput 

remains almost constant. However, throughput increases almost linearly for PST until all 32 

CPUs are fully utilized. That is because while MT technique suffers from low parallelism, PST 

can utilize available CPUs better. After the CPUs are saturated, the performance goes down for 

both MT and PST due to resource contention across the threads. 

Reducing video quality. In this set of experiment, we investigate the impact of resolution and 

type of the outputted video on the performance. Table 3 presents the transcoding throughputs 

for converting a video with dimensions 960x540 to smaller resolutions. The percentage of 

increase in the throughput is listed as well for clarity of the presentation. As expected, the result 

shows that throughput increases significantly as the resolution decreases. However, the per-

centage improvement diminishes when the output video resolution becomes too smaller (i.e., 

60x32) because loading the input video, frame by frame, is a constant cost which largely con-

tributes to the total transcoding cost. In addition, we also observe that the results are similar for 

different output formats (mp4 and avi). 

Table 3. Transcoding throughput for mp4 and avi types with various output resolutions. The 

input video is in .m4v format with 960x540 resolution. 

4.3 Database performance 

In this section, we measure the database throughput on both the smallest and largest instances 

at each server group to show the lower and upper performance bounds. In addition, we investi-

gate the impact of indexing on throughput and test if it changes the best performer server. 

Throughput is measured using iterative multi-threading approach. First, we run the experiment 

with a single thread and repeat the experiment increase the number of threads by one until no 

throughput improvement is observed. Then, we report the maximum throughput as the result. 

Metadata information is stored in video_metadata database table which consists of 13 columns 

where average length of a row is 319 bytes. Figure 5a and 5b illustrate the effect of server types 

on the database throughput where the smallest and largest instances in general purpose (m), 

compute-optimized (c), memory-optimized (r) and disk-optimized (i) are clustered together. As 

shown in Figure 5a, where there is no index on video_metadata table, the smallest disk-

optimized server (i) slightly outperforms others. With the largest instances, compute-optimized 

(c) server provides slightly better performance than others. This is because while small servers 

contain 2 to 4 CPUs, large ones have 8 to 32 CPUs and compute-optimized machines might be 

better in managing concurrent threads. Note that, even though metadata insertion is an I/O-

intensive task, disk-optimized machines do not expressively outperform other instances. The 

reason is that video data is mostly append-only, where the updates to the dataset are rare after 

the insertion. Disk-optimized instances are tuned to provide fast random I/O; however, in ap-

pend-only datasets random access is not much used. Another observation is that optimized 

machines perform at least 2.5 times better than the general purpose one. 

Output resolution MP4 AVI 

 throughput % improvement throughput % improvement 

480x270 623 - 626 - 

240x136 842 35% 839 34% 

120x68 980 57% 982 57% 

60x34 1038 66% 1048 67% 



Effect of Indexing. To investigate how indexing influences throughput at each server, we built 

2 indices on video_metadata table. Specifically, a B-tree index on the time field and hash index 

on the keywords fields, which is a good indexing strategy that allows efficient range search 

over the time and effective equality search on the keywords associated with the videos. As 

depicted in Figure 5b, for both smallest and largest server groups, compute-optimized instances 

show better performance unlike the no-index scenario. The reason is that indices are kept in 

memory and index update is a CPU intensive task. Another observation is that indexing de-

grades the performance considerably, where throughput approximately drops to 1/3 of the no-

index scenario due to extra high index maintenance cost. 

 
Fig. 6. Number of frames that can be processed for each dollar spent (log-scale). 

4.4 Performance-Cost Analysis 

In this section, we discuss how the performance-to-price ratios of different server types. Figure 

6 illustrates the number of frames per dollar that each component can process using the smallest 

servers in each server group. In this specific example, we uploaded multiple videos with 24 fps 

to the servers and enabled multithreading mode both on database insertion and transcoding. 

Note that performance-price ratio is sensitive to the total amount of data we upload since more 

nodes need to be employed when the storage capacity of a single server is exceeded. In Figure 

6a, we present the result for 4GB of data which can fit all server types (See Table 2 for server 
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specifications). As shown in Figure 6a, compute-optimized server (c-small) outperforms other 

server types in all aspects. In addition, disk-optimized server (i-small) is not cost efficient for 

video uploads since there is not much need for random disk access as discussed in the previous 

section and the data size is small. In Figure 6b, we present the results for 32GB of data which 8 

times exceeds the m-small node. In this scenario, we need allocate 8 small servers; therefore, 

cost efficiency dramatically drops for m-small server. 

5 Related Work 

With the increasing popularity of Big Data processing frameworks, several benchmarks have 

been proposed to evaluate various offline operations (e.g., grep, sort, aggregation, etc.) on pop-

ular frameworks such as Hadoop and Hive [25, 26]. Meanwhile, a number of benchmarks have 

been developed to measure the scalability of NoSQL and NewSQL databases. These bench-

marks only emphasize the impact of the database system on the overall performance rather than 

considering all the resources an end-to-end mobile video application requires. In particular,  

some benchmarks are designed for social networking applications [17], online transaction pro-

cessing (OLTP) [9, 10, 19] and simple key-value based put-get operations, which are heavily 

used in web applications [16, 18]. In addition, there are a few recent studies that measure the 

impact of virtualization on the networking performance in the data centers [6, 20]. However, 

these studies only measure packet delays and TCP/UDP throughput, and packet loss among 

virtual machines. Similar to our approach, CloudCmp [21] measures the performance of elastic 

computing and persistent storage services offered by cloud service providers. However, Cloud-

Cmp separates computing and storage instances, and employs different metrics for performance 

evaluation and cross-platform comparisons. Moreover, while we focus on multimedia applica-

tions CloudCmp covers a wide range of web applications where the workloads are composed of 

put and get requests. In addition, a few measurement techniques have been studied to assess the 

energy consumption of cloud platforms [12]. 

In the multimedia context, several benchmarking approaches have been proposed as well. 

ALPBench [24] focuses on multi-core architecture, and measures the thread and instruction-

level parallelism of complex media applications such as speech and face recognition. Also 

traditional benchmark suites such as SPEC [22] and MiBench [21] are not adequate to charac-

terize the performance of all system resources used in the workflow from mobile clients to 

cloud servers. 

6 Conclusion and Future Directions 

In this paper, we proposed a single frame-based metric which can measure the performance of 

three main system components on cloud infrastructure for a large-scale mobile video applica-

tion, especially for uploading videos from mobile clients to cloud servers. To this extent, we 

first deployed our mobile video management system, MediaQ, to Amazon EC2, separated 

video upload workflow into three phases and identified the system resources used at each stage. 

Using our metric, we spotted CPU as the main bottleneck that slows down the entire system 

performance. Subsequently, we proposed several approaches to enhance CPU throughput and 

concluded that running multiple single-threaded transcoding processes increases throughput 

linearly with the number of CPUs. In addition, to benchmark various server types available on 

EC2, we conducted our experiments on four different server families, specifically, on the 

smallest and the largest instance of servers to identify the lower and upper performance bound. 

Our experimental results show that compute-optimized machines provide the best performance 

for a resource intensive mobile video application. 



We believe that our approach will help users to make more informed decisions in choosing 

server types while deploying mobile video applications to cloud infrastructures. In addition, 

such a cross-resource metric can be used to calculate performance-to-price ratios. As a next 

step, we plan to extend our frame-based metric to measure: 1) mobile devices’ computing and 

storage capabilities, and 2) other server side processes such as query processing (e.g., range 

query). Moreover, we also would like to partition our dataset and scale out to multiple servers. 
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