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Abstract—The advances in sensor technologies enable real-
time collection of high-fidelity spatiotemporal data on trans-
portation networks of major cities. In this paper, using two real-
world transportation datasets: 1) incident data and 2) traffic
data, we address the problem of predicting and quantifying
the impact of traffic incidents. Traffic incidents include any
non-recurring events on road networks, including accidents,
weather hazard, road construction or work zone closures.
By analyzing archived incident data, we classify incidents
based on their features (e.g., time, location, type of incident).
Subsequently, we model the impact of each incident class on its
surrounding traffic by analyzing the archived traffic data at the
time and location of the incidents. Consequently, in real-time, if
we observe a similar incident (from real-time incident data), we
can predict and quantify its impact on the surrounding traffic
using our developed models. This information, in turn, can
help drivers to effectively avoid impacted areas in real-time.
To be useful for such real-time navigation application, and
unlike current approaches, we study the dynamic behavior of
incidents and model the impact as a quantitative time varying
spatial span. In addition to utilizing incident features, we
improve our classification approach further by analyzing traffic
density around the incident area and the initial behavior of the
incident. We evaluated our approach with very large traffic
and incident datasets collected from the road networks of Los
Angeles County and the results show that we can improve our
baseline approach, which solely relies on incident features, by
up to 45%.

Keywords-intelligent transportation, traffic forecast, traffic
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I. INTRODUCTION

The Texas annual Transportation report [2] estimates
that 5.5 billion hours and 2.9 billion gallons of fuel are
wasted due to the problem of traffic congestion in the
United States in 2012. According to [16], approximately
50% of the freeway congestions are caused by non-recurring
incidents, such as traffic accidents, weather hazard, special
events and construction zone closures. Hence, our goal is
to predict and quantify the impact of traffic incidents on
the surrounding traffic. This quantification can eliminate the
significant financial and time lost by traffic incidents, for
example it can be used by city transportation agencies for
providing evacuation plan to eliminate potential congested
grid locks, for effective dispatching of emergency vehicles,
or even for long-term policy making.

The McKinsey report [1] predicts a worldwide consumer
saving of more than $600 billion annually by 2020 for
location-based-services, where the biggest single consumer
benefit will be from time and fuel savings from navigation
services tapping into real-time traffic data. Therefore, for
the remainder of this paper, we focus on a next generation
consumer navigation system (in-car or on smart phone),
called ClearPath, as a motivating application, which can
help drivers to effectively plan their routes in real-time by
avoiding the incidents’ impact areas. That is, suppose an
accident is reported in real-time (by crowdsourcing [22] or
through agency reports or SIGALERTS [19]) in front of
a driver but the accident is 20 minutes away. If we can
effectively quantify the impact of the accident, ClearPath
would know that this accident would be cleared in the
next 10 minutes. Thereby, ClearPath would guide the driver
directly towards the accident because it knows that by the
time the driver arrives the area, there would be no accident.

To be more specific, consider another example illustrated
in Figure 1. In this figure, the caution mark, the directed solid
red lines, and the dashed blue lines represent the incident
location, the congested region caused by the incident, and
the route a driver plans to follow, respectively. Without
prediction, but with the knowledge of the incident, a typical
navigation application, such as Waze [22], may suggest the
route shown in Figure 1(a) to the drivers. If the driver
follows this route, he would be stuck in the traffic congestion
caused by the incident, as illustrated in Figure 1(b), due
to the fact that the congested region has grown. On the
other hand, if we can predict how the impacted spatial span
(i.e., congested region) evolves over time, ClearPath could
calculate the route that can effectively avoid the congestion
from the beginning, as shown in Figure 1(c).

The problem of predicting traffic incident’s impact has
been widely studied by researchers in multiple disciplines,
including in transportation science, civil engineering, policy
planning, and operational research (e.g. [23]). In the past,
without real-world traffic data, most researchers resorted to
mathematical models, simulation studies and field surveys
(e.g., [10]). However, these theoretical methodologies can-
not accurately infer the impact of incidents in real-world
scenarios and the spatial transferability of their models is
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Figure 1. (a) route calculated based on current incident’s impact (b) time-
varying expansion of impacted region as driver approaches the incident
location (c) route calculated based on accurate prediction of impact

limited. In recent years, due to the sensor instrumentation of
road networks in major cities as well as the vast availability
of auxiliary commodity sensors (e.g., CCTV cameras, GPS
devices), for the first time a large volume of real-time
traffic and incident data at very high spatial and temporal
resolutions has become available. In this paper, we use such
datasets that we have been collecting and archiving in the
last three years in the LA County and Orange County,
towards predicting the impact of traffic incidents to the
surrounding traffic.

For our motivating navigation application, ClearPath, to
be effective, we need to predict specific values of speed
changes and backlog lengths over the lifetime (i.e., temporal)
and impact-area (i.e., spatial) of an incident. This is in
contrast to previous application scenarios where forecasting
abstract or aggregate values was sufficient. In particular,
consider the following three aspects that we need to forecast.

First, we need to predict the exact values of speed changes
and backlog lengths. There are two major approaches to
measure the impact of incidents: 1) qualitative approaches
(i.e., classify incident’s impact into conceptual categories
such as “severe” or “non-severe”, and “significant delay”
or “slight delay”); 2) quantitative approaches (i.e., provid-
ing numeric measurement such as 45% speed decrease,
and 3.2 miles of congested backlog). In the past, most
studies focused on qualitative approaches for measuring
impact, which makes the impact easier to predict (e.g.,
[13]). The qualitative measurement may be sufficient for
general decision-making or response analysis, however, not
precise enough for ClearPath. In this paper, we describe the
impact from a quantitative perspective, and provide numeric
measurements of the impact to the surrounding areas.

Second, since the impact region of an incident evolves
over time and space (as shown in Figure 1), we need
to predict the spatiotemporal behavior of the impact. In
previous studies, it was sufficient to predict an incident’s
impact as a single or a set of aggregate values. For example,
in [15], the impact is predicted as average speed decrease or
average of the backlog length. In this paper, the outcome of
our prediction approach is the exact length of time varying
backlogs (i.e., evolution of congested spatial span) with

different scales of speed changes.
Third, we need to predict the sudden speed changes

caused by incidents in a faraway future (e.g., the next 30
minutes). The occurrence of incidents always involves two
phenomenon: 1) abrupt speed changes; for example, it is
very common for the traffic speed to drop 60% when an
incident occurs on freeways in LA; and 2) long-lasting
propagation of the speed changes; for example, a closer
sensor to the incident may report speed decrease in 3rd

minute after its occurrence, however, a farther sensor may
report similar decrease in 30th minute. Since traditional
prediction approaches rely on the immediate past data to
predict the future, they cannot effectively predict the abrupt
speed changes and how they propagate over a long term,
which is important for ClearPath to successfully navigate
drivers around the incident impact area. Towards this end, we
analyze the correlations between archived incident data and
traffic data. Specifically, we first classify incidents based on
their features (e.g., time, location, type of incident), which
are correlated with their impact to the surrounding traffic.
Next, we improve the classification by incorporating traffic
density and the initial behavior of incident. By utilizing such
models, we can effectively predict the abrupt speed change
and the propagation over a long term by identifying similar
classes of incidents mined from archived dataset.

In sum, the contributions of our paper are as follows:
• We present a novel method to quantify the impact of

incidents as a time varying spatial span, showing signif-
icant advantages over static impact measurements, e.g.,
revealing the affected spatial region more precisely, and
enabling next-generation navigation applications.

• For impact prediction, we leverage incident features,
traffic density, and the initial incident behavior to im-
prove the accuracy in forecasting of time-varying spa-
tial spans. Consequently, our approaches significantly
reduce the prediction error.

• We validate our approaches using a large-scale, real-
world traffic and incident datasets, which constitute the
data collected from 4,230 sensors and 6,811 incidents
on road network. Our results show that our baseline
approach that relies only on incident features is already
superior to the state-of-the-art as it can quantify impact
over space and time. Moreover, once we incorporate
the traffic density and the initial behavior of incident
into our prediction model we can improve the baseline
approach even further by up to 45%.

II. RELATED WORK

In the last decade, the impact of traffic incidents has
been widely studied in multiple disciplines. Most of these
studies are based on theoretical modeling and simulations,
which can be classified into three groups: 1) deterministic
queuing theory or shockwave theory (e.g.,[10], [23]); 2)
heuristic methods and simulations (e.g.,[14]); 3) microscopic



modeling of driver’s behavior (e.g., [6], [21]). However, the
outcome of these studies relies on theoretical simulations of
road network traffic instead of the real-world collected traffic
data. Also, none of these studies use a source of incident data
with description variables and reporting techniques, and their
spatial transferability is limited. In this work, we use a very
detailed high resolution traffic dataset and incident dataset.

Recently, with the availability of real-world data, a va-
riety of data mining approaches have been applied for the
prediction of incident’s impact, such as decision trees [13],
classification trees [8], [20], as well as Bayesian classifier [3]
and nearest neighbor classifier [9]. In most of these studies,
the focus is to predict the general behavior of incident’s
impact (e.g., severe or not severe [7]). Thereby, they always
categorize the incident’s impact into different classes, and
utilize classification models for the prediction. However, our
problem is to provide numerical results in both spatial (i.e.,
affected region) and temporal (i.e., traffic speed decrease)
aspects as the predicted impact. for example, the region of
60% travel time delay is 3.2 miles in 20th minute. Therefore,
their classification models are not suitable for our problem.

The set of most relevant studies to our study are the
models proposed in [15], [12], [5]. In these studies, they
considered both spatial and temporal aspects to quantify the
impact. However, their quantification strategy are designed
to capture the one-time impact of the incident, instead of
the time varying nature of impact at different locations. As
illustrated in the example of Figure. 1, the impact of traffic
is not always an one-time phenomenon, in fact, it follows a
growing/shrinking pattern after the occurrence of incident.
Towards this end, in this paper, we quantify the impact of
an incident as a time varying spatial span. Hence, instead
of predicting static parameters for the one-time impact, our
approach predict the behavior of the time varying spatial
span of an incident.

III. PRELIMINARIES

To explain the preliminaries, consider a sample incident
that occurred on the freeway I-5 South as illustrated in Fig-
ure 2(a). Sensor S1-S4 represents the four affected sensors
located on I-5 South upstream of the incident location1. In
the rest of this paper, we use this scenario as a running
example to explain our approach.

Definition 1: (Speed Change Ratio) The speed change
ratio (∆v) at a specific location (l) and time (t) is defined
as decreased ratio of current traffic speed (vc) compared with
normal traffic speed at l and t, as shown in Equation (1).

∆v(l, t) =
vr(l, t)− vc(l, t)

vr(l, t)
× 100% (1)

Here, the normal speed (vr) is calculated as the historical
average value at location l of same time t in the past. Figure

1In this study, we focus on the impact on the upstream direction of
incident location for incidents occurred on freeways.

2(b) shows the corresponding time varying speed change
ratios for four sensors depicted in Figure 2(a). Here, the
axis labeled as Time refers to the elapsed time after the
occurrence of the incident, where the negative values refers
to the time stamp before the incident occurs. The axis labeled
as Distance refers to the road network distance between
sensor location and incident location.
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Figure 2. Sample traffic incident on I-5 South

In our problem, the key to predicting the time varying
spatial span is to predict the speed changes of all sensors
over time. One intuitive solution is to apply traditional time
series prediction approach on the speed time series. Towards
this end, we need to predict the speed changes for each
sensor. However, this solution has a few limitations and
drawbacks. In the following, we provide a brief explanation
of its limitations through two critical observations made
from Figure 2(b).

Observation 1: For all sensors, the speed decreases
abruptly after the occurrence of a traffic incident, suggested
by the sudden increase of speed change ratio.

For example, for sensor S1, the speed dropped from 67
MPH to 18 MPH within 2 minutes after the occurrence of
incident. The time series prediction approaches[15] (e.g.,
auto-regressive models) cannot effectively predict abrupt
variation in time series because most of them relies on the
data in the immediate past. Thereby, according to observa-
tion 1, traditional time series prediction techniques cannot
effectively predict the traffic time series at the beginning of
a traffic incident.

Observation 2: The abrupt speed change for each sensor
starts at different time stamps after the incident’s occurrence.

In our running example, sensor S3 reports the abrupt
speed decrease at 12th minutes, while sensor S4 reports
at 19th minutes after the incident’s occurrence. Hence, in
this scenario, given the incident just occurred, we need to
predict the speed changes in 12 or 19 minutes ahead. This
task requires a multi-step prediction strategy for time series
prediction approaches. However, according to the study in
[4], multi-step time series prediction suffers from error
accumulation problem when the prediction period is long.
Thus, the time series approach cannot accurately predict the
speed changes in a long term, for example, 30 minutes in
advance for general cases.

To conclude, we argue that traditional time series predic-
tion technique cannot effectively predict the speed decrease



for all sensors impacted by an incident. To address this issue,
in the following, we propose a modeling strategy towards
incidents’ impact and corresponding prediction techniques.

IV. IMPACT MODELING

First, we define whether a location is impacted according
to the magnitude of speed changes as follows:

Definition 2: (Impacted Threshold λ) λ is defined as
an impact parameter related to the magnitude of the speed
changes. Given a time stamp t and a location l, if the speed
change ∆v(l, t) satisfy the following inequality, we denote
the location l as impacted at time t.

∆v(l, t) ≥ λ (2)

In the experiments, we will study the effects of λ values in
the prediction accuracy of propagation behavior.

Consider λ as 60%, and cut the 3D Figure 2(b) horizon-
tally with ∆v=60%. We will obtain a series of scatter points
in a 2D space of distance and time, as depicted in Figure
3. Each point (x, y) in Figure 3 represents a specific sensor
located at y miles from the incident location with 60% speed
decrease at x-minute after the incident occurrence time. For
the four points on the left side (with x < 20), their x-axis
value indicates the time stamp when a sensor starts to get
impacted, which is referred as propagation phase. For the
other four points, their x-axis value indicates when a sensor
ends from getting impacted, which is referred as clearance
phase. As a byproduct, the impact duration of a sensor can
be derived as the time difference between the points in the
propagation phase and clearance phase. In this study, we
focus on predicting the impact in propagation phase.
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Figure 3. Intersecting Figure 2(b) with λ = 60% in speed change

As shown in Figure 3, we observe that the closer a sensor
is to the incident location, the earlier it starts to get impacted.
Intuitively, if a sensor s get impacted at a time t, all the
sensors closer than s should be impacted before t. Therefore,
the impact backlog (i.e., spatial span) of traffic incident is
defined as follows:

Definition 3: (Impact Backlog) Given an incident location
on freeway l and occurrence time t0, and impact threshold
λ, the impact backlog b at time t (bt), is the road network
distance between the occurrence location and the furthest
impact location (with ∆v(l, t) ≥ λ), along the upstream
direction (i.e., the opposite direction of the vehicle flow).

In the following, we will use the example in Figure 3 to
explain how to calculate bt, with λ=60%. In this example,
sensor S2 (0.9 miles from the incident) starts to get impacted

at 8th minute after the incidents. Therefore, the impact
backlog at the 8th minute is 0.9 miles. If we consider the
granularity of time stamp(t) in the definition as 1 minute,
we could derive b8=0.9. Similarly, we could derive b1, b12
and b19 from the sensor S1, S3 and S4, according to the time
they get impacted and their distances to the incident location.
With the notation of impact backlog, the time varying spatial
span of incident impact in terms of propagation behavior is
defined as follows:

Definition 4: (Propagation Behavior) Given an incident
(e) at location l occurred at time t0, and λ, e’s propagation
behavior is defined as a time series of impact backlog after
t0 and before it reaches the maximum impact backlog.
Assuming e reaches the maximum impact backlog after t
minutes, its propagation behavior is represented as ~b or
{b0, b1, ..., bt}, where the subscript i for bi represents the
time units after t0. Here, bi is the distance from the incident
location that is “impacted” at time ti.

To calculate the propagation behavior for an incident, one
naive way is to record the speed changes on all the possible
upstream locations. However, this method requires a fairly
dense placement of sensors. In most sensor networks, the
sensors reporting traffic speed are always placed with a
certain distance interval (e.g., 0.5 mile). Therefore, due to
the limited availability of sensor data, we can only derive
impact backlog from the locations equipped with sensors.
To create a continuous propagation behavior, we utilize a
fitting strategy. The overall modeling strategy is summarized
as follows:

1) We utilize the distance of a sensor from the incident
location to represent the impact backlog at time t,
which is the stamp they start to get “impacted”.

2) Consequently, we plot the derived impact backlogs
into 2D space (e.g., the scatter points in Figure 4(a)),
and train a polynomial function to fit the plotted
discrete points.

3) Finally, we utilize the learned fitting function and
interpolate the backlogs at missing time stamp and
generate a complete propagation behavior. Figure 4(b)
shows the propagation behavior for our running ex-
ample, where the impact backlog {b0, b1, ..., b19} is
plotted at each minute.
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Figure 4. Sample propagation behavior

There are alternative modeling approaches, such as the use
of coefficients in polynomial fitting function. The superiority
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Figure 5. Propagation behaviors under different λ

of our modeling strategy over this approach is as follows:
when we construct the propagation behavior, we only use the
fitting function to interpolate the missing impact backlogs,
for existing impact backlogs we still use the original data.
However, if we rely on the coefficient vectors of the fitting
function, we may introduce fitting error into the original
data, which may result in inaccurate representation of the
propagation behavior.

Applications of Propagation Behavior: The prediction of
propagation behavior can enable intelligent route planning,
effective transportation policy making, and faster traffic
emergency responses. In the following, we will briefly detail
how to use the propagation behavior within route planning
applications. For each traffic incident, we can predict mul-
tiple propagation behaviors based on different λ values. For
example, Figure 5 illustrates the propagation behavior for
the running example under different λs. The value of λ can
be tuned according to the preference of the end users of a
route planning application.

For a specific time, by utilizing the combination of
propagation behaviors, we could derive the set of affected
road segments under different magnitude of speed changes.
For example, in Figure 5, at 15th minute after the occurrence
of incident (i.e., x=15), the location at 1.3 mile towards the
incident is at least 60% speed decrease, the location at 1.7
mile is at least 40% speed decrease and the location at 2.0
mile is at least 20% speed decrease. Similarly, for a specific
location, by fixing the y values, we could derive the time
when starts to get 20%, 40% or 60% speed decrease. Such
predictive information are crucial to generate travel time
weight for road segments near incident locations, further to
be utilized in the fastest path calculation in route planning.

V. IMPACT PREDICTION

In this section, we will explain our proposed techniques
for predicting the impact of incidents on road networks
in terms of propagation behavior. First, we will discuss
a baseline approach for grouping similar incidents based
on their attributes to estimate the impact. However, in
some particular cases, although two incidents have similar
attributes, their impacts are still highly different from each
other. Therefore, we introduce a new prediction model
that addresses the shortcomings of the baseline approach
by incorporating traffic density measures such as volume
and occupancy. Finally, we explain a multi-step prediction
approach that takes into account initial behavior (i.e., sub-
pattern of propagation behavior) of an incident to further

improve the prediction accuracy.
Our dataset includes three years of historical sensor

readings (i.e., speed, volume and occupancy) referred to as
traffic data (D). Specifically, the volume reading represents
the number of cars passed by a sensor within a sampling in-
terval, and the occupancy reading represents the percentage
of time a sensor is occupied. In addition, we also include the
dataset of incident reports that includes set of 43 attributes,
such as fatality, number of lanes affected etc., referred as
incident data (R). Our impact prediction problem is defined
as follows:

Problem Definition: Given an incident e (e ∈R) occurring
at time t0, and the dataset D collected before t0 (i.e., [t0 −
T, t0], where T is the duration of the datasets), to predict
propagation behavior of e in the next t time stamps, i.e.,
{b1, b2, ..., bt}.

A. Baseline Approach

In this section we introduce a baseline approach that clas-
sify incidents solely based on their attributes for prediction.
In particular, we assort historical incident to different classes
based on their attributes. The main intuition here is that the
incidents within the same class should be strongly correlated,
and hence given an incidents e with certain attributes may
follow the similar impact. The detailed steps of the baseline
approach is as follows: 1) given historical incidents and all
their attributes, apply a feature subset selection algorithm
to identify the set of relevant features that are maximally
correlated with their propagation behavior; 2) classify all
historical incidents into different groups according to their
values of selected features. For example, if the incident
location (e.g., I-5 South) is one of the selected features,
all incidents occurred on freeway I-5 South should be put
into one group. within each group, we use the average
propagation behavior as the representative for prediction.
In this way, when a new incident occurs, we extract its
correlated feature values, use them to identify the group
it belongs to, and use the representative in that group as
predicted propagation behavior.

With our dataset, we observe that the feature subset se-
lection algorithm determines the following attributes: street
name (e.g., I-5 South), start time (i.e., occurrence time),
affected number of lanes (i.e., number of lanes blocked by
the incidents), and incident type (such as traffic collision,
etc). Therefore, we will use these attributes to classify the
incidents in the 2) step. Note that the length of propagation
behavior might be different from each other, thereby, during
the calculation of average propagation behavior, its length
equals the shortest propagation behavior in one cluster.

B. Prediction with Traffic Density (PAD)

In the baseline approach, we assumed that incidents with
similar attributes may follow similar impact, and hence
classified the incidents based on the values of selected



attributes. However, our observations from the real-world
datasets show that in some cases, even two incidents have
similar attributes, their impact propagation behavior can be
significantly different from each other. This is particularly
notable when two incidents occurred on the same street but
different road segments. For example, consider two incidents
(with same attributes) that occur at a rush-hour on two
different segments passing through downtown area and rural
area (significantly less crowded). Obviously, the impact of
these accidents will be different. Therefore, we argue that
traffic “density” around the incident is correlated with its
propagation behavior, and hence can improve the prediction
accuracy. In the rest of this section, we will present two
selected case studies to verify our hypothesis and propose
an approach that utilizes traffic density.

We quantify the traffic density using two traffic measures:
volume (the number of cars passing from a sensor location)
and occupancy (the percentage of time the sensor is being
occupied) from the sensors that on the same streets close to
the incident location. As we discussed these measures are
available in our sensor dataset. Below we explain the effect
of each measure in turn.

Effect of Volume: To illustrate the correlation between
volume and propagation behavior, we present two real-world
incidents (eA and eB) that occurred on I-405 S with similar
incident attributes, but different volume values (i.e., low
volume for eA, high volume for eB). Their propagation
behavior are depicted in Figure 6(a). As shown, for eB ,
as the vehicles accumulated quickly (due to large traffic
volume), the impact propagates very fast after a few minutes.
On the other hand, the propagation speed of eA (with lower
volume) is not as fast as eB . Hence, it is likely that different
volume values can result in different propagation behavior.

0
0.5

1
1.5

2
2.5

3

0 10 20 30Im
p

ac
t 

B
ac

kl
og

 (
m

il
e)

Time Elapsed (min)

Incident A Incident B

(a) Effects of Volume

0
1
2
3
4
5
6
7
8

0 10 20 30Im
p

ac
t 

B
ac

kl
og

 (
m

il
e)

Time Elapsed (min)

Incident A Incident B

(b) Effect of Occupancy
Figure 6. Case studies on traffic environment

Effect of Occupancy: Similar to volume case study,
we will show the impact of occupancy using an example.
In this case, we choose two incidents that occurred on I-
5 S with different occupancy values. Figure 6(b) shows
the propagation behavior for eA (with higher occupancy
value) and eB ( with lower occupancy value). Obviously, the
average propagation speed (average curve gradient) for eA is
higher than that of eB . This means that the incident impact
propagates faster on more occupied locations, and hence
occupancy is also correlated with propagation behavior.

As illustrated in the above two case studies, the traffic

density (measured by volume and occupancy) are very
important parameters to predict the propagation behavior of
an incident. Therefore, we incorporate traffic density into our
prediction model. In particular, for each incident, we create
a two-dimensional feature vector composed of volume and
occupancy values and cluster incidents based on this vector.
Our Prediction approach that combines incident Attributes
and traffic Density (PAD) is summarized as follows:

• Training Phase: 1) Classify the historical incidents into
groups according their correlated attributes trained in
the baseline approach; 2) Within each group, cluster all
incidents on the feature space composed by the volume
and occupancy value, i.e., < v, o >;

• Prediction Phase: For a newly occurred incident e, 1)
we identify its group based on its correlated attributes,
and use its volume and occupancy value to find the
cluster (C) it belongs to; 2) we select all the archived
incidents inside the C and use the average of their
propagation behaviors for the impact prediction of e.

To ensure the cluster quality we maximize the number of
clusters (k) while guaranteeing the quality of each cluster,
which is measured by average silhouette coefficient (s)
defined in [18]2.

C. Prediction with Initial Behavior (PADI)

In the previous section we discussed PAD model that
improves the accuracy of the baseline approach by using
traffic density information. However, there are still other
impact correlated features that PAD does not take into con-
sideration, such as weather conditions or other information
that are not available in our dataset. Therefore, in some
cases, the accuracy of PAD still can be improved. Figure
7(a) shows one such case for a sample cluster learned
by PAD. In this figure, prediction candidate refers to the
average propagation behavior with similar attributes and
traffic density, and prediction range (i.e., the gray area) is
calculated based on the maximum deviation of each instance
towards the candidate. If we use this candidate for predicting
propagation behavior for incidents with same attribute and
density, the prediction error would be non-trivial. To shrink
the range for the prediction candidate, we cluster all the
propagation behavior within a group of incidents (under
same attributes and traffic density), and generate multiple
prediction candidates. This eliminates the need to rely on
the candidate in terms of average propagation behavior for
the prediction. Figure 7(b) shows a sample candidate and its
range after the clustering on propagation behavior.

We elaborate the training procedure for this method as a
hierarchy structure illustrated in Figure 8. Level I, II and
III indicates the successive grouping of incidents based on

2Specifically, we choose the maximum number of clusters while constrain
s to stay in the range (0.5, 0.7], which indicating the reasonable evidence
for clustering result.



(a) PAD approach (b) PADI approach
Figure 7. Sample prediction comparison on I-405 S.

attributes, density and propagation behavior. One may think
of merging all three levels into one level containing all three
types of information (i.e.,attributes, environment, propaga-
tion), and conduct clustering algorithm only once. However,
it is difficult to balance the weight for the features of the
three types of information during clustering. Therefore, the
hierarchical structure helps us to avoid potential problems
in weight tuning step.

During the prediction step, for a given incident, we use
its attributes and traffic density to search in the first two
levels. To identify a suitable cluster in Level III, we relax the
prediction problem, and use initial behavior of the accident
to match the cluster centroid, which is defined as follows:

Definition 5: (Initial Behavior) Given an incident (e)
and its propagation behavior ~b, i.e., {b1, ..., bt}, its initial
behavior is defined as the first h time stamps in ~b (i.e.,
{b1, ..., bh}), where h is defined as forward lag, and h < t.

In particular, with the help of initial behavior, when a
new incident e occurs, we match its initial behavior with
the first h times stamp (i.e., ~b1...h) among the corresponding
propagation behavior centroids in the Level III, and identify
the closest centroid as the candidate for predicting ~bh+1...t.
Note that initial behavior can be learned from traffic data.
Therefore, by considering the initial behavior as input, we
relax our prediction problem by knowing the traffic in the
first a few minutes after the occurrence of incidents.

To illustrate the use of initial behavior, consider the
example in Figure 9. The prediction candidates (i.e., cluster
centroids on propagation behavior) for incidents that oc-
curred on freeway I-405 South with similar attributes and
traffic density is illustrated as solid lines in Figure 9(a). The
black dash line in Figure 9(b) represents the initial behavior
in the first 5 minutes for a newly occurred incident. By
matching {b0, ..., b5} between its initial behavior and the five
prediction candidates, we select the closest cluster centroid
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Figure 8. Hierarchy structure for training
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Figure 9. Sample prediction on I-405 S.

to predict the propagation behavior after b5, as depicted in
Figure 9(b).

It is important to note that, there exists various metrics
to evaluate the “closeness” between initial behavior and
first h stamps in cluster centroids. In our approach, we use
both Euclidean distance and Mahalanobis distance [11] to
measure the closeness. The Mahalanobis distance differs
from Euclidean distance in that it takes into account the
correlations in the dataset and is scale-invariant. To measure
the differences between propagation behavior ~b1 and ~b2, the
Mahalanobis distance is calculated as follows:

dM (~b1, ~b2) =

√
(~b1 − ~b2)

T
S−1(~b1 − ~b2) (3)

where S is the covariance matrix between ~b1 and ~b2. We
evaluate the prediction accuracy for both Euclidean distance
and Mahalanobis distance in Section VI.

D. Discussion

To conclude, in this section we discuss the strategy of
using traffic density and initial behavior to predict the
propagation. Last but not the least, we want to complete the
discussion by providing a solution to transportation system
where the measurement of traffic density is either not avail-
able or inaccurate. In particular, for transportation systems
based on GPS data and crowd sourcing, although they can
still have access to incident reports and speed changes, but
it is generally challenging for them to have accurate traffic
density measurement such as volume and occupancy around
the incidents. Therefore, for these systems, we provide a
similar Prediction strategy by only using incident Attributes
and Initial behavior (PAI). Specifically, instead of the three
levels as shown in Figure 8, we only have the first and third
level in this approach.

VI. EXPERIMENTS

A. Experimental Setup

We conducted experiments with real-world datasets under
various parameters (see Table II) to evaluate our proposed
impact prediction techniques. We measure prediction effec-
tiveness using impact threshold (λ), forward lag (h) (i.e., the
length of initial behavior), and distance metric.

1) Data Set: At our research center, we maintain a very
large-scale and high resolution (both spatial and temporal)
dataset collected from entire LA County highways and
arterial streets [17]. We have been continuously collecting



Table I
DATASET DESCRIPTION

data duration Jun. 1st - Jul. 7th
# of sensors 4,230

Traffic sensor sampling rate 1 reading/30 secs
data temporal aggr. interval 1 min

spatial range OC & LA County
# of incident 6,811

Incident # of attributes 43
data updating rate 1 min

spatial range OC & LA County

and archiving the data for the past three years. We use this
real-world dataset to create and evaluate our techniques. This
dataset includes:

1) Traffic data: collected from traffic sensors covering
approximately 5000 miles. The sensors report occu-
pancy, volume and speed values.

2) Incident data: collected from various agencies includ-
ing California Highway Patrol (CHP), LA Department
of Transportation (LADOT), and California Trans-
portation Agencies (CalTrans).

The statistics about this dataset is given in Table I.
2) Evaluation Method: With our experiment, we first

use two case studies to reveal the effectiveness of traffic
density and initial behavior in the prediction of impact. Then,
we evaluate the overall prediction accuracy under various
system parameters, which is listed in Table II. For each
set of experiments, we only vary one parameter and fix the
remaining to the default values. Without loss of generality,
in the experiments, we set t to 30 as the default value to
evaluate the results and the granularity of time stamps as one
minute. This means we evaluate our approach by forecasting
the time series {b1 , b2 , ..., b30}, where bi refers to the
backlog at ith minute after t0.

The prediction accuracy is measured by root mean square
error between the predicted propagation behavior ~̂b (i.e.,
{b̂i}) and actual propagation behavior ~b (i.e., {bi}).

RMSE =

√√√√ 1

N

N∑

i=1

(bi − b̂i)
2

(4)

In the experiments, we will compare within the follow-
ing techniques: prediction with attributes only (Baseline),
Prediction with Attributes and traffic Density (PAD) and
the Prediction with Attributes, Density and Initial behavior
(PADI), and the Prediction based on Attributes and Initial
behavior only (PAI) for transportation system without den-
sity information.

B. Results

1) Case Studies: In this section, we select two traffic
incidents (i.e., collision accident) and compare the predic-
tion accuracy of baseline approach with PAD, and PAI,
to examine the effectiveness of traffic density and initial

Table II
EVALUATION PARAMETERS

Parameters Default Range
Impact 20 20, 40, 60 (%)threshold (λ)

Forward 5 0, 2, 5, 10 (min)lag (h)
Distance Euclidean Euclidean, Mahalanobismetric

behavior independently. The results are shown in Figure 10
where the solid black line indicates the actual propagation
behavior interpolated from the actual sensor readings. Figure
10(a) and 10(b) depict the traffic collision incidents that
occurred on I-405 North freeway and on I-5 South freeway,
respectively. The results show that in case one, PAI approach
yields the best prediction accuracy (i.e., with predicted
pattern closest to the actual one). In the second case, PAD
yields the best accuracy. The observation indicates that 1) the
use of traffic density and initial behavior can improve the
prediction accuracy compared with the baseline approach;
2) both of them are necessary for the improvement of
prediction accuracy, since the results reflect that they are
functioning in different ways towards the improvement of
prediction accuracy in different cases.
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Figure 10. Case studies on two sample incident

2) Effects of Impact Threshold (λ): In this set of exper-
iments, we compare the prediction accuracy under different
λs. Figure 11(a) depicts the average of prediction error on
905 incidents in the test data for the three approaches with
available traffic sensor dataset. As shown, both PAD and
PADI outperforms baseline approach and the percentage of
their improvement over baseline is listed in the Table 11(b).
In addition, as illustrated in Figure 11(a), as λ increases,
the prediction error decreases regardless of which approach
is used. To investigate the reason of this phenomenon, we
conduct an case study based on an incident occurred on I-
405 South during off-peak hours (see Figure 12).

In fact, when we increase λ, the number of impacted sen-
sor decreases as well. Figure 12(a) shows the interpolation
result when we create propagation behavior with respect
to different λ values. Each scatter point (x,y) represents a
sensor located at y starts to get impacted at time x. The
dashed lines represent the fitted curves for the corresponding
set of scatter points. Table 12(b) shows the average fitting
error for each fitted curve. As illustrated, when λ is large,
the sensor noise can hardly affect the precision in creating
propagation behavior, reflected by the minimum noise in the
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Figure 11. Effect of impact threshold (λ)
fitting result. As the propagation behavior is quantified in a
more accurate way, the prediction accuracy is also higher.
When λ is small, the impact is less significant and hence the
result can be more easily affected by the noise in the sensor
speed readings, which yields lower prediction accuracy.
Furthermore, we also observe that the larger the λ values
cause shorter propagation behavior. This is because, given an
incident, the significant speed decrease normally propagates
a shorter distance than that of trivial speed changes. Thereby,
it is easier to predict the propagation behavior with less time
duration under large λ value. In sum, with larger λ, the
propagation behavior is modeled more accurately (i.e., less
fitting error), and hence easier to predict.
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Intuitively, when we increase λ, the standard to evaluate
a location whether impacted or not is increased. Thereby,
with large λ, only sensors shows significant speed changes
will be considered as impacted sensors. To investigate the
reason why the prediction accuracy increases a lot based
along with the increase of λ, we conduct a case study on
one incident occurred on I-405 S during off-peak hours.
Figure 16 shows the interpolation process of the propagation
behavior under different λ value. In this figure, each scatter
point < x, y > represents a sensor located at y is start
to get impacted at time x. And the dash lines represent
the fitted function towards the corresponding set of scatter
points. From this figure, we could derive the following two
observations: (1) the larger the λ is, the less noise in the
fitting process to generate propagation behavior; (2) the
larger the λ is, the shorter propagation behavior is. From
the first observation, we may infer the fact that, when λ
is small, the time when a sensor start to get impacted can
be easily influenced by the noise in sensor speed readings.
Since the noise can only cause speed changes in a small
range, as the λ increases to a larger value, it can hardly
affected the generation of propagation behavior, thereby the
fitting performance is better, further the prediction accuracy
is increased as well. For the second observation, it is intuitive
that the duration with significant speed decrease is normally
shorter than that with trivial speed changes. Thereby, the
duration of propagation behavior is shorter, and easier to
predict.
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Figure 16. Impact threshold case study

avg(εf )
λ=20% 0.21
λ=40% 0.03
λ=60% 0.01

Table III
FITTING ERROR

4) Effects of Forward Lag (h): In this set of experiments,
we study how the length of forward lag (h) affects the
prediction accuracy. Since there is no initial behavior pattern
matching step in the baseline and the approach using envi-
ronment information, we only compare the accuracy based
on AP and AEP approach. Note that the AP approach can
be reduced to the baseline approach when h = 0. Figure
22 depicts the prediction accuracy of the two proposed

AE AEP
λ=20% 4.2% 11.3%
λ=40% 7.4% 39.1%
λ=60% 23.9% 45.8%

Table IV
IMPROVEMENT TOWARDS BASELINE
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one incident occurred on I-405 S during off-peak hours.
Figure 16 shows the interpolation process of the propagation
behavior under different λ value. In this figure, each scatter
point < x, y > represents a sensor located at y is start
to get impacted at time x. And the dash lines represent
the fitted function towards the corresponding set of scatter
points. From this figure, we could derive the following two
observations: (1) the larger the λ is, the less noise in the
fitting process to generate propagation behavior; (2) the
larger the λ is, the shorter propagation behavior is. From
the first observation, we may infer the fact that, when λ
is small, the time when a sensor start to get impacted can
be easily influenced by the noise in sensor speed readings.
Since the noise can only cause speed changes in a small
range, as the λ increases to a larger value, it can hardly
affected the generation of propagation behavior, thereby the
fitting performance is better, further the prediction accuracy
is increased as well. For the second observation, it is intuitive
that the duration with significant speed decrease is normally
shorter than that with trivial speed changes. Thereby, the
duration of propagation behavior is shorter, and easier to
predict.
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Figure 16. Impact threshold case study

λ avg(εf )
20% 0.21
40% 0.03
60% 0.01

Table III
FITTING ERROR

4) Effects of Forward Lag (h): In this set of experiments,
we study how the length of forward lag (h) affects the
prediction accuracy. Since there is no initial behavior pattern
matching step in the baseline and the approach using envi-
ronment information, we only compare the accuracy based
on AP and AEP approach. Note that the AP approach can
be reduced to the baseline approach when h = 0. Figure
17 depicts the prediction accuracy of the two proposed

approach by varying the forward lag from 0 to 10 under
different incident locations. In general, as h increases, the
prediction accuracy from both approaches increase. This is
because the longer time we observe on the impact backlog
time series, the better estimation we can conclude for the
rest of the behavior. However, for some cases, there is an
slight increase of prediction error when h increases from
0 to 2. One explanation of such phenomenon is that the
propagation behavior for the first 2 minutes is noisy, which
may due to the difference in people’s immediate reactions
to the incidents. For example, in the very beginning of the
incidents, whether to move incident scene from the middle
of the road to the shoulder may greatly affects the incident
propagation behavior. Thereby, instead of enhancing the
prediction accuracy, the initial propagation behavior may
introduce more prediction error.
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Figure 17. Effect of forward lag (h)

5) Effects of Distance Metric: In this set of experiments,
we compare the prediction accuracy by tuning the distance
metric when matching the initial propagation behavior in
the AEP. Figure 15 illustrates the prediction accuracy for all
selected freeways under the Euclidean distance metric and
Mahalanobis distance metric. As shown, for prediction of
impact on some freeways (such as I-405 S and I-405 N),
the use of Mahalanobis distance improves the accuracy. On
the other hand, for prediction on freeways such as I-10 E
and I-5 N, the use of Euclidean distance has a better result.
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Figure 18. Effects of distance metric

To investigate the reason for such phenomenon, we plot
the cluster centroids used for prediction in AEP approaches
for two selected freeways in Figure 19. Specifically, we
choose I-405 S to represent the cases with better prediction
in Mahalanobis distance metric, and I-10 E to represent the
freeways with better prediction in Euclidean distance metric.
According to the definition of the two distance metrics
[14], Mahalanobis distance is based on correlations between
variables by which different patterns can be identified and
analyzed. It differs from Euclidean distance in that it takes

(b) Fitting error
Figure 17. Impact threshold case study

approach by varying the forward lag from 0 to 10 under
different incident locations. In general, as h increases, the
prediction accuracy from both approaches increase. This is
because the longer time we observe on the impact backlog
time series, the better estimation we can conclude for the
rest of the behavior. However, for some cases, there is an
slight increase of prediction error when h increases from
0 to 2. One explanation of such phenomenon is that the
propagation behavior for the first 2 minutes is noisy, which
may due to the difference in people’s immediate reactions
to the incidents. For example, in the very beginning of the
incidents, whether to move incident scene from the middle
of the road to the shoulder may greatly affects the incident
propagation behavior. Thereby, instead of enhancing the
prediction accuracy, the initial propagation behavior may
introduce more prediction error.

0.8
1

1.2
1.4
1.6
1.8

2

0 2 5 10
R

M
S

E
Forward lag (h)

I-10 W I-5 S I-405 S

(a) AP approach

0.8
1

1.2
1.4
1.6
1.8

2

0 2 5 10

R
M

S
E

Forward lag (h)

I-10 W I-5 S I-405 S

(b) AEP approach
Figure 18. Effect of forward lag (h)

5) Effects of Distance Metric: In this set of experiments,
we compare the prediction accuracy by tuning the distance
metric when matching the initial propagation behavior in
the AEP. Figure 15 illustrates the prediction accuracy for all
selected freeways under the Euclidean distance metric and
Mahalanobis distance metric. As shown, for prediction of
impact on some freeways (such as I-405 S and I-405 N),
the use of Mahalanobis distance improves the accuracy. On
the other hand, for prediction on freeways such as I-10 E
and I-5 N, the use of Euclidean distance has a better result.

(b) Fitting error
Figure 12. Case study on impact threshold

3) Effects of Forward Lag (h): In this set of experiments,
we study the effect of forward lag (h) length over the
prediction accuracy (see Figure 13). We only evaluate the
prediction accuracy based on PAI and PADI as there is no
initial behavior pattern matching step in the Baseline and
PAD approaches. It is important to note that when h=0, PAI,
PADI are reduced to Baseline and PAD, respectively. Figure
13(a) depicts the average prediction accuracy of PAI and
PADI by varying the forward lag from 0 to 10. Here, the
unit of h is minute. Table 13(b) shows the improvement of
PADI over PAI regarding different values of h. In general,
as h increases, the prediction accuracy of both PAI and
PADI increases. This is because the longer time using initial
behavior as indicator yields better estimation. However,
for some cases, there is an slight increase in prediction
error (e.g., when h increases from 0 to 2 minutes). One
explanation for this case is that the propagation behavior for
the first 2 minutes is noisy, which may due to the difference
in immediate reactions of the drivers to the incidents. For
example, at the very beginning of the incidents, whether to
stay of the road or move to the shoulder to take an exit may
greatly affects the incident propagation behavior.

4) Effect of Distance Metric: In this set of experiments,
we compare the prediction accuracy by choosing the distance
metric by matching the initial behavior in PADI. Figure
14(a) illustrates the prediction accuracy for top six freeways
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Improv.
h=0 4.2%
h=2 6.0%
h=5 7.2%

h=10 19.2%

Table VII
AEP→AP

VI. CONCLUSIONS

In this paper, we model the incident spatiotemporal impact
as a time series of impact backlog in terms of propagation
behavior on urban road network and predict the propagation
behavior under certain speed changes for newly occurred
incidents. By evaluating based on a real traffic sensor
datasets and incident reports, we show that our proposed
prediction algorithm utilizing environment information and
initial propagation behavior significantly improves the pre-
diction accuracy of existing approaches based on incident
attributes up to 45.8%. In particular, for predicting the
set of road segments with 60% travel time delay in 15th,
20th and 30th minutes after the occurrence of incidents,
our best solution reaches the prediction accuracy of 91.7%,
84.2% and 72.4% under the configuration of freeways in
LA county and Orange county. As a result, the propagation
behavior predicted by our method can serve as an crucial
input for predictive routes calculation in intelligent routing
applications.
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(b) PADI over PAI
Figure 13. Effect of forward lag (h)

with most incident occurrences using Euclidean distance
metric and Mahalanobis distance metric. As shown, the
performance of Euclidean and Mahalanobis distance metrics
are variant, i.e., changes based on highways. For example,
while Mahalanobis distance yields better results on I-405
South and I-405 North, Euclidean distance is better for I-10
East and I-5 North.
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Figure 14. Effects of distance metric on PADI approach

To investigate the reason, we plot the first 5 minutes
of training results under two selected freeways (see Figure
14(b)). Specifically, we choose the two clusters for I-405 S
and I-10 E to represent the cases with better prediction in
Mahalanobis and Euclidean distance metric, respectively. As
shown in Figure 14(a), the five minutes of cluster centroids
in I-405 S present distinct patterns from each other. Thereby
the Mahalanobis distance metric is more helpful in selecting
the centroids for prediction, due to it measures the correlative
distance between two variables. However, first five minutes
of cluster centroids in I-10 E follow the similar pattern
(i.e., curves with similar gradient), which means they are
already highly correlated with each other. In this case,
the correlation is no longer a good metric, we need to
utilize scale information to distinguish them from each other.
Therefore, the Euclidean distance metric introduces lower
prediction error in this case. To effectively select the distance
metric in our techniques, we evaluate the degree of pattern
correlation in the first h minutes of the cluster centroids
trained by PADI approach, and set specific thresholds to
decide the better metric accordingly.

We conclude the section of experiments using Figure
15, which illustrates the overall performance of the three
prediction approaches (i.e., Baseline, PAD and PADI) over
time. In this experiments, λ and h is set to 60% and
5 minutes respectively. To compute the prediction result,
we directly calculate the differences of actual propagation
behavior and predicted ones at each time stamp. That is, for
each incident at time t, the εt is defined as |bt − b̂t|, where
bt refers to the impact backlog for its actual propagation



behavior at time t, and b̂t refers to the impact backlog for
the predicted behavior at t.
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decide the better metric accordingly.
We conclude the results of our experiments using Figure

15. As shown, λ and h is set to 60% and 5 respectively. To
evaluate the performance of the approaches in predicting the
spatial span in different time stamps, we directly calculate
the differences of actual impact backlog and predicted
impact backlog. For each incident i at time t, the εi, t is
defined as |bi, t − b̂i, t|, where b refers to the actual impact
backlog, and b̂ refers to the predicted impact backlog.
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Figure 15. Overall results

As shown in Figure 15(a), the prediction error increases
with the increase of duration of time interval that we want
to predict. In addition, at any time stamp, AEP outperforms
both AE and Baseline. To calculate the percentage of in-
cidents accurately predicted, for each incident i, we define
the impact of an incident i’s as accurately predicted during
[0,T] if the following inequality is satisfied:

avg(εi, [0, T ]) ≤ γ (6)

where γ is set to 0.5 mile according to the sensor placement
configuration on Los Angeles freeways (the average sensor
placement interval in Los Angeles is 0.5 mile). Since our
approach is based on the interpolation of traffic between sen-
sors, the average estimation error brought by the availability
of sensor data is also 0.5 mile. Under this circumstances, if
the average error for an incident i before time T is no more
than the internal estimation error, we define the impact of the
incident i is accurately predicted. Table ?? summarizes the
percentage of incidents that is accurately predicted under
different time interval T , by our best approach AEP. As
shown, for predicting the spatial span with 60% travel time
delay in 15th, 20th and 30th minutes after the occurrence of
incidents, our best solution reaches the prediction accuracy
of 91.7%, 84.2% and 72.4%.

VII. CONCLUSIONS

In this paper, we modeled an incident’s spatiotemporal
impact as a time series of impact backlog in terms of
propagation behavior on urban road network and predicted
the propagation behavior under certain speed changes for
newly occurred incidents. By evaluating based on real-
world traffic sensor datasets and incident reports, we show

that our proposed prediction algorithm utilizing environment
information and initial propagation behavior significantly
improves the prediction accuracy of existing approaches
based on incident attributes by up to 45.8%. In particular,
for predicting the set of road segments with 60% travel time
delay in 15th, 20th and 30th minutes after the occurrence of
incidents, our best solution reaches the prediction accuracy
of 91.7%, 84.2% and 72.4%, respectively, under the config-
uration of freeways in LA county and Orange county. As
a result, the propagation behavior predicted by our method
can serve as a crucial input for predictive path calculation
in intelligent navigation applications.
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As shown in Figure 15(a), the prediction error increases
as t increases. For example, for the prediction of impact
backlog in 10th minute, the accuracy is higher than the same
prediction in 30th minute. In addition, at any time stamp,
PADI outperforms both PAD and Baseline. To calculate the
percentage of incidents that are accurately predicted before
time T, for each incident occurred at t0, we consider its
impact as accurately predicted if the following inequality is
satisfied:

avg(ε[t0, T ]) ≤ γ (5)

where γ is set to 0.5 mile according to the sensor placement
configuration on Los Angeles freeways (i.e., the average
sensor placement interval is 0.5 mile). Since our approach
is based on the interpolation of traffic between sensors,
the average estimation error brought by the availability of
sensor data is also 0.5 mile. Under this circumstances, if the
average error for an incident i before T is no more than
the internal estimation error, we define the impact of the
incident i is accurately predicted. Table 15(b) summarizes
the percentage of incidents that is accurately predicted under
different time interval T , from our best approach PADI. As
shown, for predicting the spatial span with 60% travel time
delay in 15th, 20th and 30th minutes after the occurrence of
incidents, our best solution reaches the prediction accuracy
of 91.7%, 84.2% and 72.4%, respectively.

VII. CONCLUSIONS

To enable next-generation navigation systems, in this
paper, we quantified an incident’s spatiotemporal impact as a
time varying spatial span and predicted it with certain speed
changes for recently occurred incidents. Based on evaluation
with real-world traffic and incident datasets, we showed
that our proposed prediction algorithm utilizing the traffic
density and the initial behavior significantly improves the
prediction accuracy of baseline approaches by up to 45%. In
future, we plan to extend our impact quantification strategy
by considering the traffic behavior in the clearance phase of
incidents and also on the surrounding arterial roads.
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