
Case study: Scoop for partial read from P2P
database

Farnoush Banaei-Kashani and Cyrus Shahabi

Abstract In this paper we proposeScoop, a mechanism to implement the “partial
read operation” for peer-to-peer databases. A peer-to-peer database is a database
that its relations are horizontally fragmented and distributed among the nodes of
a peer-to-peer network. The partial read operation is a data retrieval operation re-
quired for approximate query processing in peer-to-peer databases. A partial read
operation answers toβ -queries: givenβ ∈ [0,1] and a relationR, a fractionβ of
the tuples inR must be retrieved from the database to answer aβ -query. Despite
the simplicity of theβ -query, due to the distributed, evolving and autonomous na-
ture of the peer-to-peer databases correct and efficient implementation of the partial
read operation is challenging. Scoop is designed based on an epidemic dissemina-
tion algorithm. We model the epidemic dissemination as a percolation problem and
by rigorous percolation analysis tune Scoop per-query and on-the-fly to answerβ -
queries correctly and efficiently. We prove the correctness of Scoop by theoretical
analysis, and verify the efficiency of Scoop in terms of query cost and query time
via extensive simulation.

Farnoush Banaei-Kashani
University of Southern California, Department of Computer Science, Los Angeles, CA 90089-
0781 e-mail: banaeika@usc.edu

Cyrus Shahabi
University of Southern California, Department of Computer Science, Los Angeles, CA 90089-
0781 e-mail: shahabi@usc.edu

1

2 Farnoush Banaei-Kashani and Cyrus Shahabi

1 Introduction

1.1 Motivation and Problem Definition

A peer-to-peer database is a database that its relations are horizontally fragmented
and distributed among the nodes of a peer-to-peer network. Each node is potentially
both a client and a server of the database. Peer-to-peer databases are distinguished
from the more generic distributed databases by the sheer size of the database in
terms of the participating nodes, as well as higher dynamism of the data, nodes, and
the interconnection network. Correspondingly, these distinctive features necessitate
provision of more scalable and dynamic data management mechanisms for peer-to-
peer databases (as compared to those for the generic distributed databases). Peer-to-
peer databases lie at the intersection of the database and networking research fields,
and currently numerous researchers and focus groups from both communities are
actively working to provide the required data management capabilities for this new
generation of the distributed databases1.

Here, we focus on unstructured peer-to-peer databases. With these databases, the
process of query answering is comparable to that in regular unindexed databases.
Due to the considerable amount of churn in unstructured peer-to-peer databases,
construction and maintenance of distributed index structures (e.g., a DHT [24, 30])
are not cost-efficient. Without index, to answer a user query, first the query is dis-
seminated throughout the network to scan the database and retrieve the data relevant
to the query (analogous to the sequential scan in regular unindexed databases). Sub-
sequently, the retrieved data are processed locally at the querying node to answer the
user query2. In this paper, we introduce a basic data retrieval operation, termed the
partial read operation, to execute the first step of the query answering, specifically
as required forapproximatequery answering discussed below.

Approximate query answering is a desirable generalization of exact query an-
swering, arguably essential for efficient query answering in unstructured peer-to-
peer databases. With these unindexable databases, returning exact answers (i.e., the
complete result-set) requires a complete scan of the entire database for each query.
Considering the large size of the peer-to-peer databases and the abundance of the
database users with numerous queries, answering all queries with exact result is
obviously too costly to scale. Besides, with most of the peer-to-peer database appli-
cations the workload mainly consists of exploratory queries for which exact results
are unnecessary and redundant [11]. With approximate query answering, queries
are assumed to be satisfied by an approximate/partial result, which is a subset of the
complete result-set of the query. Along with the query, users specify the required
“completeness” of the approximate result that satisfies the query. Correspondingly,

1 For instance, see the publications at the recurrent DBISP2P workshop (held in conjunction with
VLDB) and the NetDB workshop (held in conjunction with ICDE).
2 Here, by “query” we refer to user queries such as SQL queries. In this paper, we also use “query”
to refer toβ -queries, i.e., requests for retrieving the tuples of the base relations stored in the
database, as we later define formally. The intended meaning is apparent from the context.

Case study: Scoop for partial read from P2P database 3

the database system can reduce the overhead of the data retrieval and query process-
ing to the least sufficient to satisfy the query, effectively enhancing the efficiency of
the query answering by eliminating the redundancy of the result. If required, still a
query can be answered exactly. An exact query is simply a specific case of approxi-
mate query requiring the most complete result-set, the exact result.

Formally, an approximate query is defined as an arbitrary query with a user-
definedcompleteness ratioε ∈ [0,1]; any fractionε of the complete result-setX,
noted asX(ε), is sufficient to satisfy the approximate query. An exact query is an ap-
proximate query withε = 1. Approximate queries are also calledpartial query. To
answer a partial query, first the peer-to-peer database should be sampled to retrieve
a certain fractionβi (also called the completeness ratio, in lack of other conveying
terms) from each input relationRi of the query. Subsequently, using partial query
processing techniques such as [23, 31] the retrieved data are processed locally at the
querying node to generate the final partial result-setX(ε). The main challenge with
answering partial queries is with devising a basic sampling operation that given any
β ∈ [0,1], retrieves a fractionβ of an input relationR (i.e., retrieving a partial rela-
tion noted asR(β)), whereR is horizontally fragmented and distributed among the
nodes of the peer-to-peer database. We term such a sampling operation thepartial
read operation. Partial read is a nonprobability sampling operation, because it is not
expected to guarantee randomness of the sample retrieved from the database. It is in-
formative to note that withstructuredpeer-to-peer databases, since the placement of
the data objects is a priori known, partial read is trivial to implement. In this paper,
we focus on implementing the partial read operation inunstructuredpeer-to-peer
databases.

To be applicable, the partial read operation must be both correct and effi-
cient. A partial read is correct if|R′|/|R| ≥ β , whereR′ is the retrieved portion
of the input relationR. This is a sufficient condition for correctness of the par-
tial read. However, ideally the redundancy of the data retrieval is minimal when
|R′|/|R| = |R(β)|/|R| = β . A peer-to-peer database is a fragmented database which
is randomly distributed among a variable set of nodes with unknown population.
Under such circumstances, to be correct the partial read operation must implement
a distributed query dissemination scheme to visit sufficient number of nodes and
retrieve sufficient number of tuples, such that in expectation the collective set of
the retrieved tuplesR′ satisfies the correctness condition with high probability. On
the other hand, the efficiency of the partial read operation is defined in terms of the
query time (or sampling time) and query cost (or sampling cost), which respectively
map to the total communication time and communication cost of disseminating the
query for distributed data retrieval. There is a trade-off between the query time and
the query cost, with higher cost to achieve shorter time and vice versa. An efficient
partial read operation satisfies the ideal case of the correctness condition with a bal-
anced query time versus query cost. Scoop is a mechanism to implement the partial
read operation correctly and efficiently.

4 Farnoush Banaei-Kashani and Cyrus Shahabi

1.2 Related Work

Data retrieval from networks has been previously studied as a search problem, but
none of the proposed search mechanisms can satisfy the correctness and efficiency
requirements of the partial read operation. There are two main proposals for search
in unstructured peer-to-peer networks: search by flooding [18, 33] and search by
random walk [19, 1, 20, 6, 10]. With both of these search mechanisms, query is dis-
seminated throughout the network by recursive forwarding from node to node. With
flooding each node that receives the query forwards it to all of its neighbors, whereas
with random walk query is forwarded to only one (uniformly or non-uniformly) se-
lected random neighbor. None of these approaches can strike a balance between the
two metrics of efficiency for search, i.e., the communication time and the communi-
cation cost. Flooding is most efficient in communication time but incurs too high of
redundant communication to be practical, whereas random walk is potentially more
efficient in communication cost but is intolerably slow in scanning the network. In
[33], a two-tier hierarchy is proposed where flooding is restricted to the supernodes
at the top tier. This solution only alleviates the communication cost of flooding and
the problem resurfaces as the top tier scales. In [19], usingk random walkers in
parallel is proposed as a way to balance the communication cost and the commu-
nication time of the query. However, this proposal does not provide any rigorous
solution for selecting the value ofk for optimal performance.

Previous search mechanisms are not only inefficient, but also inappropriate for
executing partial read. With Top-K queries, the relevant data is ordered in terms
of a preference measure, whereas partial read allows unbiased data retrieval. Also,
as mentioned above the main benefit of the approximate query answering is that it
allows trading off completeness of the result for better efficiency by limiting the scan
of the database to a just sufficiently large fraction of the database that satisfies theβ -
query. To enable such a trade-off, a search mechanism that is used to implement the
partial read should allow adjusting the coverage of the database (i.e., the fraction of
the network nodes, and hence data objects, visited during dissemination) according
to the user specified parameterβ of each query. With both flooding and random
walk, TTL (Time-To-Live) is the control parameter that can be used to limit the
coverage of the network. However, it is not clear how one can adjust TTL according
to β for sufficient coverage (where the size of the network is also unknown). TTL
is often set to a fixed value, a value that is selected in an ad hoc fashion based on
the average performance of the typical search queries and must be re-adjusted as the
peer-to-peer database evolves. Alternatively, TTL is gradually increased to expand
the coverage, each time repeating the query dissemination from the beginning, until
sufficient fraction of the database is covered to answer the query. Although this
scheme may result incorrect partial read, due to the redundancy of repeating the
query dissemination, query cost can even exceed that of the regular flooding. Finally,
another problem specific to the flooding is that the granularity of the coverage is too
coarse (the number of covered nodes grow exponentially with TTL), rendering fine
adjustment of the coverage impossible.

Case study: Scoop for partial read from P2P database 5

1.3 Scoop

1.3.1 Overview

We proposeScoopas a sampling mechanism to implement partial read. To sample
the database, beginning from the originator of the query Scoop spreads the query
throughout the network. While spreading, the query inspects the nodes of the net-
work to locate and retrieve a fractionβ of the tuples of the input relationR. With
Scoop, the spread of the query is modelled on epidemic dissemination of diseases
in social networks3. By epidemic dissemination, query spreading is probabilistic,
i.e., when a node receives a query, it replicates and forwards the query to each of its
neighbors independently with a forwarding probability0≤ p≤ 1. Therefore, a node
forwards the replicas of the query to zero or more neighbors at each time. Such a
query forwarding algorithm is obviously more flexible as compared to both flooding
and random walk and subsumes these dissemination mechanisms. Thecommuni-
cation graphof the epidemic dissemination (i.e., the subgraph of the peer-to-peer
network covered by the dissemination) is sparse with small values ofp. The com-
munication graph grows larger and denser with larger values ofp such that with
p = 1 the epidemic dissemination is equivalent to regular flooding which covers the
entire network.

Scoop specifically implements SIR (Susceptible-Infected-Removed), which is a
classic epidemic dissemination model [12]. Our main contribution with Scoop is
derivation of a closed-form formula that given a partial read request, maps the value
of the completeness ratioβ to an appropriate value for the forwarding probabilityp
such that the request is correctly satisfied. Leveraging on this derivation, Scoopon-
the-flyandper read-requesttunesp based onβ such that the communication graph
grows just sufficiently large to cover a fraction of the database that satisfies the par-
tial read request. For partial read requests with smallβ the communication graph is
sparse and asβ increases the graph becomes denser. Since both the communication
cost and communication time of the sampling increase proportional to the size of
the communication graph, the partial read requests with higher completeness ratio
are more expensive, as expected.

1.3.2 Correctness and Efficiency

In Section 3.3, we rigorously prove that Scoop satisfies the ideal case of the correct-
ness condition for the partial read operation. Scoop achieves correctness without a
priori knowledge about the size of the network. With each value ofp Scoop covers a
certain fixed fraction of the network nodesindependentof the size of the network. In
other words, for the same value ofp, size of the communication graph is always pro-

3 In the literature, sometimesgossip-basedor rumor-basedspreading techniques are also termed
epidemic techniques [7, 15, 16, 5]. Here, we are not referring to such many-to-many communi-
cation techniques, but specifically to the techniques that are modelled after disease spreading in
social networks.

6 Farnoush Banaei-Kashani and Cyrus Shahabi

portional to the size of the entire network, such that its relative size (i.e., the covered
fraction of the network) is fixed. This property allows answeringβ -queries (which
expect retrieving a fixed fraction of a relation) without acquiring and maintaining
global knowledge about the current size of the network. Intuitively, this is feasible
because unlike flooding and random walk with which a query never dies unless it is
explicitly terminated (e.g., when TTL expires), with epidemic dissemination query
forwarding is probabilistic and with some non-zero probability each replica of the
query may naturally die at each step. The dissemination terminates whenever all
replicas of the query die. The larger the network, the more it takes for the dissemi-
nation to die and, therefore proportionally, the larger is the communication graph of
the dissemination.

Scoop is also efficient, in that it strikes a balance between the communication
cost and communication time of the sampling. Since epidemic dissemination is es-
sentially a flood-based technique, as we show in Section 6, its communication time
is low and comparable with that of the regular flooding. On the other hand, due to
the phase transition phenomenon associated with the SIR epidemic model, for the
common case of the partial read requests the communication cost of the Scoop is
up to two orders of magnitude less than that of the regular flooding and comparable
with the low communication cost of the random walk. Intuitively, with epidemic
dissemination the dense communication graph of the regular flooding, which with
numerous loops represents a large amount of redundant and duplicate query for-
warding, is reduced to a sparse communication graph. With fewer loops, the sparse
graph contains less redundant paths and therefore, causes less duplicate queries,
while covering almost the same set of nodes. Hence, epidemic dissemination can
be tuned such that the overhead of the flooding is effectively eliminated while its
reachability and communication time is preserved.

It is also important to mention that Scoop is simple to implement, and since it
is a randomized mechanism, it is inherently reliable to use with dynamic peer-to-
peer databases. Moreover, with Scoop the larger the degree of a node, the larger its
load. However, as Gribble et al. have shown in [26], with peer-to-peer databases the
degree of connectivity of the nodes is positively correlated with the amount of the
shared resources of the nodes. Therefore, with Scoop the load is distributed among
the nodes roughly proportional to the resources of the nodes, which is a desirable
load balancing property.

1.3.3 Originality

The process of epidemic disease dissemination has been previously used as a model
to design other information dissemination techniques [13]. Particularly, in the net-
working community, epidemic dissemination is termed probabilistic flooding and is
applied for search and routing in various types of networks [17, 8, 27]. We distin-
guish Scoop from this body of work in two ways. First, although epidemic algo-
rithms are simple to implement, due to their randomized and distributed nature they
are often difficult to analyze theoretically. For the same reason, most of the previous

Case study: Scoop for partial read from P2P database 7

work restrict themselves to empirical study of the performance with results that are
subject to inaccuracy and lack of generality. We employ the percolation theory to
rigorously tune Scoop to its best operating point. Second, to the best of our knowl-
edge those of the few percolation-based theoretical studies of epidemic algorithms
often adopt simplistic mathematical models [12] that assume a homogenous topol-
ogy (a fully connected topology) for the underlying network to simplify the analysis.
However, recently it is shown that considering the actual topology of the network in
the analysis extensively affects the results of the analysis [9]. We perform our anal-
ysis of Scoop assuming an arbitrary random graph as the underlying topology of the
peer-to-peer network and specifically derive final results for a power-law random
graph, which is the observed topology for some peer-to-peer databases [26].

We originally described our preliminary ideas with Scoop in a poster paper [2].
This paper is merely a descriptive introduction to Scoop (equivalent to the intro-
duction section of the current paper). The current paper extends the poster paper by
including the Scoop algorithm, analytical details, and experimental results.

1.3.4 Experimental Results

We performed an empirical study via simulation to evaluate the efficiency of Scoop.
In lack of other existing solutions, we compared Scoop with hypothetical partial
read operations that use scope-limited flooding (i.e., flooding with limited TTL)
andk-random-walkers (with variousk) for query dissemination. As we explained
in Section 1.2, these dissemination mechanisms are not originally appropriate for
execution of the partial read requests and we had to artificially inform them about
the coverage required to satisfy each request. Our results show that even under such
artificial conditions, Scoop still outperforms scope-limited flooding in communica-
tion cost while maintaining a reasonable communication time. Also, to our surprise,
Scoop not only has a much better communication time as compared to that of the
random-walk but also outperforms a 32-random-walker (the optimal case as sug-
gested in [19]) even in communication cost.

1.3.5 Summary of Contributions

To summarize, we enlist our contributions with Scoop as follows:

• Identifying and formulating a basic query type, i.e.β -query, as an essential
type of sub-query for answering generic approximate queries in peer-to-peer
databases.

• Developing an epidemic-based query answering mechanism to evaluateβ -queries
in unstructured peer-to-peer databases with arbitrary random graph topology. The
novelty with this query answering mechanism is in introducing a generic and
rigorous analytic approach based on percolation analysis to control the epidemic
dissemination for both correct and efficient query answering.

8 Farnoush Banaei-Kashani and Cyrus Shahabi

• Evaluation of the proposed query answering mechanism by extensive empirical
analysis via simulation.

It is important to note that although Scoop is applicable to the more generic
distributed databases, it is particularly designed to accommodate the scalability and
dynamism requirements of the peer-to-peer databases (as discussed above).

1.4 Roadmap

The remainder of this paper is organized as follows. In Section 2, we define the par-
tial read problem with further details. Section 3 introduces the generic case of Scoop
for partial read from peer-to-peer databases with arbitrary random graph topology.
In Section 4, we specialize our results from Section 3 to develop a specific case of
Scoop for the real-world peer-to-peer databases with power-law topology. In Sec-
tion 5, we briefly discuss several variants of Scoop. Section 6 presents the results of
our empirical study on Scoop. Finally, Section 7 concludes the paper and discusses
the future directions of this research.

2 Partial Read Operation

Givenβ ∈ [0,1], a partial read operation must retrieve a fractionβ of the relationR,
which is horizontally fragmented and distributed among the nodes of the network
N. We term such a partial read request aβ -query. It is important to note that the
semantics of theβ -query is less restrictive as compared to that of the strongertop-
k query. While both these types of queries are useful and popular in peer-to-peer
databases, they require distinct query answering mechanisms. To answer aβ -query,
beginning from the originator of theβ -query (which is the same node where the

N

n

|n|/|N|

R

r

|r|/|R|

Fig. 1 Partial Read

Case study: Scoop for partial read from P2P database 9

user query is issued), query is disseminated through the network to visit a fraction
γ of the nodes of the network which collectively store a sub-relationr such that
|r|/|R|= β (see Figure 1).

Regardless of the choice of the dissemination mechanism to implement the par-
tial read operation, the main challenge is tuning the dissemination mechanism per
β -query such that the query is correctly satisfied. Figure 2 depicts the parameter
mapping process for tuning a generic dissemination mechanism. At Step I, consid-
ering the distribution of the tuples among the nodes,γ (i.e., the fractional size of
the subsetn of the nodes that should be visited to retriever) is calculated based
on β . Subsequently, at Step II some parameter(s) of the dissemination mechanism
(such as parameterp for the epidemic dissemination) is tuned based onγ such that
the dissemination actually coversn nodes of the network. Specifics of Step II of
the mapping process depend on the particular dissemination mechanism applied to
implement the partial read.

p
Data Distribution Parameter Tuning

I II

Fig. 2 Parameter Mapping Process for Tuning a Generic Dissemination Mechanism

With Scoop, we employ an epidemic dissemination mechanism to implement
the partial read operation. We assume the tuples of the relationR are uniformly
distributed among the nodes of the network (hence, the mapping at Step I will be
trivial γ = β), and focus on the specifics of Step II for epidemic dissemination to
derive p as a function ofγ (or equivalently,β). Before describing Scoop and its
tuning process, here we provide some definitions.

2.1 Definitions

2.1.1 Communication Graph

Communication graphs are used to represent and visualize query dissemination over
networks. A network with the node-setN and link/edge-setE can be modelled as an
undirected graphG(N,E). For a query dissemination initiated at timet = t0 onG, the
communication graphat any timet ≥ t0 is a subgraphGt(Nt ,Et) of G, whereEt ⊆E
is the set of links traversed by at least one query replica during the time interval[t0, t],
andNt ⊆ N is the set of nodes visited by at least one query replica during the same
time interval. Associated with any linke of Gt is a weightwe that is the number of
times the linke is traversed during the time interval[t0, t]. We assume a discrete time
model; thus, the dynamic process of disseminating a query is completely represented
by the set of communication graphs{Gt0,Gt0+1,Gt0+2, ...,Gt0+T}, where at time

10 Farnoush Banaei-Kashani and Cyrus Shahabi

t = t0+T the query dissemination is terminated (hence, for allt ≥ (t0+T), Gt0+t =
Gt0+T). For example, Figure 3 depicts the6 first communication graphs of a query
that is initiated at node A and disseminated based on the random walk dissemination
mechanism.

A

t=t
0

A

1

t=t
0
+1

A

1

1

t=t
0
+2

A

1

1

1

t=t
0
+3

A

1

2

1

t=t
0
+4

A

2

1

1

1

t=t
0
+5

Fig. 3 Communication Graph

2.1.2 Efficiency Measures for Sampling

We define two metrics to measure the efficiency of query dissemination mechanisms
used for sampling from networks:

1. Query cost (or sampling cost, or communication cost)C: Assuming uniform
cost for traversing the links of the network and uniform query size, we model
the communication cost of disseminating a query based on a particular dissemi-
nation mechanism as the total number of query replicas communicated between
the nodes of the network during the entire process of query dissemination. In
communication-graph terminology:

C = ∑
e∈Et0+T

we

2. Query time (or sampling time, or communication time)T: Assuming uniform
latency for the network links, the sampling time is the total time it takes to dis-
seminated the query. In communication-graph terminology:

T = T

Case study: Scoop for partial read from P2P database 11

3 Scoop: Partial Read by Epidemic Dissemination

Epidemic dissemination is inspired by epidemic spreading of contagious diseases
in social networks (i.e., networks that model a society, with nodes as people and
links as social links between people who are in contact). A contagious disease first
appears at one node (the originator of the disease), and then through the social links
disseminates throughout the network in a flood-like fashion, from the infected per-
son to its direct neighbors in the social network, from the infected neighbors to
their neighbors, and so on. The success in transmission of the disease through a
social link is probabilistic, i.e., the disease is transmitted from an infected node to
its susceptible neighbor with probabilityp (0≤ p≤ 1) and is ceased with proba-
bility 1− p. The value ofp depends on the infectiousness of the particular disease
as well as some other environmental parameters, and with simple disease spreading
models the value is generic to all links of the network. When the spreading termi-
nates, the disease has covered/reached a sampleh of the total node populationH
(h⊆ H), where the relative size ofh increases with increasing value ofp (although
not necessarily linearly).

With epidemic dissemination by Scoop, we model the query dissemination mech-
anism on the disease spreading process. By analogy, we take the dissemination of
a query in a peer-to-peer database as the spreading of a disease in a social net-
work. With this analogy, the infection probabilityp translates to the query forward-
ing probability, and the infected sampleh maps to the sampled node-setn. Among
various disease spreading models, we model epidemic dissemination on theSIR
(Susceptible-Infected-Removed)disease spreading model. Below, first we describe
the SIR disease spreading model, which readily defines our epidemic query dis-
semination mechanism with Scoop. Thereafter, for our SIR-based epidemic query
dissemination mechanism we develop a percolation model to deriveγ as a function
of the query forwarding probabilityp for peer-to-peer databases with arbitrary ran-
dom graph topology. The functionγ(p) is a one-to-one function. Therefore, in turn,
it definesp as a function ofγ, which enables Step II of the tuning process for Scoop.

3.1 SIR Epidemic Dissemination

With the SIR disease spreading model, at any particular time during dissemination
of the disease (or equivalently, the query), each node of the network is in one of the
three states susceptible (S), infected (I), or removed (R). A “susceptible” node is li-
able to infection but is not infected yet; an “infected” node is currently infected and
is able to infect its neighbors; and a “removed” node has recovered from the infec-
tion and is both immune to further infection and impotent to infect other nodes. The
discrete-time and dynamic process of SIR epidemic dissemination can be explained
as follows. Initially, at timet0 all nodes of the network are susceptible except the
originator of the disease, which is infected. As the disease propagates throughout
the network, if at timet ≥ t0 a susceptible nodeA has an infected neighborB, at

12 Farnoush Banaei-Kashani and Cyrus Shahabi

time t + 1 with probability p nodeA conceives the disease fromB and becomes
infected (see Figure 4 for the state transition diagram of a node). An infected node
remains in the infectious state for a period of timeτ (during which it is able to infect
its neighbors), and then finally becomes removed. We assumeτ = 1 without loss of
generality. The disease dissemination terminates (dies out) at timet0 + T (where
T ≥ 1) when all nodes of the network are either in the removed state (affected by
the disease) or the susceptible state (survived the disease), and none of the nodes are
in the infected state. By analogy, with the SIR-based epidemic query dissemination
of Scoop, when the query dissemination terminates the set of the removed nodes is
the setn of nodes visited by the query, and the set of susceptible nodes is the set
N\n of the nodes not covered by the query dissemination (see Figure 1).

I

τ

RS

Fig. 4 State Diagram for SIR Epidemic Dissemination

3.2 Percolation Model

To tune the epidemic dissemination with Scoop, we need to answer two questions:

1. How large p should be for the query dissemination to prevail a large network?
For a query to prevail a networkN, we should have:

lim
|N|→∞

|n|
|N| = γ (1)

with γ > 0. In other words, the size of the covered node-setn must be comparable
to the size of the entire networkN, otherwise the partial read operation cannot
satisfy anyβ -queries other than the trivialβ -query withβ = 0. With too small
values ofp, the dissemination dies out quickly, and the query fails to prevail and
covers an infinitesimally small number of nodes as compared to the total number
of nodes|N| in large networks; i.e., we have:

lim
|N|→∞

|n|
|N| = 0

2. How can we deriveγ as a function ofp? γ is an increasing function ofp. Having
γ(p), we can fulfill Step II of the tuning process (see Figure 2) by derivingp(γ)
asγ−1(p). In other words, given aβ -query and assumingγ = β , we can tune the
forwarding probabilityp of Scoop on-the-fly to satisfy theβ -query.

Case study: Scoop for partial read from P2P database 13

a. A site grid

p = 0.1 p = 0.2 p = 0.3

p = 0.4 p = 0.5 p = 0.6

b. Site percolation instances

Fig. 5 Site Percolation Problem

To answer these questions, we model the epidemic dissemination process as a
percolation problem. First, we illustrate this percolation problem by describing two
toy percolation problems (Figures 5 and 6). Consider the grid in Figure 5-a. Each
cell of the grid is called a site. Suppose we color each site of the grid independently
with probabilityp. Figure 5-b depicts several instances of the colored grid with vari-
ous probabilities. Asp increases, larger clusters of colored sites appear. Particularly,
at p = 0.6 there is a giant cluster (marked in black) that spans from the top side of
the grid to the bottom side. When such a giant cluster appears in a colored grid, we
say the grid percolates. It is proved [29, 21, 22] that there exists a critical probability

14 Farnoush Banaei-Kashani and Cyrus Shahabi

pc (in this case,pc ≈ 0.59) such that whp4 the grid percolates only ifp≥ pc. The
size of the giant cluster depends on the value ofp and asp increases the giant cluster
grows such that atp = 1 the giant cluster covers the entire grid. The toy problem
described above is called a site percolation problem on two dimensional grid.

Equivalently, one can define the dual bond percolation problem where a set of
nodes are arranged into a grid (see Figure 6-a) with a bond (not shown) between ev-
ery pair of adjacent nodes. Suppose each bond is colored independently with prob-
ability p. In this case a giant cluster is a cluster of nodes connected with colored
bonds that percolates from one side to the other side of the grid (in Figure 6-b the
giant cluster is marked in black).

p = 0.6

a. A bond grid b. Bond percolation instance

Fig. 6 Bond Percolation Problem

We model the epidemic dissemination process as a bond percolation problem
on an arbitrary random graph. Our problem differs from the toy bond percolation
problem described above in two ways. First, instead of a grid we assume an arbi-
trary random graph as the underlying bonding structure among the nodes. With an
arbitrary random graph, each node is not restricted to a fixed number of neighbors
(e.g., four neighbors as in two dimensional grid) but can have a random number of
neighbors according to some arbitrary degree distribution. On the other hand, unlike
a grid, a random graph is not delimited by sides. For a bond percolation problem on
a random graph, a giant cluster is defined as a cluster of nodes (i.e., a set of nodes
connected with colored bonds) where the size of the cluster is comparable to the
size of the entire graph.

This bond percolation problem models the epidemic dissemination as follows:
the underlying random graph represents the physical topology of the peer-to-peer
network (i.e., the logical overlay); and a cluster generated with the coloring prob-
ability p, is an instance of the communication graph of a query if the query was
initiated by a node within the cluster and disseminated with the forwarding proba-
bility p. With this model, we can answer the two questions raised before as follows:

4 “whp” stands for “With High Probability”.

Case study: Scoop for partial read from P2P database 15

1. How large p should be for the query dissemination to prevail a large network?
The query prevails the network if and only if a giant cluster exists. Thus, whp
query prevails the network if and only ifp≥ pc, wherepc is the critical percola-
tion probability of the bond percolation problem.

2. How can we deriveγ as a function ofp? To deriveγ(p) we should derive the
relative size of the giant cluster as a function of the coloring probabilityp, for all
p≥ pc.

Next, we solve the bond percolation problem for the critical probabilitypc, and
the size of the giant cluster as a function ofp.

3.3 Tuning Scoop

3.3.1 Definitions

We use the generating-function formalism [32] to represent probability distribu-
tion functions. Particularly, the generating functionG0(x) for the distribution of the
node-degreek in an arbitrary random graph is defined as:

G0(x) =
∞

∑
k=0

pkx
k (2)

wherepk is the probability that a randomly chosen node of the graph has degreek.
From Equation (2), one can derive then-th moment of the node degree distribution
as follows:

〈kn〉=
[
(x

d
dx

)nG0(x)
]

x=1
(3)

Also, for a random graph represented by the generating functionG0(x), we define
G1(x), which is the generating function for the distribution of the degree of the nodes
we arrive at by following a randomly chosen link from the graph.G1(x) depends on
G0(x) and is derived as follows:

G1(x) =
1
〈k〉G

′
0(x) (4)

3.3.2 Analysis

First, consider the bond percolation model described in Section 3.2. Suppose the
coloring probability isp. A cluster of nodes connected by the colored bonds is itself
a random graph embedded within the underlying random graphG0(x). It is easy
to derive the generating functionG0(x; p) for the degree distribution of the graphs
representing the clusters based onG0(x):

16 Farnoush Banaei-Kashani and Cyrus Shahabi

G0(x; p) =
∞

∑
m=0

∞

∑
k=m

pk

(
k
m

)
pm(1− p)k−mxm (5)

=
∞

∑
k=0

pk

k

∑
m=0

(
k
m

)
(xp)m(1− p)k−m (6)

=
∞

∑
k=0

pk(1− p+xp)k (7)

= G0(1+(x−1)p) (8)

Similarly one can deriveG1(x; p) as follows:

G1(x; p) = G1(1+(x−1)p) (9)

Next, we derive the distribution of the sizes (i.e., the number of nodes) of the
clusters. AssumeH0(x; p) is the generating function for the distribution of the size
of the clusters. Observing that each cluster consists of a node connected tok other
sub-clusters (wherek is distributed according toG0(x; p)), we derive the distribution
of the cluster size by a recursive argument as follows:

H0(x; p) = xG0(H1(x; p); p) (10)

and similarly:

H1(x; p) = xG1(H1(x; p); p) (11)

FromH0(x; p), we can also compute the average size〈s〉 of the clusters using Equa-
tion (3):

〈s〉= H ′
0(1;p) = 1+G′

0(1;p)H ′
1(1;p) (12)

However, according to Equation (11) we have:

H ′
1(1;p) = 1+G′

1(1;p)H ′
1(1;p) =

1
1−G′

1(1;p)
(13)

Thus:

〈s〉= 1+
G′

0(1;p))
1−G′

1(1;p)
= 1+

pG′0(1)
1− pG′1(1)

(14)

Now, since at the critical probabilitypc the giant cluster appears, the average size
of the clusters〈s〉 goes to infinity atp = pc; i.e.:

〈s〉= 1+
pcG′

0(1)
1− pcG′

1(1)
→ ∞ (15)

Therefore, the critical probabilitypc can be computed as:

Case study: Scoop for partial read from P2P database 17

pc =
1

G′
1(1)

=
1

〈k2〉
〈k〉 −1

(16)

This concludes the solution for the first question raised in Section 3.2. To answer
the second question, i.e., calculating the relative size of the giant cluster as a function
of p, we observe that forp≥ pc, H0(x; p) remains the distribution of thefinite size
clusters, i.e., all clusters except the giant cluster. Thus, we have:

H0(1;p) = 1− γ(p) (17)

Using Equation (10) we can deriveγ(p) as follows:

γ(p) = 1−G0(y; p) (18)

where according to Equation (11),y = H1(1;p) is the solution of:

y = G1(y; p) (19)

We solve these equations forγ(p) numerically by iteration.

4 A Real-World Example of Scoop

In Section 3, we described the generic case of Scoop for the peer-to-peer databases
with arbitrary random graph topology. As captured by empirical studies, some of
the real-world peer-to-peer databases such as Gnutella [18] and Kazaa [28] have
power-law random graph topologies [26, 25, 14, 11]. Here we specialize the generic
case of Scoop for the peer-to-peer databases with power-law topology.

4.1 Network Topology

In this section, we assume the topology of the peer-to-peer database is a power-law
(or scale-free) random graph, i.e., a random graph [4] with power-law probability
distribution for node degrees. Intuitively, in a power-law random graph most of the
nodes are of low degree while there are still a few nodes with very high connectivity.
We define the power-law probability distribution function for the node degreek as
follows:

pk = Ck−ηe−k/ν (20)

whereη , ν , andC are constants.η is the skew factor of the power-law distribution,
often in the range2< η < 3.75for real networks. For example, a case study reports
η = 2.3 for Gnutella [26]. The less the skew factor, the heavier the tail of the power-

18 Farnoush Banaei-Kashani and Cyrus Shahabi

law distribution, which translates to larger number of highly connected nodes. A
pure power-law distribution does not include the exponential cut-off factor (e−k/ν),
allowing for nodes with infinite degree, which is unrealistic for real peer-to-peer
databases. The cut-off factor with indexν shortens the heavy tail of the power-law
distribution such that the maximum node degree for the nodes of the graph is in the
same order of magnitude asν . Finally,C is the normalization factor that is computed
asC = [Li η(e−1/ν)]−1, whereLi η(x) = ∑∞

k=1
xk

kη is theη-th polylogarithm function
of x.

4.2 Analysis

The generating function of the power-law degree distribution (see Equation 20) can
be represented based on the polylogarithm function as follows:

G0(x) =
Li η(xe−1/ν)
Li η(e−1/ν)

(21)

From Equation (3), we can compute the first and the second moments of the
power-law degree distribution5:

〈k〉 = (x
d
dx

)G0(x)
∣∣∣∣
x=1

=
Li η−1(e−1/ν)
Li η(e−1/ν)

〈k2〉 = (x
d
dx

)2G0(x)
∣∣∣∣
x=1

=
Li η−2(e−1/ν)
Li η(e−1/ν)

Consequently, from Equation (16) we can derive the critical probabilitypc for a
power-law graph as follows:

pc =
Li η−1(e−1/ν)

Li η−2(e−1/ν)−Li η−1(e−1/ν)
(22)

In Figure 7, we illustratepc as a function ofν for variousη values in a real-world
power-law peer-to-peer database, i.e., Gnutella. For Gnutella, the skew factorη is
estimated as low asη = 1.4 and as high asη = 2.3, in different scenarios. Also,ν
is in the range of 100 to 1000. As illustrated by this example, the critical probability
pc in power-law networks can be as low as 0.01.

We also solved Equation (18) to deriveγ(p) for power-law networks by numeri-
cal iteration. In Figure 8-a, we show our result for a power-law random graph with
the skew factorη = 2.3.

5 Note: d
dxLi η (x) = 1

x Li η−1(x)

Case study: Scoop for partial read from P2P database 19

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

100 200 300 400 500 600 700 800 900 1000

Cut-off Index (nu)

C
ri

ti
c

a
l

P
ro

b
a

b
il

it
y

 (
P

c
)

Power-law skew factor (eta) = 2.3

Power-law skew factor (eta) = 1.4

Fig. 7 Critical Probability in Power-Law Peer-to-Peer Databases

4.3 Algorithm

1. Seeding the Query (Phase I)
To make sure the query dissemination is initiated by a node belonging to the
giant cluster, the actual query originator initiates a selective walker to locate a
highly connected node in the network. With the selective walk, at each hop the
query is forwarded to a neighbor with the maximum connectivity degree until the
walker reaches a node with a connectivity degree higher than the degree of all its
neighbors. In [1], it is shown that in a power-law network whp such a selective
walker finds a highly connected node belonging to the giant cluster inO(logN)
hops, whereN is the size of the network. Our experiments also verify this result.

2. Disseminating the Query (Phase II)
Next, the SIR-based epidemic query dissemination is initiated at the highly con-
nected node located by the selective walker. The query is disseminated with a
forwarding probabilityp > pc selected according to Equation (18), such that
γ(p) satisfies the givenβ -query.

5 Variants of Scoop

Since in peer-to-peer databases some nodes may refrain from participating in query
dissemination, here we introduce a family of variants for the basic case of Scoop to
model this behavior. With this family, unlike the original SIR model where initially
all nodes are in the “susceptible” state, some nodes begin in the “removed” state.
In the context of the disease epidemic, these nodes represent the people who are
vaccinated. We term such nodes theblockednodes.

We consider three different variants with blocking for the basic Scoop, each rep-
resenting a particular real-world scenario:

20 Farnoush Banaei-Kashani and Cyrus Shahabi

1. Scoop with uniform blocking: In this case, nodes are blocked with uniform proba-
bility. This case models the networks where nodes autonomously decide whether
or not to participate in the query dissemination.

2. Scoop with negative degree-correlated blocking: In this case, the nodes with
lower connectivity degrees are blocked with higher probability. For example,
this case models the peer-to-peer file-sharing networks where low degree nodes
are usually also low-bandwidth and therefore, to avoid congestion and possi-
ble isolation, may refrain from participating in query dissemination with higher
probability.

3. Scoop with positive degree-correlated blocking: This case is opposite to the pre-
vious case, where nodes with higher connectivity degrees are more probably
blocked. This case models the scenario where, for example, high degree nodes
of a power-law network are attacked and disabled.

6 Experiments

We conducted two sets of experiments via simulation to 1) study the behavior of
Scoop empirically, and 2) evaluate the efficiency of Scoop. For this purpose, we
implemented a discrete-time event-driven simulator in C++. We used an Enterprise
E220 SUN server to perform the experiments.

6.1 Methodology

With the first set of experiments, we studied the relation between the forwarding
probability p and the size of the sample node-set covered by the Scoop query dis-
semination. Therefore, with these experiments data content of the nodes is irrel-
evant. With the second set of experiments, we evaluated the efficiency of various
partial read operations in resolvingβ -queries. Our Monte Carlo simulation was or-
ganized as a set of “runs”. For the first set of experiments each run consists of 1)
selecting a network topology, 2) selecting a query originator, and finally 3) initi-
ating 50 query disseminations per forwarding probabilityp (for each one of the
partial read operations) while varyingp from 0 to 1, and recording the average size
of the covered node-set as well asC andT. For the second set of experiments a run
comprises 1) selecting a network topology, 2) selecting an object-set (a multiset of
tuples), 3) distributing the object-set among the network nodes, 4) selecting a query
originator and finally 5) initiating the query for 50 times perβ (for each of the par-
tial read operations) while varyingβ from 0 to 1, and recording the average value of
their efficiency numbersC andT. With this set of experiments, all issued queries are
answered correctly by Scoop and we focus on reporting the efficiency of the query
answering with Scoop. Each result data-point reported in Section 6.2 is the average
result of 50 runs. The coefficient of variance across the runs was below2.5% and

Case study: Scoop for partial read from P2P database 21

hence show the stability of the result. The high stability of the performance is an
expected benefit of the randomization inherent in Scoop.

We generated a set of 100 undirected power-law graphsG(N,E) each with|N|=
50000and |E| ≈ 200000. The skew factors of the graphs are all aboutη = 2.3 as
measured in [26]. The minimum number of edges per node is 4, and the cut-off index
of the graphs isν = 100. The graphs are generated using the preferential attachment
model proposed by Barabasi et al. [3].

We considered a 5-dimensional content space and generated 100 object-sets. For
each object-set, we first generated|U | = 100000objectsu = 〈a1,a2, ...,a5〉, where
ai is an integer value uniformly selected from the interval[1,10]. Thereafter, we
replicated the objects according to the object replication scheme defined in Section
4.1 with the total number of objects|R|= 500000. R is uniformly distributed among
the set of network nodesN.

6.2 Results

Figure 8 illustrates the results of our first set of experiments. Figure 8-a depicts the
relation between the query forwarding probabilityp and the relative sizeγ of the
covered node-setn. First, we notice how close the results of our theoretical analysis
conforms with the performance of the basic case of Scoop in practice, specially for
our p values of interest close to the critical forwarding probabilitypc. Also, we ob-
serve that while performance of the Scoop with negative degree-correlated blocking
is almost identical to that of the basic Scoop (they overlap in the figure), with pos-
itive degree-correlated blocking, the coverage for the same forwarding probability
decreases significantly. This shows 1) the importance of the highly connected nodes
in the performance of Scoop, and 2) the independence of its performance from the
nodes with lower connectivity degrees, which are often low-bandwidth and volatile.
Figure 8-b confirms our previous conjecture that the sampling cost of Scoop is lin-
early proportional to the query forwarding probability. Also, (from Figures 8-a and
8-b) notice that withp = 0.3 almost 80% of the network nodes can be covered with
only about 25% of the sampling cost of the regular flooding (withp = 1). Besides,
the size of the covered node-set becomes sublinearly proportional to the network
size starting atpc ≈ 0.05, where the sampling cost is almost two orders of magni-
tude less than that of the flooding. Finally, Figure 8-c illustrates how the sampling
time reduces as the forwarding probability goes frompc towards 1, because the giant
cluster becomes more strongly connected. Also, we observe that in the worst case,
the sampling time with Scoop only increases by a factor of 4 over the minimum
possible sampling time with flooding.

Figures 9 and 10 illustrate the results of our second set of experiments. With these
experiments, we compared the efficiency of Scoop in answeringβ -queries with that
of partial read operations based on random walk and scope-limited-flooding dis-
semination mechanisms. As we mentioned in Section 1.2, unlike Scoop, these two
partial read operations are unable to determine whether they have covered a suffi-

22 Farnoush Banaei-Kashani and Cyrus Shahabi

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Probability (p)

γ

Basic Scoop

Uniform Blocking (10%)

Uniform Blocking (20%)

Uniform Blocking (30%)

+ve Degree-Cor Blocking

-ve Degree-Cor Blocking (33%)

-ve Degree-Cor Blocking (52%)

Theoretical Analysis

a. Nodes sample size vs. forwarding probability

0

50000

100000

150000

200000

250000

300000

350000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Probability (p)

N
u

m
b

e
r

o
f

F
o

rw
a

rd
s
 (

C
)

b. Sampling cost vs. forwarding probability

0

5

10

15

20

25

30

35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Probability (p)

T
im

e
 (

T
)

c. Sampling time vs. forwarding probability

Fig. 8 Verification of the Analytical Results

Case study: Scoop for partial read from P2P database 23

Scoop vs. Random Walk

0

100000

200000

300000

400000

500000

600000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ββββ

S
a
m

p
li

n
g

 C
o

s
t

(#
 f

o
rw

a
rd

s
)

Scoop

1-RW

1-RW Self Avoiding

16-RW

16-RW Self Avoiding

32-RW

32-RW Self Avoiding

a. Sampling cost

Scoop vs. Random Walk

0

50000

100000

150000

200000

250000

300000

350000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ββββ

S
a
m

p
li
n

g
 T

im
e
 (

#
 s

im
u

la
ti

o
n

 s
te

p
s
)

Scoop

1-RW

1-RW Self Avoiding

16-RW

16-RW Self Avoiding

32-RW

32-RW Self Avoiding

b. Sampling time

Fig. 9 Scoop vs. Random Walk

ciently large fraction of the network to satisfy a particularβ -query. Nevertheless,
to be able to compare Scoop with these partial read operations, for each particular
β -query with givenβ we calculated the absolute (not relative) number of nodes that
must be covered to satisfy the query, and terminated the random walk and flooding
as soon as their coverage exceed the required number of nodes. Scoop can decide
on the required coverage on its own.

Figure 9-b shows that, as one can expect, the sampling time of Scoop is always
incomparably shorter than that of the random walk, even with 32 parallel walkers
(in the figure, the Scoop plot lies on thex axis). However, to our surprise, Scoop also

24 Farnoush Banaei-Kashani and Cyrus Shahabi

outperforms random walk in sampling cost (see Figure 9-a). In other words, to cover
the same number of nodes the SIR-based dissemination uses a “lighter” communi-
cation graph with less query forwarding (see Section 2.1.1 for the definition of the
communication graph) as compared to that of the random walk. This can be justi-
fied by considering the fact that multiple random walkers are traversing the topology
with no (even implicit) inter-communication to avoid redundant traversal. However,
with the SIR-based dissemination adopted by Scoop the more a part of the topology
is explored the less the chance of it to be re-explored; hence, redundant traversal is
reduced. Also note that as illustrated in Figure 9-a, the random walk algorithms with
different number of walkers incur the same sampling cost. This should not be sur-
prising; more walkers enhance the sampling time of the random walk by scanning
the network in parallel, but a single random walker walks as much as 32 random
walkers walk in aggregate to cover the same number of nodes. Finally, notice that
among random walk algorithms, self-avoiding random walk (with which each ran-
dom walker avoids its repeated paths) always outperforms regular random walk in
sampling time.

Figure 10-a shows that Scoop always outperforms scope-limited flooding in sam-
pling cost. Notice the step-like diagram for the scope-limited flooding. Since at each
hop flooding scans an exponentially larger number of new nodes, unlike Scoop it
cannot be tuned properly to cover a certain fraction of the network nodes with fine
granularity. Finally, Figure 10-b shows that although the sampling time of Scoop
always exceeds that of the flooding (which is optimal), even in the worst case it
remains tolerable.

7 Conclusion and Future Work

In this paper, we proposed Scoop to answerβ -queries. Scoop is easy to implement
because each node of the peer-to-peer database can simply toss a biased coin with
probability p to decide whether the query should be disseminated through a link or
not. We showed through percolation analysis that the value ofp can be rigorously
computed for eachβ -query such that the query is correctly satisfied. Also, with
a comparative empirical study we showed that Scoop outperforms flooding by up
to two orders of magnitude in communication cost while maintaining a tolerable
response-time. Also, as compared to a 32-random-walker, Scoop has not only faster
response time but also less communication cost.

We intend to extend this study in three directions. First, since Scoop is essentially
a flood-based dissemination technique with relatively short communication time
(see Figure 8-c), considering the typical rate of churn in peer-to-peer databases we
do not expect significant changes happening during a Scoop dissemination. Hence,
we do not anticipate the performance of Scoop is noticeably affected by the typical
rate of churn. However, for the peer-to-peer databases that may intrinsically have
higher churn such that the time-scale of the dynamic changes in the peer-to-peer
database is comparable to that of the query dissemination, we are planning to use

Case study: Scoop for partial read from P2P database 25

Scoop vs. Scope-limited Flooding

0

50000

100000

150000

200000

250000

300000

350000

400000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ββββ

S
a
m

p
li
n

g
 C

o
s
t

(#
 f

o
r
w

a
r
d

s
)

Scope-limited Flooding

Scoop

a. Sampling cost

Scoop vs. Scoped-limited Flooding

0

5

10

15

20

25

30

35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ββββ

S
a

m
p

li
n

g
 T

im
e

 (
#

 s
im

u
la

ti
o

n
 s

te
p

s
) Scope-limited Flooding

Scoop

b. Sampling time

Fig. 10 Scoop vs. Scope-Limited Flooding

dynamicpercolation analysis to factor in the effect of the changes during the query
dissemination. Second, we intend to explore the more specific characteristics of the
topologies of the peer-to-peer databases such as degree correlations, sparsity, and
expansion/conductance, and consider these characteristics (in addition to the degree
distribution) in our percolation-based analysis of the query dissemination. Third, we
plan to extend our proposed family of data retrieval operations to include operations
for answeringcontinuousdata retrieval requests. For this purpose, we will adopt the
SIS (Susceptible-Infected-Susceptible) disease dissemination model. Unlike SIR,
which models epidemic diseases that disseminate once throughout the social net-

26 Farnoush Banaei-Kashani and Cyrus Shahabi

work and quickly disappear, SIS modelsendemicdiseases that become resident in
the social network and continuously disseminate.

Acknowledgments

This research has been funded in part by NSF grants IIS-0238560 (PECASE), IIS-
0534761, IIS-0742811 and CNS-0831505 (CyberTrust), and in part from the ME-
TRANS Transportation Center, under grants from USDOT and Caltrans. Any opin-
ions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the National Sci-
ence Foundation.

References

1. L. Adamic, R.M. Lukose, A.R. Puniyani, and B.A. Huberman. Search in power-law networks.
Physics Review Letters, 64(46135), 2001.

2. F. Banaei-Kashani and C. Shahabi. Partial selection query in peer-to-peer databases (poster
paper). InProceedings of the 22nd International Conference on Data Engineering (ICDE),
April 2006.

3. A.L. Barabasi and R. Albert. Emergence of scaling in random networks.Science, 286:509–
512, 1999.

4. B. Bollobas.Random Graphs. Academic Press, New York, 1985.
5. S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Gossip algorithms: Design, analysis and

applications. InProceedings of the Conference on Computer Communications (INFOCOM),
March 2005.

6. A. Crespo and H. Garcia-Molina. Routing indices for peer-to-peer systems. InProceedings
of the 22nd International Conference on Distributed Computing Systems(ICDCS), 2002.

7. A. Demers, D. Greene, C. Hauser, W. Irish, and J. Larson. Epidemic algorithms for replicated
database maintenance. InProceedings of the sixth annual ACM Symposium on Principles of
Distributed Computing (PODC), 1987.

8. D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and S. B. Wicker. An empirical
study of epidemic algorithms in large scale multihop wireless networks. Technical Report
CSD-TR 02-0013, UCLA, 2002.

9. A. Ganesh, L. Massouli, and D. Towsley. The effect of network topology on the spread of
epidemics. InProceedings of the Conference on Computer Communications (INFOCOM),
March 2005.

10. C. Gkantsidis, M. Mihail, and A. Saberi. Hybrid search schemes for unstructured peer-to-peer
networks. InProceedings of the Conference on Computer Communications (INFOCOM),
March 2005.

11. K.P. Gummadi, R.J. Dunn, S. Saroiu, S.D. Gribble, H.M. Levy, and J. Zahorjan. Measure-
ment, modeling, and analysis of a peer-to-peer file-sharing workload. InProceedings of the
Symposium on Operating Systems Principles (SOSP), 2003.

12. H. Hethcote. The mathematics of infectious diseases.SIAM Review, 42(4):599–653, Otober
2000.

13. J. Hromkovic, R. Klasing, B. Monien, and R. Peine. Dissemination of information in inter-
connection networks (broadcasting and gossiping).Combinatorial Network Theory, pages
125–212, 1996.

Case study: Scoop for partial read from P2P database 27

14. M. Jovanovic. Modeling large-scale peer-to-peer networks and a case study of gnutella. Mas-
ter’s thesis, University of Cincinnati, 2001.

15. R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking. Randomized rumor spreading. In
Proceedings of the Symposium on Foundations of Computer Science (FOCS), 2000.

16. D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computation of aggregate information. In
Proceedings of the Symposium on Foundations of Computer Science (FOCS), 2003.

17. L. Li, J. Halpern, and Z. Haas. Gossip-based ad hoc routing. InProceedings of the Conference
on Computer Communications (INFOCOM), 2002.

18. Limewire.com. Gnutella, 2006. http://www.limewire.com/.
19. Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and replication in unstructured peer-to-

peer networks. InProceedings of the 16th International Conference on supercomputing (ICS),
June 2002.

20. Q. Lv, S. Ratnasamy, and S. Shenker. Can heterogeneity make gnutella scalable? InProceed-
ings of the 1st International Workshop on Peer-to-Peer Systems (IPTPS), 2002.

21. M. Molloy and B. Reed. A critical point for random grraphs with a given degree sequence.
Random Structures and Algorithms, 6:161–180, 1995.

22. M.E.J. Newman, S.H. Strogatz, and D.J. Watts. Random graphs with arbitrary degree distri-
bution and their applications.Physical Review E, 64(026118), 2001.

23. G. Ozsoyoglu, K. Du, S. Guruswamy, and W. Hou. Processing real-time, non-aggregate
queries with time-constraintsin case-db. InProceedings of the 8th International Conference
on Data Engineering (ICDE), February 1992.

24. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-addressable
network. InProceedings of the Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication (SIGCOMM), August 2001.

25. M. Ripeanu. Peer-to-peer architecture case study: Gnutella network. InProceedings of the
First International Conference on Peer-to-Peer Computing (P2P), August 2001.

26. S. Saroiu, P.K. Gummadi, and S.D. Gribble. A measurement study of peer-to-peer file sharing
systems. InProceedings of Multimedia Computing and Networking (MMCN), January 2002.

27. N. Sarshar, P. Oscar Boykin, and V. Roychowdhury. Percolation search in power law networks:
Making unstructured peer-to-peer networks scalable. InFourth International Conference on
Peer-to-Peer Computing (P2P), 2004.

28. SharmanNetworks. Kazaa, 2006. http://www.kazaa.com/.
29. D. Stauffer and A. Aharony.Introduction to Percolation Theory. Taylor and Francis, second

edition, 1992.
30. I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan. Chord: A scalable

peer-to-peer lookup service for internet applications. InProceedings of the Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communication (SIG-
COMM), August 2001.

31. S.V. Vrbsky and J.W.S. Liu. Approximate - a query processor that produces monotonically
improving approximate answers.IEEE Transactions on Knowledge and Data Engineering
(TKDE), 5(6):1056–1068, December 1993.

32. H.S. Wilf. GeneratingFunctionology. Academic Press, second edition, 1994.
33. B. Yang and H. Garcia-Molina. Designing a super-peer network. InProceedings of the 19th

International Conference on Data Engineering (ICDE), March 2003.

