
K

k-NN Search in Time-Dependent
Road Networks

Ugur Demiryurek and Cyrus Shahabi
Computer Science Department, University of
Southern California, Los Angeles, CA, USA

Synonyms

Location Based Services; Nearest Neighbor
Search; Route Planning; Spatial Networks;
Spatio-temporal Networks; Time-Dependent
Road Networks

Definition

The ever-growing popularity of online map ser-
vices and their wide deployment in smartphones
and car-navigation systems have led to exten-
sive use of location-based services. One of the
most popular classes of such services is k-nearest
neighbor (kNN) queries where users search for
geographical points of interests (e.g., restaurants)
and the corresponding directions and travel times
to these locations in road networks. The online
nature of these services requires almost instant re-
sponse time. Accordingly, many algorithms have
been developed to speed up kNN search in road
networks by using a variety of precomputation
techniques. However, all the existing approaches
and commercial services for kNN search in road

networks make the simplifying assumption that
the fastest path between any two nodes in the
network is unique by assuming the weight of each
edge in the road network is constant. This as-
sumption makes precomputation techniques fea-
sible in terms of both preprocessing time and
storage complexity. However, in the real world,
the actual travel time on network edges depends
on the arrival time to that edge – i.e., travel time
is time dependent, and hence the fastest path
between any nodes is not unique. It is infeasible
to extend existing precomputation techniques to
time-dependent road networks as input size (i.e.,
super-polynomial number of fastest paths) would
increase drastically by yielding exponential pre-
computation time and prohibitively large storage
requirements. This entry introduces the problem
of kNN search in time-dependent spatial net-
works where the weight of each edge is a function
of arrival time and studies an algorithm based
on two novel indexing schemes – Tight Network
Index (TNI) and Loose Network Index (LNI)
– that enables efficient kNN search. The main
idea of the algorithm is to localize the search and
reduce the problem to a point location problem
by decoupling the process of computing k-nearest
neighbors from the invocation of expensive dis-
tance computation in network space.

Historical Background

On static road networks where edge costs are
constant, kNN search problem has been exten-

© Springer International Publishing Switzerland 2015
S. Shekhar et al. (eds.), Encyclopedia of GIS,
DOI 10.1007/978-3-319-23519-6_1528-1

http://dx.doi.org/SpringerLink::ChapterTarget
http://dx.doi.org/SpringerLink::ChapterTarget
http://dx.doi.org/SpringerLink::ChapterTarget
http://dx.doi.org/SpringerLink::ChapterTarget
http://dx.doi.org/SpringerLink::ChapterTarget
http://dx.doi.org/SpringerLink::ChapterTarget

2 k-NN Search in Time-Dependent Road Networks

sively studied, and many efficient speed-up tech-
niques have been developed. In Papadias et al.
(2008), introduced Incremental Network Expan-
sion (INE) and Incremental Euclidean Restric-
tion (IER) methods to support kNN queries in
spatial networks. With INE, starting from query
location q, all network nodes reachable from q

in every direction are visited in order of their
proximity to q until all k-nearest data objects
are located. On the other hand, IER exploits
the Euclidean restriction principle in which the
results are first filtered in Euclidean space and
then refined by using the network distance. In
Kolahdouzan and Shahabi (2004), proposed first-
degree network Voronoi diagrams to partition
the spatial network to network Voronoi polygons
(N VP), one for each data object. They used
the N VP s to efficiently find k-nearest neighbors
in static road networks. Cho and Chung (2005)
presented a system UNICONS where the main
idea is to integrate the precomputed kNNs into
the Dijkstra algorithm. Hu et al. [4] proposed a
distance signature approach that precomputes the
network distance between each data object and
network vertex. The distance signatures are used
to find a set of candidate results, and Dijkstra
is employed to compute their exact network dis-
tance. Huang et al. addressed the kNN problem
using Island approach 2005 where each vertex
is associated to all the data points that are in
radius r (the so-called islands) covering the ver-
tex. With their approach, they utilized a restricted
network expansion from the query point while
using the precomputed islands. In Huang et al.
(2007), introduced S-GRID where they partition
the spatial network to disjoint subnetworks and
precompute the shortest path for each pair of bor-
der points. Recently, Samet et al. (2008) proposed
a method where they associate a label to each
edge that represents all nodes to which a shortest
path starts with this particular edge. The labels
are used to traverse shortest path quadtrees that
enables geometric pruning to find the network
distance. With all these studies, the network edge
weights are assumed to be static (i.e., travel-
time functions of all edges are constants), and
hence, the fastest path is calculated on static net-
works (Zhang 2008). Unfortunately, once time-

dependent edge weights are considered, all the
proposed kNN solutions assuming constant edge
weights and/or relying on distance precomputa-
tion would fail as the shortest path computation
is invalidated with time-varying edge weights.

Scientific Fundamentals

With kNN search in time-dependent road net-
works, the road network is modelled as a time-
dependent-weighted graph where the nonnega-
tive weights are time-dependent travel times (i.e.,
positive piecewise linear functions of time) be-
tween the nodes. The road network contains a
set of data objects (i.e., points of interest such
as restaurants) as well as query objects searching
for their kNN. In this entry, the road network is
assumed to satisfy the first-in, first-out (FIFO)
property with which moving objects exit from an
edge in the same order they entered the edge.

Problem Definition
Definition 1 A time-dependent graph (GT) is
defined as GT .V; E/ where V D fvig is a set
of nodes and E � V � V is a set of edges rep-
resenting the network segments each connecting
two nodes. For every edge e.vi ; vj / 2 E , and
vi ¤ vj , there is a cost function c.vi ;vj /.t/, where
t is the time variable in time domain T . An edge
cost function c.vi ;vj /.t/ specifies the travel time
from vi to vj starting at time t .

Figure 1 illustrates a road network modeled as
a time-dependent graph GT .V; E/. While Fig. 1a
shows the graph structure, Fig. 1b–f depict the
time-dependent edge costs (i.e., travel time) as
piecewise linear functions for the corresponding
edges.

Definition 2 Let fs D v1; v2; : : : ; vk D d g rep-
resent a path which contains a sequence of nodes
where e.vi ; viC1/ 2 E and i D 1; : : : ; k � 1.
Given a GT , a path .s d/ from source s to
destination d, and a departure-time at the source
ts, the time-dependent travel time T T .s d; ts/

is the time it takes to travel along the path. Since
the travel time of an edge varies depending on the
arrival time to that edge (i.e., arrival dependency),
the travel time is computed as follows:

k-NN Search in Time-Dependent Road Networks 3

K

100
0

5

10

15

T
ra

ve
l T

im
e 20

25

30

20 30

Time

40 50 60100
0

5

10

15

T
ra

ve
l T

im
e 20

25

30

20 30

Time

40 50 60

100
0

5

10

15

T
ra

ve
l T

im
e 20

25

30

20 30

Time

40 50 60100
0

5

10

15

T
ra

ve
l T

im
e 20

25

30

20 30

Time

40 50 60

100
0

5

10

15

T
ra

ve
l T

im
e 20

25

30

20 30

Time

40 50 60

V3

V5

V4

V2V1

a b

c d

e f

k-NN Search in Time-Dependent Road Networks, Fig. 1 A time-dependent graph GT .V; E/. (a) Graph GT . (b)
c1;2.t/. (c) c2;3.t/. (d) c2;4.t/. (e) c4;5.t/. (f) c3;5.t/ change

T T .s d; ts/ D
k�1X

iD1

c.vi ;viC1/.ti / where

t1 D ts , tiC1 D ti C c.vi ;viC1/.ti /; i D 1; ::; k.

Definition 3 Lower-bound graph G.V; E/ is a
graph with the same topology (i.e., nodes and
edges) as graph G, where the weight of each edge
c.vi ;vj / is fixed (not time dependent) and is equal
to the minimum possible weight cmin

.vi ;vj /
where 8

e.vi ; vj / 2 E; t 2 T cmin
.vi ;vj /

� c.vi ;vj /.t/.

Definition 4 Lower-bound travel time LT T .s
d/ of a path is less than the actual travel time
along that path and computed w.r.t G.V; E/ as

LT T .s d/ D
k�1X

iD1

cmin
.vi ;viC1/, i D 1; : : : ; k.

For example, in Fig. 1b, cmin
.v1;v2/

= 10 units.

Definition 5 Upper-bound graph NG.V; E/ is a
graph with the same topology (i.e., nodes and
edges) as graph G, where the weight of each edge
c.vi ;vj / is fixed (not time dependent) and is equal
to the maximum possible weight cmax

.vi ;vj /
where 8

e.vi ; vj / 2 E; t 2 T cmax
.vi ;vj /

� c.vi ;vj /.t/.

Definition 6 Upper-bound travel time U T T .s
d/ of a path is greater than the actual travel time
along that path and computed w.r.t NG.V; E/ as

4 k-NN Search in Time-Dependent Road Networks

k-NN Search in Time-Dependent Road Networks, Fig. 2 Time-dependent NN search. (a) 1-NN query at 8:30 AM.
(b) 1-NN query at 2:00 PM

U T T .s d/ D
k�1X

iD1

cmax
.vi ;viC1/, i D 1; ::; k. For

example, in Fig. 1, cmax
.v1;v2/

= 20 units.
As discussed, U T T .s d/ and LT T .s

d/ are the maximum and minimum possible
times to travel along a path, respectively.
To illustrate, consider ts D 5 and path
.v1; v2; v3; v5/ in Fig. 1 where T T .v1
v5; 5/ D 45, U T T .v1 v5/ D 65, and
LT T .v1 v5/ D 35. Note that time
dependency is not considered when computing
U T T and LT T ; hence, t is not included in their
definitions. Given the definitions of T T , U T T ,
and LT T , the following property holds for any
path in GT : LT T .s d/ � T T .s d; ts/ �
U T T .s d/. This property will be used in
subsequent sections to establish some properties
of our algorithm.

Definition 7 Given a GT .V; E/, s, d , and ts,
the time-dependent fastest path TDFP.s; d; ts/

is a path with the minimum travel time among all
paths from s to d for starting time ts .

Definition 8 A time-dependent k-nearest neigh-
bor query (TD-kNN) is defined as a query that
finds the k-nearest neighbors of a query object
which is moving on a time-dependent network
GT . Considering a set of n data objects P D
fp1; p2; : : : ; png, the TD-kNN query with re-
spect to a query point q finds a subset P

0 � P

of k objects with minimum time-dependent travel
time to q, i.e., for any object p

0 2 P
0

and p 2
P � P

0

, TDFP .q; p
0

; t/ � TDFP .q; p; t/.

Figure 2 shows an example of time-dependent
kNN search where an emergency vehicle is look-
ing for the nearest hospital (with least travel time)
at 8:30 AM and 2:00 PM on a particular road
network. The time-dependent travel time (in min-
utes) and the arrival time for each edge are shown
on the edges. Note that the travel times on an edge
change depending on the arrival time to the edge
in Fig. 2a, b. Therefore, the query issued at 8:30
AM and 2:00 PM would return different results.

Time-Dependent kNN Search
Several naive approaches can be used to eval-
uate kNN queries in time-dependent road net-
works. Firstly, Dreyfus (1969) has studied the
relevant problem of time-dependent shortest path
planning and showed that this problem can be
solved by a trivially modified variant of Dijkstra
algorithm. Consequently, a primitive solution for
the time-dependent kNN problem can be devel-
oped based on the incremental network expansion
(INE (Papadias et al. 2008)) approach where
Dreyfus’s modified Dijkstra algorithm is used for
time-dependent distance calculation. However,
considering the prohibitively high overhead of
executing blind network expansion particularly
in large networks with a sparse (but perhaps
large) set of data objects, this approach is too
slow to scale for real-time kNN query process-
ing. Secondly, one can use time-expanded graphs
(George et al. 2007) to model the time-dependent
networks. The time-expanded model discretizes
the time domain T = [t0, tn] into n points of

k-NN Search in Time-Dependent Road Networks 5

K

time and constructs a static graph by making
n copies of each node and each edge, respec-
tively. Specifically, time-expanded network repli-
cates the original network for each discrete time
unit t D 0; 1; : : :, tn, where tn is determined
by the total duration of the time interval under
consideration. This model connects a node and
its copy at the next instant in addition to the
edges in the original network, replicated for every
time instant. The weight of an edge in time-
expanded network is the time difference between
the time events associated with its endpoints.
With this model, the time-dependent kNN prob-
lem is reduced to the problem of computing
the minimum-weight paths through a series of
static networks. Although this approach allows
for exploiting the existing algorithms for kNN
computation on static networks, it often fails
to provide the correct results (may return false
nearest neighbors) because the model misses the
state of the network between any two discrete
time instants. Moreover, since the original net-
work is replicated across time instants, the size
of the network increases, hence, resulting in a
very high storage overhead and slower response
time (see Demiryurek et al. 2010). Finally, with
a third baseline approach, one can consider to
precompute time-dependent shortest paths be-
tween all possible sources and destinations in the
network. However, shortest path precomputation
on time-dependent road networks is challenging,
because with time-dependent road networks, the
shortest path depends on the departure time from
the source, and therefore, all possible shortest
paths between all possible source and destination
nodes for all possible departure-times should
be precomputed and stored. Obviously, this is
not a viable solution because of unpractical pre-
computation time, and the storage requirements
for the precomputed paths would quickly exceed
reasonable space limitations.

Demiryurek et al. developed a comprehensive
TD-kNN algorithm (2010) that (a) efficiently
answers the time-dependent kNN queries in near
real time, (b) is independent of density and dis-
tribution of the data objects, and (c) effectively
handles the database updates where nodes, links,
and data objects are added or removed. Their

approach involves two phases: an off-line spatial
network indexing phase and an online query
processing phase. During the off-line phase, the
spatial network is partitioned into tight cells (TC)
and loose cells (LC) for each data object p,
and two complementary indexing schemes Tight
Network Index (TNI) and Loose Network Index
(LNI) are constructed. During the online phase,
TD-kNN finds the first nearest neighbor of q by
utilizing the TNI and LNI constructed in the
off-line phase. Once the first nearest neighbor
is found, TD-kNN expands the search area by
including the neighbors of the nearest neighbor
to find the remaining k-1 data objects.

Indexing Time-Dependent Network
This section explains the construction of tight and
loose network cells (subgraphs) and correspond-
ing index structures used to evaluate kNN queries
in time-dependent road networks. The main idea
behind partitioning the network to tight and loose
network cells is to localize the kNN search and
minimize the costly time-dependent shortest path
computation. These index structures efficiently
find the data object(s) (i.e., generator of a tight or
loose cell) that is in the shortest time-dependent
distance to the query object q.

Tight Network Index (TNI): The tight cell
T C.pi/ is a subnetwork around pi in which
any query object is guaranteed to have pi

as its nearest neighbor in a time-dependent
network. The tight cell of a data object is
computed by using simultaneous Dijkstra
algorithm that grows shortest path trees from
each data object. Specifically, the algorithm
expands from pi (i.e., the generator of the tight
cell) assuming maximum (upper-bound) travel
time (corresponding to minimum speed on road
segments) between the nodes of the network (i.e.,
UTT), while in parallel, it expands from each
and every other data object assuming minimum
travel time (corresponding to maximum speed
on road segments) between the nodes (i.e., LTT).
The expansions stop when the shortest path trees
meet. The main rationale is that if the upper-
bound travel time between a query object q and
a particular data object pi is less than the lower-

6 k-NN Search in Time-Dependent Road Networks

k-NN Search in Time-Dependent Road Networks,
Fig. 3 Tight cell construction for P1

bound travel times from q to any other data
object, then obviously pi is the nearest neighbor
of q in the time-dependent network. We repeat
the same process for each data object to compute
its tight cell. Figure 3 demonstrates the network
expansion from the data objects during the tight
cell construction for p1. The expansion (i.e.,
visited nodes) for each data object is illustrated
with different colors, where UTT is used for
expanding from p1 and LTT is used other data
objects. The same process is repeated for each
data object to find the corresponding tight cells.
Figure 4 shows the end result with which the
tight cell of each data object is represented as a
polygon. The edges of the polygons are generated
by connecting the adjacent border nodes (i.e.,
nodes where the shortest path trees meet) of a
generator to each other.

Lemma 1 Let P be a set of data objects P D
fp1; p2; : : : ; png in GT and T C.pi / be the tight
cell of a data object pi . For any query point
q 2 T C.pi /, the nearest neighbor of q is pi ,
i.e., f8q 2 T C.pi /, 8pj 2 P; pj ¤ pi ,
TDFP.q; pi ; t/ < TDFP.q; pj ; t/g.

Lemma 1 states that if a query point q is inside
a specific tight cell, one can immediately identify
the generator of that tight cell as the nearest
neighbor for q (see Demiryurek et al. (2010) for
proof). Although the tight cells are constructed
based on the network distance metric, each tight

k-NN Search in Time-Dependent Road Networks,
Fig. 4 Tight cells

cell is actually a polygon in Euclidean space as
illustrated in Fig. 4. Therefore, the problem is
reduced to a point location problem in Euclidean
space. One can implement polygon inclusion al-
gorithm to find the tight cell that contain q. How-
ever, polygon inclusion may be slow with a large
number of data objects, and hence, this stage can
be expedited by using a spatial index structure
generated on the tight cells. In particular, the tight
cells can be indexed using spatial index structures
(e.g., R-tree, quadtree). This way, a function (i.e.,
contain.q/) invoked on a spatial index structure
on the tight cells would efficiently return the
tight cell whose generator has the minimum time-
dependent network distance to q. Tight Network
Index is defined as follows.

Definition 9 Let P be the set of data objects
P D fp1; p2; : : : ; png; the Tight Network
Index is a spatial index structure generated on
fT C.p1/; T C.p2/; : : : ; T C.pn/g.

As illustrated in Fig. 4, the set of tight cells
often does not cover the entire network. For the
cases where q is located in an area which is not
covered by any tight cell, Loose Network Index
(LNI) is used to identify the candidate nearest
data objects.

Loose Network Index (LNI): The loose cell
LC.pi / is a subnetwork around pi outside which
any point is guaranteed not to have pi as its near-
est neighbor. Similar to the construction process

k-NN Search in Time-Dependent Road Networks 7

K

for T C.pi /, parallel shortest path tree expansion
is used to construct LC.pi /. However, this time,
minimum travel time between the nodes of the
network (i.e., LT T) is used to expand from pi

(i.e., the generator of the loose cell) and max-
imum travel time (i.e., U T T) to expand from
every other data object.

Lemma 2 Let P be a set of data objects
P D fp1; p2; : : : ; png in GT and LC.pi / be
the loose cell of a data object pi . Data object pi

is guaranteed not to be the nearest neighbor
of q if q is outside of LC.pi /, i.e., f8q 62
LC.pi /; 9pj 2 P; pj ¤ pi ; TDFP.q; pi ; t/ >

TDFP.q; pj ; t/g.

Lemma 2 states that data object pi is guaran-
teed not to be the nearest neighbor of q if q is
outside of the loose cell of pi (see Demiryurek
et al. (2010) for the proof). In other words, if q

moves with the minimum travel time on a path
(corresponding to the fastest speed on each edge
of the path) in the loose subnetwork toward p

and minimum travel time toward some other site
p0, it will arrive at p0 before p. As illustrated in
Fig. 5, loose cells, unlike T C s, collectively cover
the entire network and have some overlapping
regions among each other.

Based on the properties of tight and loose
cells, loose cells and tight cells have common
edges. The data objects that share common edges
are referred to as direct neighbors, and loose
cells of the direct neighbors always overlap. For

k-NN Search in Time-Dependent Road Networks,
Fig. 5 Loose cells

example, consider Fig. 5 where the direct neigh-
bors of p2 are p1, p3, and p6. This property
is especially useful for processing k-1 neighbors
(see section “kNN Query:”) after finding the
first nearest neighbor. The direct neighbors are
determined during the generation of the loose
cells and stored in a data component. Therefore,
finding the neighboring cells does not require any
complex operation.

Similar to TNI , one can use spatial index
structures to access loose cells efficiently. Loose
Network Index is defined as follows.

Definition 10 Let P be the set of data objects
P D fp1; p2; : : : ; png; the Loose Network In-
dex is a spatial index structure generated on
fLC.p1/; LC.p2/; : : : ; LC.pn/g.

LNI and TNI are complementary index
structures. This means that if a q cannot be
located with TNI (i.e., q falls outside of any
T C), then LNI is used to identify the LC s that
contain q. Based on Lemma 2, the generators of
such LC s are the only NN candidates for q.

Index Structures and Network Updates: As
we discussed, different spatial index structures
can be used to index tight and loose cells. In this
entry, we show how loose cells can be indexed
using R-tree (Guttman 1984). The index con-
struction for tight cells is very similar. Figure 6
depicts Loose Network Index structure based on
R-tree (termed LN R-tree) to index loose cells.
As shown, LN R-tree has the basic structure
of an R-tree generated on minimum bounding
rectangles of loose cells. The difference is that we
modify R-tree by linking its leaf nodes to the the
pointers of additional components that facilitate
TD-kNN query processing. These components
are the direct neighbors (N.pi/) of pi and the list
of nodes (VLpi

) that are inside LC.pi /. While
N.pi/ is used to filter the set of candidate nearest
neighbors where k > 1, VLpi

is used to prune
the search space. Tight Network Index is a similar
data structure without extra pointers at the leaf
nodes.

When the set of data objects and/or the travel-
time profiles change, TNI and LNI need to be
updated. Fortunately, due to local precomputation

8 k-NN Search in Time-Dependent Road Networks

k-NN Search in
Time-Dependent Road
Networks, Fig. 6 LN
R-tree

R ...

MBR(LC(p5))

VL(p5)={...}

N(p5)={p1,p6}

...

... ...

...

MBR(LC(p2))

VL(p2)={...}

N(p2)={p1,p3,p6}

... ...

nature of TD-kNN, the affect of the updates
with both cases is local, hence requiring minimal
change in tight and loose cell index structures.
Each update operation and corresponding mod-
ifications on the index structures are discussed
below.

Data Object Updates: Two types of data object
update are possible, insertion and deletion (object
relocation is performed by a deletion following
by insertion at the new location). With a location
update of a data object pi , only the tight and
loose cells of pi ’s neighbors are updated (hence,
local update). In particular, when a new data
object pi is inserted (deletion is similar and hence
not discussed), first the loose cell(s) LC.pj /

containing pi is found and LC.pj / is shrunk.
In addition, since the loose cells and tight cells
share common edges, the region that contains
LC.pj / and LC.pj /’s direct neighbors needs to
be adjusted. Toward that end, all the neighbors of
LC.pj / are found and recompute; the tight and
loose cells of these direct neighbors are the only
ones affected by the insertion. In sum, the new
tight and loose cells for pi , pj , and pj ’s direct
neighbors are updated.

Edge Travel-Time Updates: The tight and loose
cells are generated based on the minimum (LTT)
and maximum (UTT) travel times of the edges in
the network that are time independent. The only
case that these index structures need an update
is when minimum and/or maximum travel time
of an edge changes, which is not that frequent.
Moreover, similar to the data object updates, the
affect of the travel-time profile update is local.

When the maximum and/or minimum travel time
of an edge ei changes in the network, we first find
the loose cell(s) LC.pj / that overlaps with ei and
thereafter recompute the tight and loose cells of
LC.pj / and its direct neighbors.

TD-kNN Query Processing (Online)
This section explains how TNI and LNI are used
to process kNN queries in time-dependent road
networks. The very first step in kNN query is
to find the nearest neighbor (i.e., k=1) and then
search for remaining k � 1 data objects.

Nearest Neighbor Query: Given the location of
q, first, a depth-first search from the TNI root
to the node that contains q is performed. If a
tight cell that contains q is located, the generator
of that tight cell is returned as the first NN. If
q cannot be located in TNI (i.e., when q falls
outside all tight cells), the algorithm proceeds
to search LNI . At this step, one or more loose
cells that contain q may be found. Based on
Lemma 2, the generators of these loose cells
are the only possible candidates to be the NN
for q. Therefore, TDFP is computed to find the
distance (time-dependent travel time) between q

and each candidate in order to determine the
first NN. It is important to note that in this step
either no (when q is found in TC) or minimum
number (when q is located in overlapping LCs)
of distance computation is performed, which in
turn the performance is improved significantly.

kNN Query: The algorithm for finding the re-
maining k-1 NNs is based on the direct neighbor
property discussed above. It has been shown

k-NN Search in Time-Dependent Road Networks 9

K

with Lemma 3 that the second NN is among the
direct neighbors of the first NN (see Demiryurek
et al. (2010) for proof). Once the second NN is
identified, the search continues by including the
neighbors of the second NN to find the third NN
and so on.

Lemma 3 The i-th nearest neighbor of q is al-
ways among the direct neighbors of the i-1 near-
est neighbors of q.

To exemplify, consider Fig. 5 where p2 is
the first NN of q. The second NN will be
among the direct neighbors (i.e., fp1; p3; p6g)
of p2. The time-dependent fastest path from
q to fp1; p3; p6g must be computed in order
to find the second NN. Let’s assume that after
time-dependent fastest path computation, p6 is
identified as the second NN. Then, the third NN
will be among the direct neighbors of p2 and p3.

Time-Dependent Fastest Path Computation:
As explained, once the nearest neighbor of q

is found and the candidate set is determined,
the time-dependent fastest path from q to all
candidates must be computed in order to find the
next NN. A time-dependent A* algorithm is used
in Demiryurek et al. (2010) to find the fastest path
between q and candidate set. The time-dependent
A* algorithm takes advantage of a very useful
property of loose cells stated in Lemma 4.

Lemma 4 If pi is the nearest neighbor of q, then
the time-dependent shortest path from q to pi is
guaranteed to be inside the loose cell of pi .

That is, Demiryurek, et al. prove that given pi

is the nearest neighbor of q, the time-dependent
shortest path from q to pi is guaranteed to be
in LC.pi /. This property indicates that only the
edges contained in the loose cell of pi is consid-
ered when computing TDFP from q to pi . This
property allows to localize the time-dependent
shortest path search by extensively pruning the
search space. Since the localized area of a loose
cell is substantially smaller as compared to the
complete graph, the computation cost of TDFP is
significantly reduced.

Key Applications

Online Maps and Car Navigation Systems
The applications of k-nearest neighbor search
are of great interest to online maps such as
Google Maps and Bing Maps as well as to car
navigation systems. These systems provide k-
nearest neighbor solutions based on the static
information ignoring the time-dependency inherit
in road networks, and hence, they fail to provide
optimal results. Therefore, online map services
and car navigation systems can adopt the ideas
presented in this entry to provide more accurate
results for their users.

Emerging Mobile Applications
Smartphone-based resource sharing services –
such as ride-sharing applications like Uber –
are becoming more and more ubiquitous. These
services make their planning and optimization
based on nearest neighbor search and its varia-
tions. Time-dependent kNN search – with unique
“time-ahead” view of traffic information on road
networks – can certainly result in more optimal
planning for such services.

Other Network Applications
We are witnessing a data explosion era, in which
huge data sets of billions or more are repre-
sented by (time-dependent) graphs such as inter-
net routing, social networks, targeted marketing,
surveillance sensor systems, and so on. On these
large-scale data sets, nearest neighbor search is
fundamental for lots of applications including
proximity search, similarity search, clustering, as
well as many other machine learning and data
mining problems.

Future Directions

This entry studied a generalized type of k-nearest
neighbor query where the edge weights of the net-
work are time varying rather than fixed. Given the
importance of time dependency for accurate and
realistic spatial query processing inroad networks

10 k-NN Search in Time-Dependent Road Networks

as well as increasing the use of traffic sensors, we
believe that there will be rapid growth of interest
in developing various spatial query processing in
time-dependent road networks. Therefore, one di-
rection for future work is to investigate novel data
structures and models for effective representation
of time-dependent road networks. This is crucial
in supporting the development of efficient and
accurate time-dependent algorithms, while min-
imizing the precomputation and storage and cost
of the algorithms. Second direction is to extend
this work to a variety of other spatial queries –
such as reverse nearest neighbor, range, and sky-
line queries – in time-dependent road networks.

References

Cho H-J, Chung C-W (2005) An efficient and scalable
approach to cnn queries in a road network. In: An
efficient and scalable approach to CNN queries in a
road network (VLDB’05), Trondheim, pp 865–876

Demiryurek U, Banaei-Kashani F, Shahabi C (2010) Ef-
ficient k-nearest neighbor search in time-dependent
spatial networks. In: Bringas PG, Hameurlain A,
Quirchmayr G (eds) Database and expert systems ap-
plications: proceedings of the 21st international confer-
ence, part I (DEXA’10), Bilbao, 30 Aug–3 Sept 2010
Springer, Berlin/Heidelberg, pp 432–449

Demiryurek U, Banaei-Kashani F, Shahabi C (2010) To-
wards k-nearest neighbor search in time-dependent
spatial network databases. In: Kikuchi S, Sachdeva S,
Bhalla S (eds) Databases in networked information

systems: proceedings of the 6th international work-
shop (DNIS’10), Aizuwakamatsu, 29–31 Mar 2010, pp
296–310

Dreyfus P (1969) An appraisal of some shortest path
algorithms. Oper Res 17(3): 395–412. New York

George B, Kim S, Shekhar S (2007) Spatio-temporal
network databases and routing algorithms: a summary
of results. In: Proceedings of the 10th international con-
ference on advances in spatial and temporal databases
(SSTD’07), Boston, pp 460–477

Guttman A (1984) R-trees: a dynamic index structure for
spatial searching. In: Proceedings of the 1984 ACM
SIGMOD international conference on management of
data (SIGMOD’84), Boston, pp 47–57

Huang X, Jensen CS, Saltenis S (2005) The island
approach to nearest neighbor querying in spatial net-
works. In: Proceedings of the 9th international con-
ference on advances in spatial and temporal databases
(SSTD’05), Angra dos Reis, pp 73–90

Huang X, Jensen CS, Lu H, Saltenis S (2007) S-grid:
a versatile approach to efficient query processing in
spatial networks. In: Proceedings of the 10th interna-
tional conference on advances in spatial and temporal
databases (SSTD’07), Boston, pp 93–111

Kolahdouzan M, Shahabi C (2004) Voronoi-based k near-
est neighbor search in spatial networks. In: Proceedings
of the thirtieth international conference on very large
data bases (VLDB’04), Toronto, vol 30, pp 840–851

Papadias D, Yiu M, Mamoulis N, Tao Y (2008) Nearest
neighbor queries in network databases. In: Encyclope-
dia of GIS. Springer, pp 772–776

Samet H, Sankaranarayanan J, Alborzi H (2008) Scalable
network distance browsing in spatial databases. In:
Proceedings of the 2008 ACM SIGMOD international
conference on management of data (SIGMOD’08),
Vancouver, pp 43–54

Zhang D (2008) Fastest-path computation. In: Encyclo-
pedia of GIS. Springer, pp 309–313

	k-NN Search in Time-Dependent Road Networks
	Synonyms
	Definition
	Historical Background
	Scientific Fundamentals
	Problem Definition
	Time-Dependent kNN Search
	Indexing Time-Dependent Network
	TD-kNN Query Processing (Online)

	Key Applications
	Online Maps and Car Navigation Systems
	Emerging Mobile Applications
	Other Network Applications

	Future Directions
	References

