
Blind Evaluation of Nearest Neighbor Queries Using
Space Transformation to Preserve Location Privacy ?

Ali Khoshgozaran and Cyrus Shahabi

University of Southern California
Department of Computer Science
Information Laboratory (InfoLab)

Los Angeles, CA 90089-0781
[jafkhosh,shahabi]@usc.edu

Abstract. In this paper we propose a fundamental approach to perform the class
of Nearest Neighbor (NN) queries, the core class of queries used in many of the
location-based services, without revealing the origin of the query in order to pre-
serve the privacy of this information. The idea behind our approach is to utilize
one-way transformations to map the space of all static and dynamic objects to
another space and resolve the query blindly in the transformed space. However,
in order to become a viable approach, the transformation used should be able
to resolve NN queries in the transformed space accurately and more importantly
prevent malicious use of transformed data by untrusted entities. Traditional en-
cryption based techniques incur expensive O(n) computation cost (where n is the
total number of points in space) and possibly logarithmic communication cost for
resolving a KNN query. This is because such approaches treat points as vectors
in space and do not exploit their spatial properties. In contrast, we use Hilbert
curves as ef�cient one-way transformations and design algorithms to evaluate a
KNN query in the Hilbert transformed space. Consequently, we reduce the com-
plexity of computing a KNN query to O(K × 22N

n
) and transferring the results

to the client in O(K), respectively, where N , the Hilbert curve degree, is a small
constant. Our results show that we very closely approximate the result set gener-
ated from performing KNN queries in the original space while enforcing our new
location privacy metrics termed u-anonymity and a-anonymity, which are stronger
and more generalized privacy measures than the commonly used K-anonymity
and cloaked region size measures.

1 Introduction

An important class of spatial queries consists of nearest-neighbor (NN) query and its
variations. These queries search for data objects that minimize a distance-based function
with reference to one or more query objects (e.g., points). In location-based services, a
group of mobile users want to �nd the location of their K closest objects to their current
? This research has been funded in part by NSF grants EEC-9529152 (IMSC ERC), IIS-0238560

(PECASE), IIS-0324955 (ITR), and unrestricted cash gifts from Google and Microsoft. Any
opinions, �ndings, and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily re�ect the views of the National Science Foundation.

location (KNN). One obvious requirement with KNN queries is that the location of
the query point(s) needs to be known in order to perform the query. However, in many
applications such as in location-based services, a user may not want to reveal its location
in order to preserve his/her privacy.

In this paper, we propose blind evaluation of Nearest Neighbor queries in order to
preserve users' location from being revealed to location servers addressing such queries.
For clarity reasons, for the rest of this paper, we will focus on location-based services
in the 2-D space as the motivating application since it is clear that the query point is
identical to the user location and hence its hiding preserves user's location privacy.
While this application by itself is important enough to justify this research effort, we
believe that the blind evaluation of KNN queries is fundamental and core to many other
privacy preserving applications in sensor networks, online mapping services, geospatial
information systems and numerous other applications in geospatial decision making.

Protecting users locations while responding to a KNN query is challenging due to
the fact that there is an interesting dilemma in resolving such queries: while precise
query location is needed to generate the result set for a KNN query, the privacy con-
straints of the problem does not allow revealing users' location information to the un-
trusted entity responding to such queries. In order to resolve this dilemma, we propose
a fundamental approach based on utilizing the power of one-way transformations to
preserve users' location privacy by encoding the space of all static and dynamic objects
and answering the query blindly in the encoded space.

There is an inherent limitation in using traditional encryption techniques for blind
evaluation of KNN queries. To illustrate, assume our server uses recently proposed en-
cryption techniques to compute the encryption of the Euclidean distance between an
encrypted point (i.e., the query origin) and each point of interest [8]. These encrypted
distances can then be sent back to the client who can decrypt them and �nd the top
K results. Trivially, this protocol satis�es our de�nition of blind KNN evaluation (see
Section 3) since the location of neither the query point nor the result set is revealed to
the server. However, the main limitation here is that distance between query point and
each and every point of interest must both be computed and transferred to the client, i.e.,
O(n) computation and communication complexity where n is the size of the database.
There are cryptographic binary search communication protocols that may reduce the
communication complexity to logarithmic; however, the computation complexity at the
server cannot be reduced further. This is because the points of interest are treated as
vectors with no exploitation of the fact that they are in fact points in space. Instead,
we use Hilbert curves to transform original space to an encoded space stored at the
server. Consequently, the server's encoded space still has the property that the nearby
points stay close to each other and hence can reduce the KNNs computational com-
plexity to O(K × 22N

n) where N , the curve order, is a small constant. Moreover, since
only the K closest points are sent back to the client, the communication complexity
becomes O(K). We also introduce two new location privacy metrics termed user-based
anonymity or u-anonymity and area-based anonymity or a-anonymity. These metrics
are stronger and more generalized than the privacy measures commonly used by the
K-anonymity and spatial cloaking based approaches. We analytically prove that our
technique satis�es these two stronger privacy metrics.

We have performed several experiments to evaluate the effectiveness of our ap-
proach. As detailed in Section 7, we show that our proposed technique achieves a very
close approximation of performing KNN queries in the original space by generating a
result set whose elements on average have less than 0.08 mile displacement to the ele-
ments of the actual result set in a 26 mile by 26 mile area containing more than 10000
restaurants. We also show that a malicious attacker gains almost no useful knowledge
about the parameters of our encoding techniques, even when signi�cant knowledge
about the key is compromised. In other words, a nominal displacement error in approx-
imating only one of the key parameters, (a meter displacement in a 670 square mile
area) results in no useful information for compromising our encryption scheme.

We stress that our technique does not always generate the exact ground-truth answer
for a query because of its nature of reducing the dimensionality of data. However we
believe there are many use case scenarios in location-based services where a satisfac-
tory approximation of the result is still useful as long as users' privacy is preserved.

2 Related Work
The closest set of studies to our work is the class that preserves user location privacy
using the cloaking techniques. With this approach, a trusted anonymizer is usually in
charge of receiving user's precise location information and trying to disguise it by blur-
ring user's exact location by (for example) extending it from a point location to an area
(spatial extent) and sending a region containing several other users instead of a point
to the server. A similar approach based on the concept of K-anonymity is extending
the cloaked area until it is large enough to include a minimum of K − 1 other users.
Hence, the user's location cannot be distinguished from the location of the other K − 1
users in the same extended area. This extended area will then be used to resolve spatial
queries such as NN queries. Several techniques based on cloaking and K-anonymity
have been proposed in the literature to reduce the resolution of the user's location infor-
mation [1, 2, 4�6, 13, 14].

Cloaking and K-anonymity approaches have some limitations. First, by design
cloaking relies on a trusted entity to �anonymize� users' locations which means all
queries should trust the anonymizer during the system's normal mode of operation. The
anonymizer will also become a single point of failure and a potential scalability bottle-
neck as several handshakes must occur between the user and anonymizer to exchange
user pro�les and anonymity measures. Another limitation of cloaking techniques in
general is that either the quality of service or overall system performance degrades sig-
ni�cantly as users choose to have more strict privacy preferences. For example, if the
user requires a better K-anonymity, the system needs to increase K for that user which
would result in a larger cloaked area and hence less accurate query response. Alterna-
tively, if one requires to maintain the quality of service the location server has to resolve
the spatial query for each and every point in the cloaked region and send the entire bulky
result to the anonymizer to be �ltered out. This will obviously affect the overall system
performance, communication bandwidth and server throughput and results in more so-
phisticated query processing. Finally, the concept of K-anonymity does not work in all
scenarios. For example, in a less populated area, the size of the extended area can be

prohibitively large in order to include K − 1 other users. Some studies try to address
this limitation by proposing more robust ways of determining the area of cloaking [11].
However, they will still need a trusted anonymizer to be able to respond to user queries
and in the most optimistic scenario will reveal the region a user is located in, to an un-
trusted location server. In Section 6, we explain how our proposed approach eliminates
the need for an anonymizer and why the accuracy of the result only depends on the
quality of the transformation and remains consistent for all users.

3 Preliminaries
In this section, we �rst formally de�ne the problem of blindly evaluating a KNN query
and brie�y discuss our approach and its use of one-way transformations. We also study
the challenges associated with �nding the right transformations and review an important
class of many-to-one dimensional mappings called space �lling curves which are used
in our approach to achieve location privacy.

3.1 Formal Problem De�nition
Given a set of static objects S = (o1, o2, . . . , on) in 2-D space, a set of users U =
(u1, u2, . . . , uM) and a set of dynamic query points Q = (q1, q2, . . . , qm), the KNN
query with respect to query point qi �nds a set S′ ⊂ S of K objects where for any
object o′ ∈ S′ and o ∈ S − S′, D(o′, qi) ≤ D(o, qi) where D is the Euclidean distance
function. In a typical KNN query scenario, the static objects represent points of interest
(POI) and the query points represent user locations. We now de�ne some of the prop-
erties a location server should posses in order to enable user location protection while
responding to a KNN query.

De�nition 1. u-anonymity: While resolving a KNN query, the user issuing the query
should be indistinguishable among the entire set of users. In other words, for each query
Q, P (Q) = 1

M where P (Q) is the probability that query Q is issued by a user ui and M
is the total number of users. Note that this de�nition ensures the server does not know
which user queried from a point qi; however, we also need to ensure that the server
does not know which point the query Q is issued from. This requirement is captured in
De�nition 2.

De�nition 2. a-anonymity: While resolving a KNN query, the location of the query
point should not be revealed. In other words, for each query Q, P ′(Q) = 1

area(A) ,
where A is the entire region covering all the objects in S, and P ′(Q) is the probability
that query Q was issued by a user located at any point inside A.

Note that De�nitions 1 and 2 impose much stronger privacy requirements than the
commonly used K-anonymity [1, 4�6, 11, 13, 14, 18], in which a user is indistinguish-
able among K other users or his location is blurred in a cloaked region R. The above
de�nitions of location privacy are free of metrics such as K and R. They are in fact
identical to an extreme case of setting R = A for spatial cloaking, and an extreme case
of setting K = M for K-anonymity.

De�nition 3. Result set anonymity: The location of all points of interest in the result
set should be kept secret from the location server. More precisely Ṗ (oj) = 1/n for
j = 1 . . . n where Ṗ (oj) is the probability that oj is a member of the result set for
query Q and n is the total number of POI's.

De�nition 4. Blind evaluation of KNN: We say a KNN query is blindly evaluated
if the u-anonymity, a-anonymity and result set anonymity constraints de�ned above are
all satis�ed. In other words, in blind evaluation of KNN, the identity and location of
the query point as well as the result set should not be revealed. We term our approach
blind evaluation of KNN queries because it attempts to prevent any leak of information
to essentially blind the server from acquiring information about a user's location. For
the rest of the paper, we use the term user to refer to the user located at query point
P issuing the query Q. The following example shows how the above properties should
be satis�ed in a typical KNN query. Suppose a user asks for his 3 closest gas-stations.
In this case a malicious entity should acquire neither the location of the user (i.e., a-
anonymity) not its identity (i.e., u-anonymity) nor the actual location or identity of any
of the 3 closest gas stations in the response set (i.e., result set anonymity) while the user
should receive the actual points of interest matching his query.

Based on the above properties, we term a location server privacy aware if it is capa-
ble of blindly evaluating a KNN query while providing accurate results. The challenge
in blind evaluation of KNN queries is that the above two constraints cannot be perfectly
met at anytime. If precise KNN is desired for each query, one should reveal his exact lo-
cation and this violates the privacy constraint imposed on the problem (i.e., preserving
user's location). Therefore an ideal approach should respect both constraints as much as
possible i.e., it should be a very close approximation of S′ (we will de�ne the notion of
closeness in Section 3.2) while keeping P (Q), P ′(Q) and Ṗ (oj)'s as low as possible.

3.2 Space Encoding
In this section, we introduce our novel approach for protecting user's location from the
malicious location servers. Our approach is based on transforming the static objects in
the 2-D space as well as dynamic query points by mapping them to another space using
a one-way transformation and addressing the query in the transformed space. As men-
tioned earlier we address the issue of location privacy in the context of location-based
services and thus focus on the 2-D space of static objects (i.e., points of interest) and
dynamic query points (i.e., users). Transforming such a 2-D space requires using a one-
way function to map each point from the original space to a point in the transformed
space. A transformation is one-way if it can be easily calculated in one direction (i.e.,
the forward direction) and is computationally impossible to calculate in the other (i.e.,
backward) direction [20]. The process of transforming the original space with such a
one-way mapping can be viewed as encrypting the elements of the 2-D space. With
this view, in order to make decryption possible the function has to allow fast computa-
tion of its inverse given some extra knowledge, termed trapdoor [19]. In practice, many
one-way transformations may be reversible even without the knowledge of the trap-
door but the process must be too complex (equivalent to exhaustive try) to make such
transformation computationally secure.

Therefore , as depicted in Figure 1, any one-way transformation which respects the
proximity of the original space can replace the �rst black box in Figure 1 to make the
location server privacy aware. We view such one-way transformations as modules that
encode the original space into another space which is capable of addressing encoded
transformed queries. In order to enable decoding of query results one should de�ne the
notion of a trapdoor or a key for the space encoding module. In this paper we use the

Fig. 1. Space Encoding.

properties of our mapping function as the trapdoor for fast decryption of query results.
Such trapdoor will be only provided to the user to reverse the encoded results and get
the response set back in its original format.

Note that hiding the location of the query point is different than hiding its identity
and the focus of this paper is on hiding the locations of the query points and result sets.
No matter what type of space encoder is used, a user will only have to report its encoded
position to the location server in order to get the exact location of her result set back. In
Section 6 we will discuss how this property separates user anonymization issues from
protecting user's location.

Identifying the right space encoders is very challenging because there are several
one-way transformations which could be applied to a 2-D space of objects (e.g., random
perturbation of points), however, the majority of such transformations do not respect
the notion of distance and proximity . The transformations that respect such properties
are the only candidates resulting in satisfactory KNN query in an encoded space. We
term such transformations complete KNN-invariant if performing the KNN query in
the transformed space and decoding the result set back to the original space, generates a
result set exactly equal to the result set obtained from performing the query in the orig-
inal space. However, as we will discuss in Section 4, our proposed approach generates
an approximation of the actual result for each KNN due to its nature of reducing the
dimensionality of data. Therefore we de�ne a weaker notion of closeness for a trans-
formation and call it semi KNN-invariant (or for simplicity KNN-invariant) if it yields
satisfactory values for the two metrics introduced in the following de�nition.

De�nition 5. Suppose the actual result of a KNN query, issued by a user located at
point Q is R = (o1, o2, . . . , oK), and it is approximated by a transformation T as R′ =
(o′1, o

′
2, . . . , o

′
K). T is KNN-invariant if it yields acceptable values for the following two

metrics:
Metric 1: The Resemblance, denoted by α, de�ned as

α =
|R ∩R′|
|R| (1)

where |R| denotes the size of a set R. In fact α measures what percentage of the points
in the actual query result set R are included in the approximated result set R′.

Metric 2: The Displacement, denoted by β, de�ned as

β =
1
K

(
K∑

i=1

||Q− o′i|| −
K∑

i=1

||Q− oi||) (2)

where ||Q− oi|| is the Euclidean distance between the query point Q and oi. Therefore
β measures how closely R is approximated by R′ on average. Obviously, since R is the
ground truth, β ≥ 0.

Although there is no �xed threshold for acceptable α and β values, depending on the
application and the scenario, certain values may or may not be considered satisfactory.
In Section 7 we will evaluate our approach against these two metrics and will show that
it uses an effective KNN-invariant transformation.

In this paper, we study an important class of transformations called space �lling
curves as candidate space encoders for our framework. Such curves have interesting
properties which have made them a popular tool in different domains such as querying
multi-dimensional data and image compression [12, 16]. It is important, however, to
note that we are not claiming that space �lling curves are the best possible encoders. In
Section 3.3 we show how such space �lling curves can be treated as one-way functions
if certain properties of those curves are kept secret from malicious attackers.

3.3 Space Filling Curves
Introduced in 1890 by an Italian mathematician G. Peano [17], space �lling curves
belong to a family of curves which pass through all points in space without crossing
themselves. The important property of these curves is that they retain the proximity and
neighboring aspects of the data. Consequently, points which lie close to one another in
the original space mostly remain close to each other in the transformed space. One of
the most popular members of this class is Hilbert curves [7] since several studies show
the superior clustering and distance preserving properties of these curves [3, 9, 12, 15].

Similar to [15] we de�ne Hd
N for N ≥ 1 and d ≥ 2, as the N th order Hilbert curve

for a d-dimensional space. Hd
N is therefore a linear ordering which maps an integer

set [0, 2Nd − 1] into a d-dimensional integer space [0, 2N − 1]d as follows:
H = `(P) for H ∈ [0, 2Nd − 1], where P is the coordinate of each point in the d-
dimensional space. We call the output of this function its H-value throughout the paper.
Note that it is possible for two or more points to have the same H-value in a given curve.

Fig. 2. A H2
2 Pass of the 2-D Space.

As mentioned above, our motivating application is location privacy and therefore we
are particularly interested in 2-D space and thus only deal with 2-D curves (N = 2).
Therefore H = `(X, Y) where X and Y are the coordinates of each point in the 2-D
space. Figure 2 illustrates a sample scenario showing how a Hilbert curve can be used
to transform a 2-D space into H-values. In this example, points of interest (POI) are

traversed by a second order Hilbert curve and are indexed based on the order they are
visited by the curve (i.e., H in the above formula). Therefore, in our example the points
a, b, c, d, e are represented by their H-values 7, 14, 5, 9 and 0, respectively. Depending
on the desired resolution, more �ne-grained curves can be recursively constructed as
depicted in Figure 3.

Fig. 3. First Three Orders of Hilbert Curves.

As we will show in Section 7, the most interesting feature of Hilbert curves is how
they can act as KNN-invariant transformations with satisfactory values of α and β when
used in location-based services. This property suits our approach as we are interested to
address the KNN query in a transformed space and still get satisfactory results. Further-
more, another important property of a Hilbert curve that makes it a very suitable tool
for our proposed scheme is that ` becomes a one-way function if the curve parameters
are not known. These parameters, which collectively form a key for this one-way trans-
formation, include the curve's starting point (X0, Y0), curve orientation θ, curve order
N and curve scale factor Γ . We term this key, Space Decryption Key or SDK where
SDK = {X0, Y0, θ, N, Γ}.

Therefore a malicious entity, not knowing this key, has to exhaustively check for all
combinations of curve parameters to �nd the right curve by comparing the H-values for
all points of interest. As we show in Theorem 1, we make it computationally impossible
to reverse the transformation and get back the original points. Even a nominal error in
approximating curve parameters will generate a completely different set of H-values.
We now prove two important properties of our approach which give more insight on the
security of our proposed method.

THEOREM 1. The complexity of a brute-force attack to �nd the transformation
key discussed above is O(24p) where p is the number of bits used to discretisize each
parameter.

PROOF. In order to accurately �nd the curve's starting point, it should exactly lie on
the intersection of two edges (lines) coming from each of the X and Y axes. Therefore
one has to locate the exact values of both X0 and Y0 in the continuous domain of
X and Y axes. Theoretically, the probability of �nding the right value for the above
two parameters in a continuous space is zero. However, in real world scenarios, the
attacker can approximate X0 and Y0 by constructing the �nest grid possible to guarantee
that his best guess (X ′

0, Y
′
0) located at an intersection of two edges, lies very close to

(X0, Y0) so that |X0 − X ′
0| ≤ ε and |Y0 − Y ′

0 | ≤ ε. When ε is suf�ciently small
then replacing (X0, Y0) with (X ′

0, Y
′
0) generates a set of H-values indifferentiable from

the original set. The attacker should thus search the entire space exhaustively for a
very close approximation of this starting point. Using p bits the attacker can generate
2p candidate values on each axis. Therefore, assuming a square region covering all

POI's, the attacker's entire search space for the starting point will have 2p∗2p elements.
Similarly, the entire continuous 360◦ space for θ should be discretized to the �nest
possible extent to ensure that |θ − θ′| ≤ ε for at least one value of θ′. With q bits, that
attacker can generate 2q different candidate values of θ each corresponding to a curve
orientation. The curve scale factor Γ is a continuous number between 0 and 1 and thus
similarly, r bits can divide the 0 to 1 range into 2r values each can approximate Γ so
that |Γ −Γ ′| ≤ ε for at least one value of Γ ′. Assuming N different possibilities for the
curve order, the entire solution space will have 2p ∗2p ∗2q ∗2r ∗N elements. Assuming
2q = O(2p) and 2r = O(2p) and since N ¿ 2p, the complexity of an exhaustive
search is O(24p) where p is the number of bits used by the attacker to represent each
parameter. q

Note that for a given N , there is an upper bound for p, after which there is no rea-
son to increase p further because ε becomes suf�ciently small to estimate X0 and Y0

accurately. However, by simply increasing N to N + 1 we can make the curve twice
condense in each direction that results in a new threshold of ε′ = ε

2 for the curve's start-
ing point and similar tighter thresholds for other curve parameters. Therefore, a linear
increase in N will make ε exponentially smaller and thus p should increase linearly with
N as well to ensure close approximation of curve parameters. However, as Theorem 1
shows, increasing p will result in an exponential increase of the search space. Conse-
quently, N is chosen large enough to make reversing an H2

N mapping impossible and
thus to make H act as a one-way mapping. Hence, we consider this transformation as a
space encryption scheme whose key is the curve parameters (i.e., SDK).

THEOREM 2. Using an H2
N Hilbert curve to encode the space satis�es the a-

anonymity, u-anonymity and result set anonymity properties de�ned in Section 3.1.
PROOF. An H2

N �lls a 2N ∗ 2N grid in the 2-D space visiting each point exactly
once. Theorem 1 states that having an H-value for the query point Q, one cannot reverse
the process to �nd `−1(XQ, YQ) because H is one-way for large values of N (i.e.,
curve degree) and thus Q cannot be located anywhere in the grid. With n and A being
the total number of POI's and the entire region covering these n objects, respectively
(see De�nition 1), there are 2p ∗ 2p equiprobable choices for the location of Q and thus
P ′(Q) = 1/22p = 1

area(A) . Furthermore, since no information beyond the H-value of
the query point is needed to resolve the query, Q could be issued by any user ui and
thus P (Q) = 1

M where M is the total number of users. Finally, for each static object
o, `−1(Xo, Yo) cannot be found and thus Ṗ (oi) = P ′(Q) = 1/22p << 1/n because
22p >> n. q

4 2-Phase Query Processing
Making a query processing engine privacy-aware based on our idea of space transfor-
mation discussed above, requires a two-step process consisting of an of�ine encryption
of original space followed by online query processing. First, during an of�ine process,
necessary data structures and encryption schemes are utilized to encode the space of
POI's. Next, during an online process, the query is resolved in the transformed space
and is then decoded to obtain the original points satisfying the query in the 2-D space.
The following sections describe the details of these two phases and the modules per-
formed in each phase.

4.1 Of�ine Space Encryption
Figure 4 depicts Algorithm 1, the Of�ine Space Encryption algorithm. The �rst step of
this phase is to choose the curve parameters from which the curve will be constructed
and the value of SDK will be determined. These parameters are listed in Section 3.3.
Next, assuming the entire area covering all points of interest is a square S1, an H2

N

Hilbert curve is constructed starting from (X0, Y0) in a (possibly larger) square S2

surrounding S1 until the entire S2 is traversed (see Figure 2). After visiting each point
P , its H-value = `(P.X, P.Y) is computed using SDK. We use an ef�cient bitwise
interleaving algorithm from [3] to compute the H-values for points of interest. This
process is performed once for all points of interest and thus at the end of this step, a
look-up table DB which consists of H-values for all POI's is constructed. Note that the
size of DB is only dependant upon the number of POI's to be indexed and not the size of
the region in which they are located. The result of applying Algorithm 1 on the example
from Figure 2 looks like the following look-up table: DB = {(0), (5), (7), (9), (14)}
where each element is the point's index in the curve (i.e., its H-value).

Fig. 4. Of�ine Space Encryption.

4.2 Online Query Processing

Algorithm 2 (Figure 5) summarizes the online query resolution process and its two
modules KNN-Encode and KNN-Resolve. Using the look-up table DB, we can now
show how the result of a KNN query is evaluated in the transformed space. For each
query point Q located at position (XQ, YQ), KNN-Encode uses SDK to compute H =
`(XQ, YQ). The value of H , along with K (i.e., the number of desired nearest neigh-
bors), is all KNN-Resolve needs to resolve a query using DB. During this phase we
begin searching from both directions in DB starting from `(XQ, YQ) until K closest
matches are found. Note that these matches are nothing but K (distinct or overlapping)
H-values. Knowing SDK, KNN-Encode transfers the result set back to the original 2-D
space, using H−1 to decrypt the H-values of all points in result set. To illustrate, in our
example, having K = 3, and Q = (2, 0), KNN-Encode computes H = 4 = `(2, 0)
and calls KNN-Resolve(4, 3) to obtain R = {(0), (5), (7)}. Next, H−1 is applied to all
above H-values to obtain their original 2-D coordinates.

We can now derive the complexity of the KNN-Resolve module which represents
the overall query processing complexity. As discussed in Section 4.1, an H2

N Hilbert
curve divides the entire space into 22N equally spaced indices. This division, results
in an average density of n

22N POI's per each H-value where n is the total number of

Fig. 5. Online KNN Query Resolution.

POI's. Therefore, �nding the K closest objects in this space will on average require
only K × 22N

n H-value comparisons. Therefore, the overall complexity of our online
query processing scheme is O(K × 22N

n) compared to O(n) if traditional encryption
schemes were used. Also the communication complexity of our scheme is O(K) since
the result set generated by KNN-Resolve includes only the K matching points compared
to an O(log(n)) complexity using traditional encryption schemes and to K-anonymity
or cloaking approaches in which the query result has to be generated for K − 1 other
points or an entire region, respectively. The ef�ciency of our query processing algorithm
is more pronounced with real-world datasets where the value of n is signi�cantly large.

Notice that the order of the result set might not be accurate because there are cases
in which elements with smaller difference in H-values to Q are actually located fur-
ther from it compared to other objects with larger H-value difference. However, this is
essentially resolved by simply having the entire result set back in its original format.
Knowing Q's location, KNN-Encode sorts the result set in the correct order. This is a
very ef�cient process given the relatively small values of K. In addition, it is important
to note that the result set of a KNN query might not precisely match the actual K nearest
neighbors of a user because of loss of a dimension in the transformed space. Depend-
ing on different curve parameters and the data distribution, the accuracy of the result
may vary. In Section 7, we conducted several experiments with real-world datasets and
show that the Resemblance and Displacement values are acceptable for many real ap-
plications.

5 Dual Curve Query Resolution
Using a single Hilbert curve as a space encoder for KNN query processing discussed
in Section 4 has two major drawbacks. We �rst discuss these two drawbacks and then
introduce our Dual Curve Query Resolution approach or DCQR which overcomes the
weaknesses of the former scheme and generates signi�cantly more satisfactory results.

A closer study of Hilbert curves reveals two important properties of such curves.
First, consider the 1st degree curve of Figure 6 (the left image). The curve naturally
is constructed by traversing a U-shaped pattern. Regardless of its orientation, such a
curve will �ll the space at a speci�c direction at any given time sweeping the space in a
clockwise fashion. Starting from the �rst degree curve of Figure 6, the curve misses one

side in its �rst traversal. As the curve order grows, the number of missed sides grows
exponentially as well so that an H2

N curve misses M = 22N − 2N+1 + 1 sides of
a (2N − 1) by (2N − 1) grid. The above property of the curve will make H-values of
certain points farther as N increases. For instance the Euclidean distance between points
a and d is similar to the that of points b and c in the original 2-D space, however due
to the above property, a and d's H-values will be signi�cantly further from each other
as compared to H-values of b and c. This difference grows exponentially as N grows.
Therefore points closer to two quadrants of the space (i.e., the �rst and last quadrants
�lled by the curve) will be spatially furthest from one another in the transformed space.

The second drawback of using a single Hilbert curve is due to the fact that such
space-�lling curves essentially reduce the dimensionality of the space from 2 (or in
general case N) to 1. Naturally, each element in the 1-D space constructed by the Hilbert
curve will have two nearest neighbors compared to the original case where each element
(except those at the edges) has four (or in general case 2N) nearest neighbors. Therefore
as [10] suggests, in the best case scenario, only half of these nearest neighbors in 2-D
space will remain a nearest neighbor of the same point in the transformed 1-D space.

Fig. 6. Missed Sides of 2 by 2 and 3 by 3 Grids for H2
1 and H2

2, respectively.

The above two properties result in a loss of precision and thus a negative effect
on overall quality of returned results. We mitigated this issue by replicating the same
curve and rotating it 90 degrees. Our intuition is to index the same data simultaneously
by two perpendicular curves and ask each one independently to resolve a KNN query
using modules discussed in Section 4. Having two different result sets in the original
domain, we merge the results and choose the K best candidates among the 2K points
of the sets.

We now discuss how DCQR ensures a better quality of results. By rotating the de-
gree N curve, all lower degree curves constructing the main curve will be rotated as
well. At each curve order, the curve rotation ensures that the missed sides generated by
the discontinuation of the curve (such as the missed sides between points a and d in
Figure 6), will be covered by the rotated curve. Therefore, the points deemed spatially
far from each other in one curve will be indexed correctly in the other curve. This will
address the �rst issue when using Hilbert curves for indexing. DCQR also mitigates the
effect of the second property discussed above by transforming the 2-D space to two
1-D spaces. Therefore each point will now have two nearest neighbors in each curve.
It is important however, to note that these two neighbor pairs can (and do) often have
overlaps and that is the main reason the dual curve approach will generate (signi�cantly
more accurate) approximate answers. Furthermore, with regards to complexity, know-
ing the �rst curve's SDK makes it easy to derive the key for the second curve (curve

order and scale factor are the same while curve orientation and starting point are rotated
90 degrees). Therefore, the complexity of �nding DCQR's keys differs from what we
derived for a single curve approach in Section 3.3 by a constant factor. The query pro-
cessing discussed in Section 4 should also be modi�ed slightly to work with the new
dual curve scheme as follows (note that these modi�cations do not change the query
computation and communication complexities derived in Section 4.2).

5.1 Of�ine Space Encryption for DCQR
During this phase, we again assume that the entire static objects set is located inside a
square S1. Consequently two Hilbert curves H2

N and H ′
2
N are constructed based on

SDK to sweep the (possibly larger) square S2 (surrounding S1), until the entire S2 is
traversed. Visiting each point, H and H ′ will compute `(X,Y) and `′(X, Y) respec-
tively in the similar fashion discussed in Section 4.1. After this process is performed
once for all POI's, the two sequences of H and H′-values will form two separate look-
up tables DB and DB′.

5.2 Online Query Processing for DCQR

Similarly, the query processing follows the logic from Section 4.2 with the difference
that for each query point Q, we compute H = `(XQ, YQ) and H ′ = `′(XQ, YQ) using
SDK and SDK′, respectively. We then initiate two parallel query resolution schemes
applying H-value and H′-value to DB and DB′, respectively and simultaneously retrieve
K closest matches for each curve separately. Similar to Section 4.2, we decrypt the two
results sets and choose the K best candidates (based on their Euclidean distance to Q).

6 Proposed End-to-End Architecture
In previous sections, we showed in detail how we can utilize Hilbert curves as space
encoders to blindly resolve KNN queries. As we mentioned earlier, the focus of this
paper is on hiding locations and not identities of static objects or query points. How-
ever, in order to propose a complete solution, we brie�y discuss how we can extend
our proposed scheme to deal with non-spatial attributes of each POI (such as its iden-
tity or name) in the following way; Similar to SDK, we de�ne a Textual Decryption
Key or TDK, which is used to encrypt (decrypt) the non-spatial attributes of each POI
during the of�ine space encryption (online query resolution) phase. Therefore, during
the of�ine phase, in addition to the steps discussed in Section 5.1, we generate TDK
and TDK′ and use them to encrypt the textual attributes of each point P represented by
E(P.T) where E is the function used to encrypt P.T (the textual attributes of P). The
above modi�cations will add a new attribute to DB and DB′ to include any textual
information of POI's. Therefore DB and DB′ become look-up tables with the schemas
(H-value, E(o.T)) and (H′-value, E′(o.T)), respectively.

6.1 End-to-End Query Processing

We are now ready to explain how a KNN-invariant one-way transformation can be used
for blinding KNN queries in location-based services. The client (e.g., a portable device)

Fig. 7. DCQR Architecture for KNN Query Processing.

issues a K-nearest-neighbor (KNN) query and provides its own location. Without loss
of generality, we assume the client location is a point and is identi�ed by two values
such as its latitude and longitude. In order to make the location server privacy-aware,
we �rst assume the architecture of Figure 7 which details the sequence of client-server
communications required in order to resolve a KNN query and use the algorithms dis-
cussed in Section 5 to modify the classic location-based services architecture in the
following three ways:

1) A trusted entity is added to the architecture. The main task of the trusted entity is
to perform the KNN-CreateIndex module once and to create and update their encoded
indexes and identities. A second functionality of the trusted entity is to provide users
with (SDK,SDK′) and (TDK,TDK′) pairs required to decrypt query results. We refer to
these four values as Key Pairs. Finally, the trusted entity provides the location server
with the two look-up tables DB and DB′ instead of the original dataset and keeps
the two key pairs secret from the location server. Note that unlike an anonymizer, the
trusted entity is not involved in the query processing.

2) Users will perform the KNN-Encode module and use the two key pairs embedded
in their devices to decrypt the result set returned to them from the location server and
get back the location of the returned points as well as their textual attributes. Note that
in order to prevent users from being able to access the encrypted result set received from
the location server and learning the transformation, the key pairs should be embedded
in tamper-proof devices. Furthermore, in order to remain anonymous, users generate a
random session-id for each KNN query request in order to enable the client and server
to communicate with each other during the course of each KNN query.

3) The un-trusted location server will perform the KNN-resolve module to construct
the two results sets and returns them to the user.

7 Experimental Evaluation
We have conducted several experiments to evaluate the performance of our proposed
approach. The effectiveness of DCQR is determined in terms of 1) the effect of the
curve order N on our proposed indexing, 2) accuracy of the result sets in terms of the
Displacement and Resemblance metrics de�ned in Section 3.2, using DCQR instead
of a single curve, and 3) DCQR's vulnerability to attacks. We were unable to compare
our approach with other approaches discussed in Section 2, because they mostly eval-
uate performance, based on the size of the K-anonymity set, the size of the cloaked
region or the effectiveness of the anonymization techniques used and our approach is
free of these metrics and satis�es stronger privacy metrics de�ned in Section 3. We have
also performed other experiments that investigate the effect of other key parameters on

quality of indexing and demonstrate our fast overall system response time (typically
less than 0.5 seconds even for large values of K and N). We do not discuss these exper-
iments here due to lack of space and we plan to fully investigate them in an extended
version of this paper. Our experiments are performed on a real-world dataset obtained
from NAVTEQ covering a 26 mile by 26 mile area surrounding the city of Los Angeles
which contains more than 10000 restaurants. Experiments were run on an Intel P43.20
GHz with 2 GB of RAM.

7.1 The Curve Order N

In our �rst set of experiments, we evaluate the effectiveness of our proposed indexing
technique. It is important to analyze the curve behavior for different values of N (i.e.,
curve order) and to decide on the value of SDK and use it throughout the rest of our
experiments. For the �rst set of experiments, we measure the effectiveness of two H2

N

curves in indexing POI's for �xed values of X0 = Y0 = θ = 0 and Γ = 1 and
varying N from 1 to 15 for the �rst curve (note that SDK of the dual curve, i.e., SDK′,
can be derived from SDK). We measure the minimum and average number of POI's
which are assigned the same H-value for each value of N . It is clear that having a
large number of POI's with the same H-value has a negative effect on Resemblance and
Displacement metrics because the location server has no way of choosing a closer point,
in a set of POI's with the same H-value while responding to a KNN query. Varying
N , makes an entirely different curve and thus changes the assignments of H-values
to POI's signi�cantly. Figure 8 shows how POI/H-value changes with N . It suggests
acceptable values of this number (i.e., POI/H-value≤ 2) for curves with N ≥ 8. Our
next experiments con�rm this intuition.

Fig. 8. Curve Order Vs. H-Values

7.2 The Single Curve Approach vs. DCQR

In the second sets of experiments we �rst compare the single curve approach with
DCQR in terms of the Displacement and Resemblance metrics de�ned in Section 3.2.
As Figure 9 illustrates, for different curve orders (i.e., N) and different values of K (i.e.,
different KNN queries), DCQR outperforms the single curve approach for both metrics,
achieving lower average Displacement and higher Resemblance values.

Next, we evaluate DCQR using the same metrics. As shown in Figure 10, for a �xed
value of N = 12, an increase in K improves the Resemblance while it does not have a
signi�cant effect on the Displacement. The reason is that as K increases, the result set
size grows twice as fast (since using DCQR, its size is 2K for each KNN query) which in

Fig. 9. Comparing Single Curve Approach vs. DCQR for Different Values of K and N

turn increases the chance of visiting the right points as we move on the curve. However,
searching for more POI's on the curve also causes moving further away from the query
point's index on the Hilbert curves which might increase the probability of hitting a
missed side and thus including a false positive in the result set. However this negative
effect is nominal and the Displacement stays less than 0.08 mile for all possible values
of K. Similarly, for a �xed value of K=3, while the Displacement takes satisfactory
values (less than 0.09 mile on average) for N ≥ 8, Resemblance usually improves as
N grows, con�rming our intuition from the �rst set of experiments. Similar trends were
observed for other �xed values of K and N .

Fig. 10. DCQR Performance vs. K and N

7.3 DCQR's Vulnerability to Attacks

Our last set of experiments empirically evaluates the vulnerability of our proposed ap-
proach against malicious attackers to con�rm the hypotheses discussed in Section 3.3
for the one-wayness of transformations used in DCQR and the security of SDK based
on the following two extreme scenarios. First we assume the malicious location server
(which is capable of becoming the most powerful attacker due to its access to DB and
DB′), has somehow gained precise knowledge for the values of X0, θ, Γ and N and
only needs to �nd Y0. Using p bits, it divides the Y-axis to 2p distinct values hoping to
get close enough to Y0. For each of its guesses Y ′

0 , the location server forms an SDK and
performs the KNN-CreateIndex module to compare the resulting look-up table against
DB (or DB′) and measures the Resemblance metric to evaluate Y ′

0 . Figure 11 (left)
illustrates the result of this attack for p taking 12, 15, 18 and 22 bits (which correspond
to a minimum of 10−2, 10−3, 10−4 and 10−5 mile displacement between Y0 and Y ′

0),
respectively. The location server's best guess is where it uses the maximum number of
bits (i.e., p = 17 and |Y0 − Y ′

0 | ' 1meter) which results in a look-up table less than
10% similar to DB. Note that the location server does not even know which H-values

belong to the above 10% subset of DB and thus even by getting very close to real curve
parameters, the key cannot be compromised.

Fig. 11. Attacking SDK by Approximating |Y0 − Y ′
0 | (left) and Γ

Γ ′ (right)

Similar to the above case, we now assume that the malicious location server knows
the exact values of X0, Y0, θ and N and should only approximate the value of Γ with
Γ ′. Taking the same approach, the location server uses 4, 7, 10 and 14 bits so that
the value of Γ

Γ ′ approaches 0.9, 0.99, 0.999 and 0.9999, respectively. Figure 11 (right)
shows that in the best case where it uses the maximum number of bits, (i.e., p = 14)
the generated look-up table bears less than 5% similarity to DB again without the
location server knowing the subset of points indexed accurately. Therefore the last two
sets of experiments demonstrate the strong robustness of our proposed scheme against
malicious attacks.

8 Conclusion and Future Work
In this paper, we discussed the problem of location privacy in location-based services.
We studied the challenges of achieving location privacy and introduced a novel way of
blindly evaluating KNN queries, an important class of spatial queries in location-based
services, by using one-way space transformations to map objects and query points into
an unknown space and evaluate the query in that space. The major contributions of our
work can be summarized as follows:

� We proposed blind evaluation of queries using Hilbert curves as space encoders
and introduced DCQR, our proposed Dual Curve Query Resolution approach and
designed an O(K× 22N

n) computation and O(K) communication algorithm which
enables DCQR to resolve KNN queries in the transformed space (where n is the
total number of POI's and N , the curve order, is a small constant.

� We introduced two new privacy metrics, u-anonymity and a-anonymity, which are
much stronger and more generalized than the privacy constraints of commonly used
K-anonymity and spatial cloaking based approaches.

� We analytically proved the one-wayness property of our space encoding technique
and showed how DCQR achieved the result set anonymity as well as u-anonymity
and a-anonymity metrics to become privacy-aware.

� We studied a set of powerful attacks based on the number of bits used to encode the
space and empirically evaluated the resilience of DCQR against these attacks.

� We conducted extensive experiments to show the superior properties of our blind
KNN query resolution scheme.

We intend to study other space mappings and identify new KNN-invariant transfor-
mations and propose ef�cient ways of turning them into space encoders allowing exact
answers to be generated for KNN queries while still respecting the location privacy
constraints discussed in this paper.

References
1. A. R. Beresford and F. Stajano. Location privacy in pervasive computing. IEEE Pervasive

Computing, 2(1):46�55, 2003.
2. C. Bettini, X. S. Wang, and S. Jajodia. Protecting privacy against location-based personal

identi�cation. In W. Jonker and M. Petkovic, editors, Secure Data Management, volume
3674 of Lecture Notes in Computer Science, pages 185�199. Springer, 2005.

3. C. Faloutsos and S. Roseman. Fractals for secondary key retrieval. In PODS '89: Proceed-
ings of the eighth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database
systems, pages 247�252, New York, NY, USA, 1989. ACM Press.

4. B. Gedik and L. Liu. A customizable k-anonymity model for protecting location privacy.
5. M. Gruteser and D. Grunwald. Anonymous usage of location-based services through spatial

and temporal cloaking. In MobiSys. USENIX, 2003.
6. M. Gruteser and X. Liu. Protecting privacy in continuous location-tracking applications.

IEEE Security & Privacy, 2(2):28�34, 2004.
7. D. Hilbert. Uber die stetige abbildung einer linie auf ein �achenstuck. In Math. Ann. 38,

pages 459�460, 1891.
8. P. Indyk and D. P. Woodruff. Polylogarithmic private approximations and ef�cient matching.

In Theory of Cryptography, Third Theory of Cryptography Conference, pages 245�264, New
York, NY, USA, 2006.

9. H. V. Jagadish. Linear clustering of objects with multiple atributes. In Proceedings of the
1990 ACM SIGMOD International Conference on Management of Data, pages 332�342,
Atlantic City, NJ, 1990. ACM Press.

10. H. V. Jagadish. Analysis of the hilbert curve for representing two-dimensional space. Inf.
Process. Lett., 62(1):17�22, 1997.

11. P. Kalnis, G. Ghinita, K. Mouratidis, and D. Papadias. Preserving anonymity in location
based services. A Technical Report TRB6/06, National University of Singapore, 2006.

12. J. K. Lawder and P. J. H. King. Querying multi-dimensional data indexed using the hilbert
space-�lling curve. SIGMOD Record, 30(1):19�24, 2001.

13. M. F. Mokbel. Towards privacy-aware location-based database servers. In R. S. Barga and
X. Zhou, editors, ICDE Workshops, page 93. IEEE Computer Society, 2006.

14. M. F. Mokbel, C.-Y. Chow, and W. G. Aref. The new casper: Query processing for location
services without compromising privacy. In Proceedings of the 32nd International Conference
on Very Large Data Bases, pages 763�774, Seoul, Korea, 2006. ACM.

15. B. Moon, H. v. Jagadish, C. Faloutsos, and J. H. Saltz. Analysis of the clustering properties
of the hilbert space-�lling curve. IEEE Transactions on Knowledge and Data Engineering,
13(1):124�141, 2001.

16. F. Pinciroli, C. Combi, G. Pozzi, M. Negretto, L.Portoni, and G. Invernizzi. A peano hilbert
derived algorithm for compression of angiocardiographic images. In Computers in Cardiol-
ogy, pages 81�84. IEEE Computer Society Press, 1991.

17. H. Sagan. Space-Filling Curves. Springer-Verlag, 1994.
18. P. Samarati and L. Sweeney. Protecting privacy when disclosing information: k-anonymity

and its enforcement through generalization and suppression.
19. M. R. Schroeder. Number Theory in Science and Communication. Springer-Verlag, 1984.
20. D. R. Stinson. Cryptography, Theory and Practice. CHAPMAN & HALL/CRC, 2002.

