
SWAM: A Family of Access Methods for Similarity-Search
in Peer-to-Peer Data Networks

Farnoush Banaei-Kashani
Computer Science Department

University of Southern California
Los Angeles, California 90089

banaeika@usc.edu

Cyrus Shahabi
Computer Science Department
University of Southern California
Los Angeles, California 90089

shahabi@usc.edu

ABSTRACT
Peer-to-peer Data Networks (PDNs) are large-scale, self-
organizing, distributed query processing systems. Famil-
iar examples of PDN are peer-to-peer file-sharing networks,
which support exact-match search queries to locate user-
requested files. In this paper, we formalize the more gen-
eral problem of similarity-search in PDNs, and propose a
family of distributed access methods, termed Small-World
Access Methods (SWAM), for efficient execution of various
similarity-search queries, namely exact-match, range, and k-
nearest-neighbor queries. Unlike its predecessors, i.e., LH∗

and DHTs, SWAM does not control the assignment of data
objects to PDN nodes; each node autonomously stores its
own data. Besides, SWAM supports all similarity-search
queries on multiple attributes. SWAM guarantees that the
query object will be found (if it exists in the network) in av-
erage time logarithmically proportional to the network size.
Moreover, once the query object is found, all the similar
objects would be in its proximate network neighborhood
and hence enabling efficient range and k-nearest-neighbor
queries.
As a specific instance of SWAM, we propose SWAM-V,

a Voronoi-based SWAM that indexes PDNs with multi-
attribute data objects. For a PDN with N nodes SWAM-V
has query time, communication cost, and computation cost
of O(logN) for exact-match queries, and O(logN+sN) and
O(logN +k) for range queries (with selectivity s) and kNN
queries, respectively. Our experiments show that SWAM-V
consistently outperforms a similarity-search enabled version
of CAN in query time and communication cost by a factor
of 2 to 3.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems
and Software—Distributed systems,Information networks ;
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Search process; H.3.1 [Information
Storage and Retrieval]: Content Analysis and Indexing—
Indexing methods

General Terms
Design, Algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’04, November 8–13, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-874-1/04/0011 ...$5.00.

Keywords
Peer-to-peer networks, similarity search, small-world, dis-
tributed hash table (DHT)

1. INTRODUCTION
Recently, Peer-to-peer Data Networks (PDNs) have

emerged as a family of large-scale, self-organizing, distributed
query processing systems. A PDN is a federation of a dy-
namic set of peer, autonomous nodes communicating through
a transient-topology interconnection. Data is naturally dis-
tributed among the PDN nodes in fine grain, where a few
data items are dynamically created, collected, and/or stored
at each node. Therefore, the network scales linearly to the
size of the dataset. With a dynamic dataset, node-set, and
topology, PDNs should be considered as the new generation
of distributed database systems with significantly less con-
straining assumptions as compared to their ancestors. Peer-
to-peer file-sharing networks such as Freenet [9] and Kazaa
[13] are familiar (but simplistic) examples of PDN.
We abstract out the semantic of each data object within

a PDN by a d-dimensional vector (or, a tuple with d at-
tributes); hence, the contents of the PDN comprise a hori-
zontally fragmented and distributed relation with d attributes.
For instance, the attributes can be the characteristic at-
tributes of music files (e.g., artist-name, album-year) shared
in a peer-to-peer file-sharing network, or they can be the
amount of resources (e.g., CPU, memory, storage, band-
width) that a node can share in a PDN for distributed com-
puting such as SETI@home [20]. Subsequently, we focus on
the challenging problem of efficient execution of similarity-
search queries (i.e., exact-match, range, and k-nearest neigh-
bor queries) in such PDNs. With the former example, user
can issue a range query to find all albums of an artist re-
leased within a particular time interval, and with the lat-
ter example, one can use a kNN query to locate nodes
with enough resources to run a particular sub-task. Tradi-
tional distributed databases employ hierarchical distributed
directories as access methods to evaluate similarity queries.
These access methods often assume small-scale networks
with a static set of nodes that maintain the object direc-
tory. Besides, they fail to distribute the query execution load
fairly among peer nodes. This is because with hierarchical
index topology of the network, nodes at the higher levels
of the hierarchy (e.g., root of the tree) inevitably receive
more queries to process. Moreover, hierarchical network
topologies are loop-free and intolerant to failures and/or
autonomous presence of the PDN nodes. On the other
hand, hash-based distributed data structures such as LH∗

[15], and more recently, DHTs [18, 21] assume large-scale



networks and construct distributed index structures with
non-hierarchical topologies. However, these access methods
enforce the location of the content within the network and
hinder natural replication of the objects, which are both in
conflict with the autonomy of the PDN nodes in maintaining
their own content. Besides, since object assignment to the
nodes is performed irrespective of the object distribution,
these access methods fail to adapt to the distribution of the
objects and may suffer from unbalanced query load. Most
importantly, they are designed to support only exact-match
queries on a single attribute.
The first contribution of this paper is a formalization of

the problem of similarity-search in PDNs by 1) modeling
the problem, 2) defining a set of metrics to evaluate the
efficiency of the PDN access methods, and 3) introducing
a basic access method to set a lower efficiency bound for
similarity-search (see Section 2).
Next, learning from the principles of the small-world mod-

els, which are proposed to explain the phenomenon of effi-
cient communication in social networks [22, 14], in this paper
we define a family of access methods, termed Small-World
Access Methods (SWAM), for efficient similarity-search in
PDNs. Intuitively, with SWAM the topology of the PDN is
structured (in a self-organized manner) based on the con-
tent of the PDN nodes such that on the network topology
1) the average network distance between any pair of nodes
scales logarithmically with the network size, and 2) nodes
with similar content are clustered together; hence, enabling
efficient location of the query object and thereafter, the ob-
jects similar to the query object, respectively (see Section 3.1
for a detailed discussion of this intuition). In this context,
the PDN topology can be considered as a distributed index
structure that, analogously to the typical index structures
for databases, organizes the nodes and therefore, the data
content of the PDN nodes for efficient similarity-search. It
is important to note that with SWAM this topology is gen-
erated and maintained in a distributed manner by nodes
executing straightforward algorithms as they join and leave
the network and/or their content is updated (these algo-
rithms are formally explained in Section 3.3). Thus, the
efficient SWAM index structures are also scalable and prac-
tically adoptable.
To define the SWAM family formally, we formalize the

intuitive properties discussed above and define three nec-
essary and sufficient properties that characterize an access
method as a member of the SWAM family (see Section 3.2).
These properties ensure that the generated index structure
1) accurately partitions the data space for exact resolution
of the location of the query object, 2) properly interconnects
the nodes for fast reach to the query object, and 3) closely
co-locates (on network) the nodes with similar content for
batch retrieval of the similar content when the location of
the query point is resolved. The first property ensures that
we monotonically approach the query object as we traverse
the network, and that we always find the query object if it
exists in the network. As we explain in Section 4.1, sur-
prisingly some DHTs (e.g., CAN) cannot guarantee even
such a basic requirement of similarity-search. The second
property ensures that the time and communication cost of
resolving the query scales logarithmically to the size of the
network. Finally, the third property enables efficient range
and kNN queries. To the best of our knowledge, no current
DHTs can collectively support these properties on PDNs
with multi-attribute content.
Finally, as a proof of concept we introduce a Voronoi-

based instance of SWAM, termed SWAM-V, which satisfies

all the three properties of SWAM (see Section 3.3). For
a PDN with N nodes SWAMP-V has query time, commu-
nication cost, and computation cost of O(logN) for exact-
match queries, and O(logN + sN) and O(logN + k) for
range queries (with selectivity s) and kNN queries, respec-
tively. SWAM-V proposes a non-hierarchical distributed in-
dex structure that indexes PDNs with multi-attribute ob-
jects and resolves queries exactly (i.e., without false dis-
missal). SWAM-V also respects the autonomy of the PDN
nodes and self-configures the topology of the PDN based on
the nodes own content. Consequently, it avoids unnecessary
content migration and replacement, supports object repli-
cation, and adapts to the object distribution as new nodes
join the PDN with the new content.
For more intuition about the SWAM-V properties men-

tioned above, here we briefly discuss the organization of the
SWAM-V topology (more details in Section 3.3). For accu-
rate partitioning of the data space (and as a result, proper
clustering of the nodes with similar content), SWAM-V con-
structs a d-dimensional Voronoi diagram on the data space
of the PDN, with the data objects available in PDN as the
vertices/generators of the Voronoi diagram. The dual De-
launay graph of this Voronoi diagram defines the basis of the
SWAM-V topology, where the PDN nodes that store data
objects with neighboring Voronoi cells are neighbors on the
topology. Starting from a querier node, SWAM-V directs
a query toward its required object by forwarding the query
from one node to a neighbor node that stores object(s) more
similar to the query object. We prove that with Voronoi-
based partitioning the query monotonically approaches the
query object and eventually finds the object (if it exists).
Moreover, the SWAM-V topology has shortcut random links
to far-away nodes that allow for long jumps on the Voronoi
diagram, similar to the ladders in the snakes-and-ladders
board-game which enable fast traversal of the underlying
grid.
We perform a comparative study via simulation to verify

the efficiency of SWAM-V versus our basic access method,
as well as a version of CAN [18] that we extended over its
original DHT to support range and kNN queries. Our exper-
iments show that unlike the basic access method, SWAM-V
achieves logarithmic query time with limited resource usage,
and despite assuming natural data distribution in the PDN,
SWAM-V consistently outperforms CAN in query time and
communication cost. For example, in a typical case SWAM-
V improves the communication cost of kNN queries at least
300% and the query time of range queries up to 200%. A
very interesting observation is that as the number of di-
mensions (data attributes) increases, the query cost with
SWAM-V remains almost constant. Although at first this
property seems counter-intuitive, we argue that it is en-
abled by the accurate Voronoi-based partitioning of the data
space with SWAM-V. Intuitively, with accurate partitioning
despite more uniformity of the distance between data ob-
jects in the data space with higher dimensionality, SWAM-V
can still distinguish the difference in distances and properly
route the query through the nodes closer to the query object
(hence, better performance and less query cost). This bene-
fit is compensated by higher cost of the index construction,
but since index construction occurs in a distributed fashion
and incrementally as nodes join and leave the network, the
higher construction cost hides. Also, note that “curse of
dimensionality” does not happen in our case because PDN
applications often assume only a handful of attributes per
object.
The key contributions of our work can thus be summarized



as follows:

• We formalize the problem of similarity-search in PDNs
and define a model, a set of performance measures, and
a benchmark for PDN access methods.

• We introduce a set of properties that characterize SWAM,
a family of potentially efficient access methods for sim-
ilarity search in PDNs, which respect the natural data
distribution of PDNs as a requirement.

• Based on the proposed properties, we introduce the
SWAM-V access method for PDNs. To the best of our
knowledge, SWAM-V is the first PDN access method
that can guarantee the resolution of exact-match, range,
and kNN queries in PDNs with multi-attribute data
objects and with cost and response-time logarithmic
to the size of the network.

We believe this work initiates a new and interesting research
direction to extend the massive similarity-search database
literature to support efficient search in PDNs as the new
generation of distributed database systems. The remainder
of this paper is organized as follows. In Section 2, we for-
mally define the problem of similarity-search in PDNs. Sec-
tion 3 elaborately describes the SWAM family of PDN access
methods, and specifies SWAM-V as a particular member of
the SWAM family. In Section 4, we explain the results of
our experimental evaluation of SWAM-V. Section 5 covers
the related work. Finally, Section 6 concludes the paper and
discusses the future directions of this research.

2. FORMAL DEFINITION OF THE PROB-
LEM

In this section, we state and model the problem of similarity-
search in PDN. We also describe a naive access method,
which essentially scans the PDN to resolve the similarity
queries, as the basic similarity-search mechanism that sets
the lower performance bound for more efficient access meth-
ods.

2.1 Model
We assume a relational data model for the content of

a PDN. A set of (maybe duplicate) tuples with the same
schema are distributed among the nodes of the PDN (for
multi-schema PDNs, we rely on schema reconciliation tech-
niques such as [8]). Tuples are uniquely identified by a set
of d attributes, the key of the schema. Hereafter, we use the
terms tuple and key interchangeably wherever the meaning
is clear. A similarity query is originated at a PDN node
and is answered by locating at least one replica of all the
tuple(s) with key similar to the query key. A PDN access
method is a mechanism that defines 1) how to organize the
PDN topology (interconnection) to an index-like structure,
and 2) how to use the index structure to process the simi-
larity queries. We are interested in the access methods for
efficient processing of similarity queries in PDNs.
We model the PDN key space as a Hilbert space (V,Lp).

V = V1 × V2 × ... × Vd is a d-dimensional vector space,

where Vi, the domain of the attribute ai for the key
−→
k =

〈a1, a2, ..., ad〉 in V , is a contiguous and finite interval of
R. The Lp norm with p ∈ Z

+ is the distance function
to measure the dissimilarity (or equivalently similarity) be-

tween two keys
−→
k1 and

−→
k2 as Lp(

−→
k1 − −→k2), where Lp(

−→x ) =(∑d
i=1 |xi|p

) 1
p
.

1

4

3

2 51

6 4

7

1

7

6

4

3

5

2

1

4

3 2 51

6 4

7

1

7

6

4

3

5

2

I II III

Figure 1: Reducing the general PDN model

We are interested in content-based access methods, i.e.,
access methods that organize the PDN topology based on
the content of the PDN nodes. In general each PDN node
may include more than one tuple. For better explanation of
our content-based access methods, without loss of general-
ity, we find it simple to assume a PDN model where each
node stores one and only one tuple. To justify this assump-
tion, here we show how to reduce the general PDN model
to our assumed PDN model. Consider K as the set of keys
(tuples) available in PDN and N as the set of PDN nodes.
Assuming a general PDN model, we define a one-to-many
mappingM : N → K that maps each PDN node to the set
of keys stored at the node1 (Figure 1, Step I). Each key is
considered as a virtual node embedded in V . Note that since
tuples are replicated, there might be several virtual nodes
with the same key. A content-based access method defines
how to organize the set of virtual nodes corresponding to all
nodes in N to a virtual PDN with particular topology and
how to process the queries in the virtual PDN (Figure 1,
Step II). Finally, the topology of the actual PDN is deduced
by inverse mapping from the topology of the virtual PDN:
a PDN node n is connected to a node m if and only if at
the virtual PDN some virtual node in M(n) is connected
to some other virtual node in M(m) (Figure 1, Step III).
Also, the semantic of the query processing at the actual PDN
nodes is defined by the query processing semantic at the cor-
responding virtual nodes such that the flow of the query at
the actual PDN is logically identical to that of the virtual
PDN.With this approach, the mapping and inverse mapping
steps (Steps I and III) are independent of the access method
used in Step II, and each access method for virtual PDNs
(which is a PDN with only one tuple per node) defines an
access method with similar characteristics for general PDNs.
Hereafter, we assume the reduced model for PDNs and char-
acterize the primitives of an access method to construct the
topology/index and process the queries in such a PDN.
The topology of a PDN can be modelled as a directed

graph G(N,E), where the edge e(n,m) ∈ E represents an
asymmetric neighborhood relationship in which node m is a
neighbor of node n. Schematically, we depict this relation-
ship by drawing an arrow from node n to node m. A(n)
is the set of neighbors for the node n. To achieve scalabil-
ity, a node only maintains a limited amount of information
about its neighbors, which includes the key of the tuples
maintained at the neighbors and the physical addresses of
the neighbors. A node can directly communicate with its
neighbors. To construct the PDN index, an access method
defines the join primitive2 (similar to the insert operation

1Depending on the PDN application, if some of the data ob-
jects within a node are closely similar, then alternativelyM
can map a node to the centroid of the similar objects. With-
out loss of generality, we focus on the general case where the
objects within a node are not closely similar.
2This join is different from the join operation in the rela-



with the traditional database access methods), which is used
by the new node n to delineate A(n) as it joins the exist-
ing PDN. We assume that at least the physical address of
one node in the existing PDN (if any) is available to n as it
joins the PDN. As the new nodes join the PDN, its topol-
ogy incrementally converges to the intended index struc-
ture. Similarly an access method defines the leave opera-
tion (equivalent to the delete primitive with the traditional
access methods).
We are interested in the following types of similarity queries:

• Exact-Match Query: Given the query key −→q , re-
turn the tuple t with key

−→
k such that

−→
k = −→q .

• Range Query: Given the query key −→q and the range

r, return all tuples t with key
−→
k such that Lp(

−→
k −−→q ) ≤ r.

• k-Nearest-Neighbor (kNN) Query: Given the query
key −→q and the number k, return the k-ary (t1, t2,

..., tk) such that
−→
ki , key of ti, is the i-th nearest neigh-

bor of the key −→q .

A similarity query can originate from any PDN node at T0-
th time slot (∀ T0 ∈ Z), assuming a discrete wall-clock time
with fixed time unit. A node that originates a query or re-
ceives the query from other nodes at the (T0 + i)-th time
slot (∀ i ∈ Z

+ ∪ {0}), can process the query locally and/or
forward zero or more processed replicas of the query to its
immediate neighbors at the (T0 + i + 1)-th time slot. The
collective processing of the query by the PDN nodes is com-
pleted when all expected tuples in the relevant result set
of the query are visited by at least one of the replicas of
the query. Besides the join and leave primitives, an access
method defines the forward primitive for query processing
based on the constructed PDN index. The forward primitive
can only use the information at the local node to process the
query and to make forwarding decisions. During query pro-
cessing, the Lp distance between the query key −→q and the
local key is computed to verify if the local tuple satisfies the
query condition. Also, with content-based access methods
the forward primitive may measure the Lp distances between
the query key −→q and the neighbor keys to guide the query.
Finally, we define metrics to evaluate the efficiency of a

PDN access method. An access method can be evaluated
based on its construction cost, and/or based on its query
processing cost and performance. Unless the set of nodes
participating in PDN is extremely dynamic, the computa-
tion (CPU time) and communication costs of constructing
and maintaining the index structure are negligible as com-
pared to those of the query processing. On the other hand,
the space required to construct the distributed index is pro-
portional to:

S =
∑

∀n∈N

|A(n)|

Assuming a peer-to-peer model for a PDN, a uniform distri-
bution of the space S (or equivalently, uniform distribution
of the node connectivity) among all the nodes is favorable.
We define three other metrics to measure the efficiency of
a PDN access method for query processing. The first two
metrics evaluate the cost of query processing in terms of the
required system resources, whereas the last one measures
the system performance from the user perspective:

tional algebra.

1. Communication cost (C1): Average number of query
replicas forwarded to complete the processing of a query.

2. Computation cost (C2): Average number of Lp dis-
tance computations to complete the processing of a
query.

3. Query time (T): Average response-time of a query. If
processing of a query starts at time slot T0 and com-
pletes at time slot T1, the response-time of the query
is equal to T1 − T0.

2.2 Basic Access Method
To set a lower bound for the efficiency of the PDN access

methods, we consider an access method that naively scans
the PDN nodes to resolve the similarity queries. Optimally,
with scanning C1 and C2 are Θ(|N |), and T is Θ(1). With
PDNs, since queries can be replicated, scanning is not nec-
essarily sequential; hence, T can in fact be independent of
|N |. With any connected topology, simple flooding of the
query ensures a complete scan. However, various topologies
balance the efficiency metrics differently. A star topology
is theoretically optimal, but star is not a realistic topology
for PDNs because it fails to distribute S uniformly. Other
examples of the topologies that allow more uniform distribu-
tion of S are ring, spanning tree, and random graph, which
all are near optimal in terms of C1 and C2 metrics, and
O(|N |), O(log |N |), O(log |N |) in terms of T, respectively.
We consider an access method with a random graph in-

dex topology and flood-based query processing as the bench-
mark. The random graph GN,p is a graph with |N | nodes,
where each pair of nodes are connected with probability p.
Such a graph has Poisson connectivity distribution with av-
erage connectivity p |N |. Thus, the space requirement S
of the index is fairly distributed among the nodes. Also, it

is shown that for p > log |N|
|N| the graph is connected with

high probability [5]. Such a graph has |E| = |N | log |N |
edges and the average distance between any two nodes is
O(log |N |); hence, C1 is O(|N | log |N |), C2 is O(|N |), and T
is O(log |N |). Random graphs are frequently used to model
large networks (such as the Internet), and since they are
defined probabilistically, as compared to loop-free spanning
trees with fixed number of edges |N | − 1, they are more
appropriate for modelling the dynamic autonomous PDNs.

3. SWAM: A FAMILY OF SMALL-WORLD-
BASED ACCESS METHODS

We define a family of efficient access methods for PDNs,
termed Small-World Access Methods (SWAM), which is de-
signed based on the principles borrowed from the small-
world models. Here, after a general overview of the useful
properties of the small-world model, we define the SWAM
family and characterize its properties. Also, as an example
we introduce SWAM-V, a Voronoi-based instance of SWAM,
which satisfies SWAM properties and achieves query time,
communication cost, and computation cost logarithmic to
the size of the network for all types of similarity queries.

3.1 Small-World Model as an Index Structure
The small-world model is a network topology proposed to

explain the small-world phenomenon, the fact that two in-
dividuals in a society (i.e., a social network) can efficiently
locate each other through a short chain of acquaintances
logarithmic to the size of the network [22, 14]. The small-
world graph is a hybrid graph, a superimposition of a reg-
ular grid and a dilute random graph (p � 1), inheriting



both their properties (see Figure 2-a). It inherits average
node-to-node path length O(log |N |) from the random graph
component, and high clustering property from the grid. A
graph is clustered if the neighbors of a node are more prob-
ably the neighbors of each other rather than the neighbors
of the other nodes in the network. For a node n clustering
is measured by the clustering coefficient C(n), which is the
realized fraction of all possible edges among the neighbors
of n:

C(n) = l

/( |A(n)|
2

)
(1)

where l is the number of existing edges among the neighbors
of n. The clustering coefficient of a graph is the average of
the clustering coefficients of its nodes. For a complete graph,
a grid, and a dilute random graph GN,p, the clustering co-
efficients are 1, � 3

4
, and p� 1, respectively.

To demonstrate a direct application of the small-world
graph as an index structure for a PDN, we consider the
following simple PDN. Assume the key space V is a subspace
of Z

d rather than R
d, and also assume all possible keys in V

are available within the PDN, one key per PDN node. We
can organize the topology of this PDN based on a small-
world graph with a d-dimensional underlying grid as follows:

1. Grid component: The node storing the key
−→
k = 〈a1, a2

, ..., ad〉 is a neighbor of all nodes with keys
−→
k′ where

Lp(
−→
k −−→k′ ) ≤ b (b ∈ Z

+); and

2. Random graph component: The node nk storing the

key
−→
k = 〈a1, a2, ..., ad〉 is a neighbor of one other node

nk′ with key
−→
k′ selected probabilistically such that if

Lp(
−→
k −−→k′ ) = x, the probability of selecting n′

k as the
neighbor of nk is proportional to x−d (i.e., a power-law
distribution).

See Figure 2-b for an example with 2-dimensional key space,
L1 as the distance measure, and neighborhood boundary
parameter b = 1. In [14], it is shown that with a greedy
forwarding primitive, on average an exact-match query is
resolved with T, C1, and C2 all in O(log |N |). With the
greedy forwarding, node n forwards a query −→q only to one

of its neighbors with key
−→
k such that Lp(

−→
k − −→q ) is min-

imum among all neighbors in A(n), i.e., the neighbor with
the most similar key to the query key −→q is selected to re-
ceive the query. It is easy to see the underlying grid topology

ensures that when a node with key
−→
k receives a query −→q ,

always either
−→
k = −→q or the node has at least one neigh-

bor with the key
−→
k′ such that Lp(

−→
k′ − −→q ) < Lp(

−→
k − −→q ).

(1,2) (2,2)(-1,2) (0,2)(-2,2)

(1,1) (2,1)(-1,1) (0,1)(-2,1)

(1,0) (2,0)(-1,0) (0,0)(-2,0)

(1,-1) (2,-1)(-1,-1) (0,-1)(-2,-1)

(1,-2) (2,-2)(-1,-2) (0,-2)(-2,-2)

a. Hybrid small-world graph b. Small-world as PDN index

Figure 2: The small-world model

Therefore, along the forwarding path of the query, the dis-
tance between the key at the current node and the target
key−→q is monotonically decreasing as the query is forwarded.
Besides, the probabilistically selected neighbors act as long
jumps that ensure exponential decrease of this distance on
average. Thus, the average forwarding path length is loga-
rithmic to the size of the network.
The way we defined the neighborhood relationship be-

tween the PDN nodes based on the distance between their
keys, together with the clustering property of the result-
ing small-world topology allow for the effective execution of
other types of similarity queries as well. On one hand, we
defined the neighborhood relationship such that neighbors
of a node have keys closely similar to the key of the node,
and consequently, similar to each other. On the other hand,
due to the clustering property of the generated small-world
graph, neighbors of a node are closely connected in terms
of the hop-count in the network (i.e., number of the edges
on the path between each pair of nodes). Therefore, a lo-
cality of tightly connected nodes with closely similar keys is
created at the neighborhood of each node in the network.
With a topology constructed out of such localities, range
and kNN queries can be executed efficiently in two phases,
first, by an exact-match query to locate the locality of the
query key −→q , and second, by flooding the query throughout
the locality of −→q . With a localized topology, flooding at
the locality of the query key is efficient. We can locate all
the keys relevant to the range and kNN queries in a limited
number of hops h away from −→q , where h is independent of
the size of the network |N |. With our simple PDN exam-
ple, for range and kNN queries all the relevant keys (and
almost only relevant keys) are visited within h = O(r) and

h = O(�k 1
d �) hops from −→q , respectively. Therefore, for both

types of queries, T is O(log |N |+ h), C1 is O(log |N |+ hd),
and C2 is O(d log |N |+ hd).
With an inclusive key space V ⊂ Z

d, the simple PDN
example considered here is only of illustrative significance.
We, however, use the same properties to develop SWAM
that applies to more general PDN models.

3.2 SWAM Family
Almost all the traditional access methods for database

systems are based on one core idea to reduce the search
space for efficient access (see the unified model in [7]). They
recursively partition the key space into a set of disjoint sim-
ilarity classes3. An index is then constructed as a hierar-
chy of the class representatives at successive levels (see Fig-
ure 3-a). The hierarchical index allows filtering out (i.e., to
dismiss without inspection) the irrelevant/dissimilar classes
while query is directed from the root of the hierarchy toward
the similarity class of the query key. The average query time
is logarithmic to the size of the database.
By mapping each node of the hierarchy to a PDN node,

the same idea can be directly applied to index PDNs, al-
though as we show later the resulting distributed hierarchi-
cal index structure is not appropriate for PDNs. Consider
K as the set of keys available in a PDN. Any similarity-
based relation can be used to partition the key space. For
example, in Figure 3-b, V is recursively partitioned based on
the GNA approach [6]. Starting from V as the global sim-
ilarity class, at each level the parent similarity class c with

the class representative
−→
k ∈ K is partitioned into a set

3The generic mathematical term for similarity class is equiv-
alence class. Here, the equivalence relations that partition
the space are based on the distance (or similarity) between
the keys.



root

k1

k4 k3

k2

k11

k14

k12

k13

root

N1 N2 N3 N4

N11 N44

k1 k2
k3

k4

k7k8

k16

k9

k15 k14

k6
k10

k13 k12

k11

k5c1 c2
c4 c3

N1 N4

N16
N12

k44

N14N13N12 ...

N2 N3

N5
N6

N7N8

N9 N10
N11

N13N14N15

c21
c24 c23

c22

a. Recursive partitioning b. Recursive partitioning example: GNA c. Flat partitioning

Figure 3: Partitioning of the key space

of h disjoint subclasses ci with representative keys
−→
ki ∈ K

(i ∈ Ih = [1..h]) such that ci = {−→k′ ∈ V |Lp(
−→
k′ − −→ki) <

Lp(
−→
k′ − −→kj),∀j �= i}. Considering that in a PDN each key−→

k resides at a PDN node nk, the GNA-tree corresponding
to such a space partitioning is a distributed GNA-tree in
which A(nk) = {n ∈ N |n = nki , i ∈ Ih}. Query processing
with such a distributed index tree is similar to that of its
corresponding centralized counterpart, with query actually
traversing a physically constructed tree rather than a tree
structure in memory. Although this indexing approach may
seem appealing, due to the lack of a balance load among
its nodes, is inappropriate for PDNs. The unbalance load
is evident by observing that nodes which represent larger
similarity classes (i.e., nodes at the higher levels of the hier-
archy) receive more queries to process. In the extreme case,
the root of the hierarchy processes all queries. Besides, as
mentioned in Section 2.2 hierarchical structures are loop-
free and intolerant to failures and/or autonomous behaviors
of the PDN nodes.
SWAM also employs the space partitioning idea; how-

ever, to avoid the problems with hierarchies, instead of re-
cursive partitioning assumes a flat partitioning (see Fig-

ure 3-c). Each key
−→
k ∈ K (or nk ∈ N) represents its

own similarity class ck ⊆ V and the set of |K| similar-
ity classes are collectively exhaustive V =

⋃
k∈K ck and

mutually exclusive ck ∩ ck′ = ∅,
−→
k �= −→k′ . An uncharac-

teristic case is where two or more nodes store replicas of

the same key
−→
k . We assume all such nodes represent the

same class ck redundantly. Such a partitioning scheme can
potentially balance the query processing load among PDN
nodes. With hierarchies, neighborhood relationship between
a pair of nodes is directly derived from parent-child relation-
ship between their corresponding similarity classes to re-
flect the similarity between their classes. Similarly, with flat
partitioning we define the neighborhood relationship based
on the adjacency relationship between the similarity classes
A(nk) = {nk′ ∈ N |ck and ck′ are adjacent, k′ ∈ K}. The
resulting index structure is a graph instead of a loop-free
tree. Besides, processing of the query can start from any
node (e.g., the actual query originator) rather than exclu-
sively from a unique node, the root.
The challenge is to define the similarity-based partition-

ing relation such that the resulting graph-based index struc-
ture bears indexing characteristics similar to those of the
hierarchical index structures. Particularly, it should allow
filtering of (i.e., avoid visiting) the irrelevant classes effec-
tively as query is directed from a query originator toward
the similarity class of the query key. Moreover, to support
range and kNN similarity queries effectively, alike hierarchi-

cal index structures similar classes should be in proximity
of each other in terms of the hop-count in the index topol-
ogy. Finally, the O(logN) expected query time achieved by
the hierarchies is also desirable with the graph-based index
structure. As outlined in Section 3.1, these requirements are
addressed by the properties of a basic small-world graph. A
SWAM index structure is a general graph-based index struc-
ture that satisfies a generalization of the same properties as
follows:

Property 1 : Monotonic approach toward query key

When a node with key
−→
k receives a query −→q , always

either −→q ∈ ck, or the node has at least one neighbor

with a key
−→
k′ such that Lp(

−→
k′ − −→q ) < Lp(

−→
k − −→q ).

Consequently, if the node nk receives the query −→q , it
is guaranteed that for all

−→
k′′ ∈ {−→j ∈ K|Lp(

−→
j −−→q ) ≥

Lp(
−→
k − −→q )} the node nk′′ will never be visited in

future during the greedy forwarding, and the similarity
class ck′′ is filtered.

Property 2 : Localized index topology With a local-
ized index, for each node nk the set of nodes at its
neighborhood A(nk) are tightly connected and store

keys closely similar to
−→
k . We measure these two char-

acteristics with the two metrics Clustering Coefficient
(CC) and Neighbor Distance Distribution (NDD), re-
spectively. For a node n, CCn= C(n) is defined by
Equation 1. For a graph G, CCG=

1
|N|

∑
∀n∈N CCn.

Also, NDD is the probability distribution function of

the random variable X = Lp(
−→
k′−−→k ), ∀nk ∈ N ∀nk′ ∈

A(nk). As we discussed in Section 3.1, a localized
topology allows efficient processing of the range and
kNN similarity queries.

Property 3 : Logarithmic forwarding-path length For
an exact-match query (processed by greedy forward-
ing), on average T = O(logN).

Any graph-based index structure that maintains these SWAM
properties is a member of the SWAM family. In Section 3.3,
we introduce an example SWAM index structure.

3.3 SWAM-V: A Voronoi-based SWAM
SWAM-V partitions the key space V to a Voronoi diagram

[17] (see Figure 4-a). For each key
−→
ki ∈ K (i ∈ I|K|), nki ∈

N represents the similarity class cki = {−→k ∈ V |Lp(
−→
k −−→

ki ) < Lp(
−→
k −−→kj ),∀j �= i}, which is the Voronoi cell of nki .

Accordingly, the neighborhood of the node nki is defined as
A(nki) = {nkj ∈ N |cki and ckj are adjacent,∀j ∈ I|K|}.



k1 k2
k3

k4

k7
k8

k16

k9

k15 k14

k6 k10

k13 k12

k11

k5

N1 N4

N16
N12

N2 N3

N5N6
N7N8

N9 N10
N11

N13N14N15

Random Graph Component

Delaunay Component

a. Voronoi diagram and b. SWAM-V topology

dual Delaunay graph

Figure 4: SWAM-V index structure

Nodes that store replicas of the same key share the same

neighborhood; i.e., if
−→
ki =

−→
kj , A(nki) = A(nkj ). The re-

sulting graph is the dual Delaunay graph of the Voronoi dia-
gram and is unique for each diagram (see Figure 4-a). Since
the neighborhood relationship is symmetric, the Delaunary
graph is depicted as an undirected graph. The SWAM-V
topology consists of a random graph component (identical
to that of the small-world graph) that is superimposed over
the Delaunay graph (see Figure 4-b).

Theorem 1. The SWAM-V index structure satisfies the
SWAM Property 1.

Proof. The (extended) boundary between the cells of

two neighboring nodes
−→
ki and

−→
kj is defined as B(

−→
ki ,
−→
kj ) =

{−→k ∈ V |Lp(
−→
k −−→ki ) = Lp(

−→
k −−→kj)}. The boundaryB(−→ki ,

−→
kj )

bisects the space into two half-spaces, where H(
−→
ki ,
−→
kj) =

{−→k ∈ V |Lp(
−→
k − −→ki) < Lp(

−→
k − −→kj)} is the similarity-

dominance space of
−→
ki over

−→
kj , and vice versa. The similar-

ity class of
−→
ki is alternatively defined as cki =⋂

j∈I|K|\{i}H(
−→
ki ,
−→
kj).

Assume node nki receives a query −→q . If −→q /∈ cki , then−→q /∈ ⋂
j∈I|K|\{i}H(

−→
ki ,
−→
kj ). Hence,

−→q ∈ ⋃
j∈I|K|\{i}H(

−→
kj ,
−→
ki).

Therefore, ∃j ∈ I|K| \ {i},Lp(
−→q −−→kj) < Lp(

−→q −−→ki ).

The SWAM-V index structure also satisfies Properties 2
and 3. In Section 4, we verify Property 2 by measuring the
clustering coefficients NDD and CC. Also, Property 3 follows
from the same property of the small-world graph [14]. Due
to the lack of space, here we omit the proof for this claim.
We include the proof in an extended version of this paper.
Below, we describe the primitives of the SWAM-V access
method.

3.3.1 Index Construction
As PDN nodes join the network, the SWAM-V index struc-

ture is incrementally constructed. Consider a PDN of h− 1
nodes nk1 to nkh−1 . The new node nkh

executes the join
primitive shown in Figure 5 to join the two components of
the SWAM-V index structure, i.e., the Delaunay graph and
the random graph. We assume that nkh

has access to at least
one of the nodes nk1 to nkh−1 , say nka . Through nka , nkh

issues an exact-match query4 (see Section 3.3.2.1) for key
−→q =

−→
kh to locate the node nki such that

−→
kh ∈ cki . There-

after, nkh
constructs its cell ckh

one border at a time, start-
ing from the border with nki . Again through nka , nkh

sends
4In Section 2.1, we defined the query result as a tuple set.
Here, equivalently we consider the address of the node(s)
storing the resulting tuple(s) as the query result to explain
the implementation of the access method primitives.

// Join Delaunay graph

nki
←Exact-Match(

−→
kh);

nnext ← nki
;

repeat {
m← nnext;
nnext ← Update(m);
A(nkh

)← A(nkh
) ∪ {m};

} until (nnext = nki
);

// Join random graph
A(nkh

)← A(nkh
) ∪ {nrandom};

Figure 5: SWAM-V join primitive

an update request to nki . The update request is forwarded

like an exact match query with −→q =
−→
ki to reach nki . Upon

receiving the update request, nki calculates the bisector

B(
−→
ki ,
−→
kh), and updates its neighborhood A(nki) based on

its new divided cell. In response, nki sends the address of its
neighbor nnext to nkh

(via nka), where nnext is a neighbor of

nki such that B(
−→
ki ,
−→
kh)∩B(−→ki ,

−−−→
knext) �= ∅. Since a Voronoi

cell is a convex hull, there are at least two such neighbors
for nki . After receiving the update response, the new node
nkh

updates its neighborhood by A(nkh
)← A(nkh

)∪{nki}
and repeats the same update procedure with nnext. The up-
date is completed when all borders of the Voronoi cell ckh

are found, i.e., when nkh
receives nki as the response of an

update request. An exception to the procedure described

above is when
−→
kh =

−→
ki . In such a case, the new key is a new

replica of an existing key and ckh
= cki .

To complete the construction of the SWAM-V index struc-
ture, in addition to the Delaunay graph the new node nkh

must also join the random graph component by selecting a

node nrandom such that Lp(
−→
kh−−−−−−→krandom) follows the power-

law distribution. We piggy-back this step to the previous
step by having nkh

select nrandom among all the nodes that
are previously visited by the update requests. This step
completes the execution of the join primitive. The leave
primitive implements the reverse procedure and is trivial.
We omit description of the leave primitive due to lack of
space.

3.3.2 Query Processing
Here, we describe three forwarding primitives to process

various types of queries using the SWAM-V index structure.

3.3.2.1 Exact-Match Query.
An exact-match query is executed by greedy forwarding.

When node nk receives a query −→q , if Lp(
−→
k − −→q ) <

min∀nki
∈A(nk) Lp(

−→
ki − −→q ), then −→q ∈ ck. Therefore, ei-

ther −→q =
−→
k or −→q /∈ K, where in both cases query is

terminated with the result sets R = {nk} and R = ∅, re-
spectively. Otherwise, nk continues forwarding the query
by sending the query to one of its neighbors nkm such that

Lp(
−→
km − −→q ) = min∀nki

∈A(nk) Lp(
−→
ki − −→q ). From Theorem

1, we know that in worst-case the greedy forwarding termi-
nates in |N | hops.
3.3.2.2 Range Query.
A range query with query key−→q and range r is executed in

two successive phases: 1) to locate the locality (or similarity
class) of the query key, and 2) to explore the nodes located
within the query sphere with radius r centered at the locality
of the query key (see Figure 6). At Phase 1, the query is
interpreted as an exact-match query with query key−→q . This



q

Querier

Phase 1

Phase 2

Figure 6: SWAM-V range query

phase terminates when the query reaches nk such that −→q ∈
ck. At Phase 2, starting from nk, each node n that receives
the query for the first time, forwards it to all its neighbors

mk′ ∈ A(n) if and only if Lp(
−→
k′ − −→q ) < r. Theorem 2

ensures that when the selective flooding is terminated, all

nodes nk′′ ∈ N with Lp(
−→
k′′ − −→q ) < r are visited by some

query replica.

Theorem 2. SWAM-V answers all range queries without
any false dismissal.

Proof. Assume nk is the nearest neighbor to the query
key −→q ; i.e., −→q ∈ ck. We prove the theorem by contra-

diction. Suppose ∃ nk′′ ∈ N such that Lp(
−→
k′′ − −→q ) < r,

but nk′′ is not visited. From Theorem 1, we know that be-
tween nk′′ and nk there exist a path Pk′′ , a sequence of
neighboring nodes nkh=k′′ , nkh−1 , ..., nk2 , nk1=k, such that

Lp(
−−→
ki−1 − −→q ) < Lp(

−→
ki − −→q ) ∀i ∈ [2..h]. Therefore, ∀i ∈

[1..h − 1], Lp(
−→
ki − −→q ) < r. However, the node nk=k1 re-

ceives the query at the end of Phase 1. Thus, based on
the condition for selective flooding ∀i ∈ [2..h], nki must also
receive the query. Hence, nk′′=kh

receives the query, contra-
dicting our assumption.

With Property 2, the flooding time is proportional to the
range r and independent of the size of the network |N | (see
Section 3.3.3).

3.3.2.3 kNN Query.
Similar to range queries, a kNN query is executed in two

phases. As with range queries, Phase 1 is equivalent to an
exact-match query for the query key −→q to locate nk such

that −→q ∈ ck. Since ∀k′ ∈ K\{k}, Lp(
−→
k −−→q ) < Lp(

−→
k′−−→q ),

the node nk is the 1st nearest neighbor nk1NN of the query−→q . At Phase 2, the rest of the k nearest neighbors, nk2NN ,
nk3NN , ..., nkkNN

, are located following Theorem 3.

Theorem 3. The k-th nearest neighbor to −→q is a neigh-
bor of one of the nearer neighbors of −→q ; i.e., ∀ k ∈ [2..|K|],
nkkNN

∈ ⋃
i∈[1..k−1]A(nkiNN ).

Proof. We prove the theorem by contradiction. Suppose
nkkNN

/∈ ⋃
i∈[1..k−1]A(nkiNN ). From Theorem 1, we know

∃ mk′ ∈ A(nkkNN
) such that Lp(

−→
k′ −−→q ) < Lp(

−−−→
kkNN −−→q ).

Therefore, mk′ ∈ {nkiNN |i ∈ [1..k − 1]}. Hence, nkkNN
∈⋃

i∈[1..k−1]A(nkiNN ).

Thus, at Phase 2, starting from nk1NN = nk, query is
forwarded from nkiNN to nk(i+1)NN

, i ∈ [1..k − 1] until it

visits all k nearest neighbors of −→q . When the i-th near-
est neighbor nkiNN receives the query, it locates the next
node nk(i+1)NN

as follows. The (i + 1)-th nearest neighbor

is nk(i+1)NN
∈ ⋃

j∈[1..i]A(nkjNN ) such that Lp(
−−−−−−→
k(i+1)NN −

−→q ) = min∀mk′∈⋃
j∈[1..i] A(nkjNN

) Lp(
−→
k′ − −→q ). nkiNN for-

wards the query, which includes the set
⋃

j∈[1..i−1]A(nkjNN )

received from the previous node piggy-backed with its own
neighborhood A(nkiNN ), to the next node nk(i+1)NN

. Phase
2 terminates in k hops.

3.3.3 Analysis
We evaluate the efficiency metrics for SWAM-V as follows:

• Space: From [19], we have:

S =




∑ s
i=1

|N|
i

( |N | − i− 1
i− 1

) (
i

2− i

)
d+1=2s

∑ s
i=1

3
i+1

( |N | − i− 1
i

) (
i+ 1
2− i

)
d=2s

S is uniformly distributed among n ∈ N and, e.g., with
a 2-dimensional space |A(n)|average = S/|N | � 6.

• Query time: For the exact-match query, with Property
1 in the worst-case T = O(|N |), and with Property
3 on average T = O(log |N |). Also, on average for
the two-phase range queries (with selectivity s) and
kNN queries, T is O(log |N |+sN) and O(log |N |+k),
respectively.

• Communication cost: For the exact-match query on
average C1 = O(log |N |). Also, on average for range
and kNN queries, C1 is O(log |N | + sN |A(n)|average)
and O(log |N |+ k), respectively.

• Computation cost: Similarly, for the exact-match query
on average C2 = O(|A(n)|average log |N |). Also, on av-
erage for range and kNN queries, C2 is O(|A(n)|average

(log |N |+ sN)) and O(|A(n)|average(log |N |+ k)), re-
spectively.

4. EXPERIMENTAL ANALYSIS
We conducted a set of experiments via simulation to verify

the results of our study. Note that we have already shown
analytically that SWAM-V has logarithmic query cost. We
implemented a multi-thread simulator in C and used two En-
terprise 250 Sun servers to preform the experiments. Based
on the efficiency metrics introduced in Section 2.1, we com-
pare SWAM-V versus our basic access method (see Section
2.2) as well as CAN [18], which is a multi-dimensional DHT.

4.1 Experimental Methodology
Our Monte Carlo simulation consists of a set of “runs”.

We setup each run by 1) generating a dataset, 2) distributing
the dataset among a set of PDN nodes, 3) indexing the PDN
with the three access methods SWAM-V, BASIC, and CAN,
and 4) running 1000 queries (all of which either exact-match,
range, or kNN) and recording the average T, C1, and C2

for each of the index structures as the result of the run.
Each result data-point reported in Section 4.2 is the average
result of 100 runs. The coefficient of variance across the runs
was below 2.5% and hence show the stability of the result.
Below, we explain the detail of each setup.
We consider the Hilbert spaces (V,L1), (V,L2), and (V,L∞)

as the key/data space with V = V1 × V2 × ... × Vd as a d-
dimensional hypercube, where Vi = [−1, 1]. We generate a
dataset of |K| keys by selecting each attribute ai ∈ Vi of a

key
−→
k = 〈a1, a2, ..., ad〉 following either a uniform distribu-

tion, or a normal distribution5 with expected value µ = 0
and standard deviation σ = 0.33. We distribute the set of

5f(x) = 1

σ
√

2π
e−(x−µ)2/2σ2



Access Methods Exact-Match Range (s = 1%) kNN (k = 5)
T C1 C2 T C1 C2 T C1 C2

BASIC 3.77 16835.53 5000 3.77 16835.53 5000 3.77 16835.53 5000
SWAM-V 3.82 3.82 68.51 6.84 57.27 125.3 9.24 9.24 171.35
CAN 5.67 5.67 47.73 13.38 78.36 111.28 10.9 51.37 93.72

Table 1: Comparative study results with d = 5 and N = 5000

keys K among a set of nodes N , where |N | = c−1|K| with
c = 2 as the data replication coefficient. With SWAM-V
and BASIC, first keys are randomly assigned to the nodes
and then the index structures (i.e., PDN topologies) are con-
structed based on the actual content of the nodes. For the
comparison to be fair, we select p for the BASIC random
graph GN,p such that SBASIC = SSWAM−V. On the other hand,
with CAN keys cannot be assigned to the nodes randomly.
The CAN index structure is first constructed based on the
identifiers of the nodes (randomly selected from V ) rather
than their content. Each key is then assigned to a particular
node with similar identifier.
We described query processing with SWAM-V and BA-

SIC in Sections 3.3.2 and 2.2. The original CAN access
method only supports exact-match queries via greedy for-
warding. Even for the exact-match queries, since CAN does
not satisfy the SWAM Property 1, during query forwarding
the distance from the current node to the query key −→q may
not be monotonically decreasing. Therefore, with greedy
forwarding query may be trapped at a local optimal, i.e., at
a node that does not have any neighbor closer than itself
to −→q , and consequently, query may never reach the target.
To be fair to CAN, we excluded the CAN queries that re-
sult in false dismissal from our comparative study. Also, to
implement range and kNN queries with CAN we adopt the
2-phase query processing scheme from SWAM-V. However,
since Theorems 2 and 3 do not hold for CAN, for both range
and kNN queries we use naive, non-selective flooding (sim-
ilar to query processing with BASIC) in the second phase.
We apply scope-limited flooding and only consider the time
T and costs C1 and C2 required to complete the query.
For each query, we select the node that originates the

query and the query key −→q randomly from N andK, respec-
tively. For range queries, the range r is selected such that
the selectivity s of the query varies from 0.01% to 1%. Fi-
nally, for kNN queries we consider queries with k = 2, 5, 10.

4.2 Experimental Results
The difference between the trend of the results for uni-

form and normal data distributions, as well as the results
for various distance functions L1, L2, and L∞, is insignifi-
cant. Here, we report the results for uniform data distribu-
tion with L2 as the distance function of the space. Table 1
shows a typical set of comparative results for a PDN with
d = 5 dimensions and N = 5000 nodes. To achieve loga-
rithmic query time, BASIC spends the communication and
computation resources of the PDN unlimitedly. As illus-

0
25
50
75

100
125
150
175
200
225
250

2 5 10 20

Dimensionality (d)

C
o

m
m

u
n

ic
at

io
n

 C
o

st
 (

C
1)

SWAM-V CAN

0

5

10

15

500 1000 5000 10000

Network Size (N)

Q
u

er
y 

T
im

e 
(T

) BASIC SWAM-V CAN

a. Dimensionality scaling b. Network size scaling

Figure 7: The scaling results

trated, SWAM-V and CAN are both comparable to BASIC
in terms of the query time, and invest the resources much
more efficiently. SWAM-V consistently outperforms CAN
in terms of both T and C1. We attribute this advantage to
the SWAM three properties. Particularly, with Properties
1 and 2, the index structure accurately partitions the space
and co-locates the similar content, enabling better filtering
and less redundant query processing. Also, Property 3 al-
lows more efficient traversal of the index structure. The cost
of more accurate partitioning is higher connectivity of the
nodes, and consequently, higher computation cost C2.
Figure 7 depicts the scaling properties of SWAM-V as

compared to those of CAN. Figure 7-a illustrates how the
communication cost of the kNN queries with k = 10 in a
PDN of N = 10000 nodes scales as dimensionality of the
data space increases. With SWAM-V, C1 remains almost
unchanged at different dimensions, while CAN is less effi-
cient at high-dimensional spaces. Theorem 3 ensures finding
each next nearest-neighbor in one hop, irrespective of the di-
mensionality of the space. This property is enabled by the
accurate Voronoi-based partitioning of the data space with
SWAM-V. On the other hand, with inaccurate space parti-
tioning CAN is forced to use blind flooding. With flooding,
the communication cost of the query is proportional to the
connectivity of nodes, which grows as the dimensionality of
the space increases. Due to the “no-free-lunch” rule, with
SWAM-V the extra complexity associated with higher di-
mensionality is shifted to the index construction time, but
since index construction occurs in a distributed fashion and
incrementally as nodes join and leave the network, the higher
construction cost hides. Figure 7-b shows how the query
time of the range queries with selectivity s = 0.1% scales as
PDN grows in size. The dimensionality of the data space is
fixed to d = 10. The random graph component of SWAM-V
satisfies Property 3, and similar to BASIC, enables SWAM-
V to maintain the logarithmic query processing time as the
network size scales. On the other hand, since CAN only
consists of a grid-like component, the traversal of the index
slows sublinearly with increase in the size of the network.
Finally, we calculated the locality measures CCG and NDD

for 1000 SWAM-V index structures with size and data di-
mensionality randomly selected from {500, 1000, 5000, 10000}
and {2, 5, 10, 20}, respectively. On average, we found CCG �
0.54, which is comparable to CCG = 0.75 for the small-world
graph. Also, NDD is a sharp normal distribution with stan-
dard deviation σ = 0.02, which ensures high content locality
with the SWAM-V index topology.

5. RELATED WORK
Multi-dimensional access methods for database systems

can be categorized to two classes [10]: hierarchical access
methods and hash-based access methods. With the ad-
vent of the distributed and networked database systems,
and most recently PDNs, access methods from each of these
classes are extended to support efficient access in distributed
environments. In [23], a 2-level hierarchy with a distributed
root architecture is proposed to index a PDN. With two lev-
els in the hierarchy, the filtering power of this access method
is limited. In [1], prefix search tree is used as an index



structure for PDNs. Also, in [16] a Voronoi-based heuris-
tic is applied to develop a search tree. As we discussed in
Section 3.2, hierarchical index structures fail to distribute
the query execution load fairly among PDN nodes. On the
other hand, in [12] and [4] DHTs are assumed as the fun-
damental data access mechanism for in-network query pro-
cessing with PDNs. Also, in [11] a range-caching scheme
is developed based on the DHT indexing to support range
queries. Distributed hash-based access methods such as LH∗

[15] and DHTs [18, 21] assume PDN as a distributed storage
system, where users are indifferent to the placement of the
data within the data network and only insist on data avail-
ability. Such a service model is inconsistent with the typical
usage of PDNs as content-sharing federation of autonomous
nodes that maintain their own content. SWAM-V respects
autonomy of the PDN nodes.

6. CONCLUSION AND FUTURE WORK
In this paper, first we defined a formal framework to study

the problem of similarity-search in PDNs. Subsequently,
we proposed a set of properties to generate efficient index
structures (i.e., PDN topologies) for processing similarity
queries in PDNs. These properties are realized by a fam-
ily of access methods, the SWAM family. We introduced
SWAM-V, a member of the SWAM family, which supports
exact-match, range, and kNN queries for PDNs with multi-
attribute objects. Leveraging on the SWAM properties,
SWAM-V achieves query time, communication cost, and
computation cost logarithmic to the size of the network.
We verified these results via both analysis and simulation.
Moreover, since unlike DHTs, SWAM-V does not enforce
the placement of the objects within the network, it avoids
unnecessary content replacement, supports object replica-
tion, and adapts to the object distribution. For example, in
a typical case SWAM-V improves the communication cost
of kNN queries at least 300% and the query time of range
queries up to 200%. Finally, we demonstrate that by dis-
tributed and incremental pre-computation of the accurate
Voronoi-based partitioning, SWAM-V enjoys a query cost
which is mainly independent of the dimensionality scale-up.
We intend to extend this study by investigating other

members of the SWAM family that as compared to SWAM-
V enforce less constraining assumptions and support PDN
applications with specific restrictions/requirements. With
some PDN applications, strict enforcement of the neighbor
selection rules to construct the index structure is either im-
possible or inefficient. For instance, with a sensor network
(i.e., another example of PDN) a node nk beyond the radio
range of node nk′ , can never be a neighbor to nk′ , irrespec-
tive of the similarity of the two keys k and k′. Currently, we
are studying SWAM-P, an access method with probabilis-
tic index topology and flexible neighbor selection policies
that allow PDN nodes to exercise their autonomy in select-
ing their neighbors as they join the PDN. Our initial re-
sults show that as the PDN nodes exercise more autonomy,
the efficiency of SWAM-P gracefully degrades from that of
SWAM-V to the efficiency of the basic access method [3].
Also, with SWAM-V we assume queries are much more fre-
quent than updates. However, with some PDN applications,
datasets and/or node-sets are extremely dynamic such that
the overhead of maintaining the index structure exceeds the
benefit of using the access method. With such applications,
efficient but simple scan-based access methods may outper-
form the access methods with complex index structures. In
[2], we present initial results of our effort to develop such an
access method.

Acknowledgments
We would like to thank Jigesh Vora, Gerran Ueyama, and
Ranjit Raveendran for their assistance in conducting the ex-
periments. This research has been funded in part by NSF
grants EEC-9529152 (IMSC ERC), IIS-0082826 (ITR) and
IIS-0238560 (CAREER) and unrestricted cash gift from Mi-
crosoft. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the views of the Na-
tional Science Foundation.

7. REFERENCES
[1] K. Aberer, P. Cudr-Mauroux, A. Datta, Z. Despotovic,

M. Hauswirth, M. Punceva, and R. Schmidt. P-grid: A
self-organizing structured p2p system. SIGMOD Record,
32(2), 2003.

[2] F. Banaei-Kashani and C. Shahabi. Efficient flooding in
power-law networks. In Proceedings of Twenty-Second ACM
Symposium on Principles of Distributed Computing
(PODC’03), July 2003.

[3] F. Banaei-Kashani and C. Shahabi. Searchable querical data
networks. In Proceedings of the International Workshop on
Databases, Information Systems and Peer-to-Peer
Computing in conjunction with VLDB’03, September 2003.

[4] M. Bawa, G. Manku, and P. Raghavan. SETS: Search enhanced
by topic-segmentation. In Proceedings of the 26th Annual
International Conference on Research and Development in
Informaion Retrieval (SIGIR’03), August 2003.

[5] B. Bollobás. Random Graphs. Academic Press, New York,
1985.

[6] S. Brin. Near neighbor search in large metric spaces. In
Proceedings of the 21th International Conferenceon Very
Large Data Bases (VLDB’95), September 1995.

[7] E. Chavez, G. Navarro, R. A. Baeza-Yates, and J. L.
Marroquin. Searching in metric spaces. ACM Computing
Surveys, 33(3), 2001.

[8] A. Doan, P. Domingos, and A. Halevy. Reconciling schemas of
disparate data sources: A machine-learning approach. In
Proceedings of ACM International Conference on
Management of Data (SIGMOD’01), November 2001.

[9] Freenet. Freenet project, 2004. http://freenet.sourceforge.net/.

[10] V. Gaede and O. Günther. Multidimensional access methods.
ACM Computing Surveys, 30(2), 1997.

[11] A. Gupta, D. Agrawal, and A. El Abbadi. Approximate range
selection queries in peer-to-peer systems. In Proceedings of the
First Biennial Conference on Innovative Data Systems
Research, January 2003.

[12] R. Huebsch, N. Lanham, B. Loo, J. Hellerstein, S. Shenker,
and I. Stoica. Querying the inernet with PIER. In Proceedings
of 29th International Conference on Very Large Data Bases
(VLDB’03), September 2003.

[13] KaZaA. Sharman networks, 2004. http://www.kazaa.com/.

[14] J. Kleinberg. The small-world phenomenon: an algorithmic
perspective. In Proceedings of the 32nd ACM Symposium on
Theory of Computing, May 2000.

[15] W. Litwin, M. Neimat, and D. Schneider. LH∗: A scalable,
distributed data structure. ACM Transactions on Database
Systems, 21(4), 1996.

[16] G. Navarro. Searching in metric spaces by spatial
approximation. The Very Large Databases Journal (VLDBJ),
11(1), 2002.

[17] A. Okabe, B. Boots, K. Sugihara, and S. Chiu. Spatial
Tessellations: Concepts and Applications of Voronoi
Diagrams. John Wiley, 2nd edition, 2000.

[18] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. In
Proceedings of ACM SIGCOMM ’01, August 2001.

[19] R. Seidel. Exact upper bounds for the number of faces in
d-dimensional Voronoi diagrams, DIMACS Series, volume 4.
American Mathematical Society, 1991.

[20] SETI@home, 2004. http://setiathome.ssl.berkeley.edu//.

[21] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. In Proceedings of ACM
SIGCOMM ’01, August 2001.

[22] D. Watts and S. Strogatz. Collective dynamics of small world
networks. Nature, (393):440–442, 1998.

[23] B. Yang and H. Garcia-Molina. Designing a super-peer
network. In Proceedings of the 19th International Conference
on Data Engineering (ICDE’03), March 2003.


