
1

Efficient Algorithms and Cost Models for Reverse Spatial-Keyword
k-Nearest Neighbor Search

YING LU and JIAHENG LU, Renmin University of China
GAO CONG, Nanyang Technological University
WEI WU, Institute for Infocomm Research, Singapore
CYRUS SHAHABI, University of Southern California

Geographic objects associated with descriptive texts are becoming prevalent, justifying the need for spa-
tial keyword queries that consider both locations and textual descriptions of the objects. Specifically, the
relevance of an object to a query is measured by spatial-textual similarity that is based on both spatial prox-
imity and textual similarity. In this article, we introduce the Reverse Spatial-Keyword k-Nearest Neighbor

(RSKkNN) query, which finds those objects that have the query as one of their k nearest spatial-textual
objects. The RSKkNN queries have numerous applications in online maps and GIS decision support systems.

To answer RSKkNN queries efficiently, we propose a hybrid index tree, called IUR-tree (Intersection-
Union R-Tree) that effectively combines location proximity with textual similarity. Subsequently, we design

a branch-and-bound search algorithm based on the IUR-tree. To accelerate the query processing, we improve
IUR-tree by leveraging the distribution of textual description, leading to some variants of the IUR-tree called
clustered IUR-tree (CIUR-tree) and combined clustered IUR-tree (C2IUR-tree), for each of which we develop

optimized algorithms. We also provide a theoretical cost model to analyze the efficiency of our algorithms.
Our empirical studies show that the proposed algorithms are efficient and scalable.

Categories and Subject Descriptors: H.2.8 [Database applications]: Spatial databases and GIS

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: Reverse k-Nearest Neighbor queries, Spatial-Keyword Query, Performance Analysis

ACM Reference Format:
Ying Lu, Jiaheng Lu, Gao Cong, Wei Wu, and Cyrus Shahabi. 2014. Efficient Algorithms and Cost Models for Reverse
Spatial-Keyword k-Nearest Neighbor Search. ACM Trans. Datab. Syst. V, N, Article 1 (January YYYY), 42 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. Introduction
With the advent of Web 2.0, many Web objects are associated with both textual contents and loca-
tions. For example, more than 7 million tweets per day are geotagged, or many review websites such
as Yelp have both location and textual information, such as “Seafood buffet promotion”
or “Japanese sushi takeaway”. This phenomena gives rise to spatial keyword queries that
can search for objects in both keywords and location spaces.

This research is partially supported by 973 Program of China (Project No. 2012CB316205), NSF China (No: 61170011),
RUC Research Funds (No.11XNJ003), Singapore MOE AcRF Tier 2 Grant (ARC30/12) and Tier 1 Grant (RG66/12).
Author’s addresses: Y. Lu, (current address) Department of Computer Science, University of Southern California, Los Ange-
les, CA, 90089; email:lvying603@gmail.com. The bulk of the research of Y. Lu was done at Renmin University, and she is
currently affiliated with University of Southern California. J. Lu (corresponding author), DEKE, MOE and School of Infor-
mation, Renmin University of China, Beijing, China, 100872; email:jiahenglu@ruc.edu.cn. G. Cong, School of Computer
Engineering, Nanyang Technological University, Singapore, 639798; email:gaocong@ntu.edu.sg. W. Wu, Data Analytics
Department, Institute for Infocomm Research, Singapore 138632; email:wwu@i2r.a-star.edu.sg. C. Shahabi, Department of
Computer Science, University of Southern California, Los Angeles, CA, 90089; email:shahabi@usc.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the
first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee.
Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701
USA, fax +1 (212) 869-0481, or permissions@acm.org.
c⃝ YYYY ACM 0362-5915/YYYY/01-ART1 $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

1:2 Y. Lu et al.

Towards this end, we introduce a new type of spatial-keyword query, dubbed Reverse Spatial-
Keyword k-Nearest Neighbor (RSKkNN), which is a type of RkNN queries for finding objects
whose k-nearest neighbors (kNN) include the query. RkNN has received considerable attention in
the recent decades due to its importance in several applications involving decision support [Korn
and Muthukrishnan 2000; Kang et al. 2007; Wu et al. 2008a], resource allocation [Cheema et al.
2009], profile-based marketing [Emrich et al. 2010], etc. Among many of these applications, the
RkNN is mainly used to discover influence sets. An influence set is a set of objects in a dataset that
are highly influenced by the query object. For example, existing stores may be “influenced” by a
new store outlet since their customers may be closer to the new store and they may be attracted by
the new store. To illustrate, consider the example in Figure 1. The points p1 · · · p9 in Fig. 1(a) are
existing stores in a region, and q is a new store (the rectangles N1· · ·N7 in Fig. 1(a) are MBRs that
will be explained later in Section 5). Assuming k=2, the results of the RkNN query for point q are
{p4, p5, p9}, as q is the top-2 spatial nearest neighbor of p4, p5 and p9.

In previous studies [Stanoi et al. 2000; Tao et al. 2004; Achtert et al. 2006; Wu et al. 2008b],
spatial distance is usually considered as the sole influence factor. However, in real applications,
distance alone may not be sufficient to characterize the influence between two objects. For example,
two objects (e.g., restaurants) are more likely to influence each other if their textual descriptions
(e.g., seafood buffet lunch including crab and shrimp) are similar. Therefore, in this article, we
incorporate textual similarity in RkNN, and study a new type of the RkNN problem, named Reverse
Spatial-Keyword k Nearest Neighbor (RSKkNN), where both spatial distance and textual similarity
are considered. The RSKkNN query finds the objects that have the query object as one of their
k most spatial-textual nearest objects. Recall Figure 1, which illustrates the difference between
our proposed RSKkNN query and the conventional RkNN query. Points p1 · · · p9 in Fig. 1(a) are
existing stores in a region, and q is a newly opened store. The textual description of each store is
given in Fig. 1(b), where the weight of each word can be calculated using the TF-IDF measure
[Salton 1988]. An RSKkNN query with q as the query object finds the existing stores that will be
influenced most by q considering both the spatial proximity and the textual similarity. For example,
suppose k=2, the results of the traditional RkNN query are {p4, p5, p9}, while the results of our
RSTkNN query will be {p1, p4, p5, p9}. Note p1 becomes an answer since the textual description
of p1 is similar to that of q, and q is a top-2 spatial-textual nearest neighbor when spatial proximity
and textual similarity are considered. However, q is not a 2-NN of p1 when spatial distance alone is
considered.

N1

N3

N5

N2

N6

N4

N7

y

x

p
3

p
4

p
2

p
5

p
6

p
7 p

8

p
9

q(12,6)

p
1

(a) Distribution of branch stores

x

ObjVct1 8 8 0 0 0

ObjVct2 1 1 8 8 4

ObjVct3 1 1 4 4 1

ObjVct4 7 7 1 1 0

ObjVct5 4 4 1 1 0

ObjVct6 1 1 7 7 0

ObjVct7 0 0 0 0 8

ObjVct8 1 1 0 0 7

ObjVct9 0 0 1 1 4

0

4

1

0

0

0

8

7

4

12

16

15

0

5

11

20

22

10

3

4

14

11

6

0

18

25

19

p
1

p
2

p
3

p
4

p
5

p
6

p
7

p
8

p
9

q 12 6 ObjVctQ 8 8 0 0 0 0

vectorsy
lap

top
cam

era
dia

perpanspo
rtsw

ear

stat
ion

ery

(b) Locations and products of branch stores in (a)

Fig. 1. An example of RSKkNN queries

RSKkNN queries have many applications ranging from map-based Web search to GIS decision
support. For example, a shopping mall can use RSKkNN queries to find potential customers whose
profiles are relevant to the products of the shopping mall and whose locations are close to this
shopping mall. As another example, a person who wants to buy/rent a house would describe her/his
desired house with both location and textual description that specifies the amenities (s)he wants.

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

Efficient Algorithms and Cost Models for Reverse Spatial-Keyword k-Nearest Neighbor Search 1:3

The RSKkNN query can help landlords find the potential buyers/renters who may be interested in
their houses based on the location and description of the houses.

Unfortunately, taking into account the textual relevance in RSKkNN will pose great challenges to
the existing techniques for processing conventional RkNNs (without considering textual relevance),
and render them inapplicable to process RSKkNN queries. In particular, an attempt to solve the
RSKkNN problem using the existing methods is to map the keywords to feature dimensions, and use
the existing techniques for conventional RkNN queries. Unfortunately, this simple solution has the
following limitations: Existing solutions for RkNN queries are based on the ℓp norm metric space,
which is suitable to compute the similarity for dense dataset (e.g., location points) but not for the
high dimensional and sparse dataset [Tan et al. 2005]. However, the spatial-keyword objects in our
problem, which is the fusion of geographical coordinates of point data and the textual descriptions,
can be both high dimensional and sparse. Thus, most of existing algorithms based on ℓp norm metric
space are not effective for answering RSKkNN queries. Even if we can use the ℓp norm metric to
measure the textual similarity, they might still suffer from a severe efficiency problem (a.k.a. “curse
of dimensionality”) ([Stanoi et al. 2000; Stanoi et al. 2001; Tao et al. 2004; Wu et al. 2008b; Cheema
et al. 2011]). Finally, the work in [Singh et al. 2003] proposes an efficient approach to answer RkNN
queries in high dimension. Unfortunately, their algorithm can only provide approximate answers in
high dimension. Note that our problem requires efficient algorithms to provide exact answers.

Therefore, to process an RSKkNN query accurately and efficiently, in this article, we propose a
series of carefully designed solutions and optimizations. In particular, we first give a formal defini-
tion of RSKkNN queries, which combines the Euclidean distance for spatial data and the extended
Jaccard similarity for textual data. We then propose an effective hybrid indexing structure called
Intersection-Union-R tree (IUR-tree) that stores both spatial and textual information. We develop
an efficient branch-and-bound algorithm to process RSKkNN queries based IUR-trees by effec-
tively computing spatial-textual similarities between index nodes. We carefully design the upper
and lower bounds on the similarity between nodes to avoid the access of irrelevant index nodes,
thus saving I/O costs. In addition, as the main theoretical contribution of this article, we propose a
cost model and analyze the performance of our algorithm theoretically based on IUR-trees. We are
not aware of any existing cost model with the fusion of location proximity and textual similarity.

To further optimize our algorithm, we then propose two enhanced hybrid indexes, namely Clus-
tered IUR-tree (i.e. CIUR-tree) and Combined CIUR-tree (i.e. C2IUR-tree), which enriches the
entry contents of R-trees by adding cluster information of texts and changes the method of R-tree
construction. Algorithms based on CIUR-tree and C2IUR-tree are also proposed, by leveraging the
cluster information to change the order of node access during the traversal of trees to speedup the
prcessing. Finally, results of empirical studies with implementations of all the proposed techniques
demonstrate the scalability and efficiency of our indexes and algorithms.

Outline of the article. The article is structured as follows. Section 2 defines our research prob-
lem. In Sections 3 and 4, we extensively survey the related work and show baseline algorithms,
respectively. The IUR-tree index and the RSKkNN algorithm are presented in Sections 5 and 6,
respectively. In particular, we develop a cost model and analyze the complexity of our algorithm in
Section 6.3. Sections 7 is dedicated to the CIUR-tree and the C2IUR-tree. Section 8 reports on the
experimental results and finally Section 9 concludes this article.

2. Problem Definition
We treat the textual content of a Web object as a bag of weighted words. Formally, a document is
defined as {<di,wi>}, i = 1· · ·m, where wi is the weight of word di. The weight can be computed
by the well-known TF-IDF scheme [Salton 1988].

Let P be a universal Web object set. Each object p∈P is defined as a pair (p.loc, p.vct), where
p.loc represents the spatial location information and p.vct is the associated text represented in vector
space model. We define RSKkNN query as follows. Given a set of objects P and a query point q
(loc,vct), RSKkNN(q, k, P) finds all objects in the database that have the query point q as one of the

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

1:4 Y. Lu et al.

k most “similar” neighbors among all points in P , where the similarity metric combines the spatial
distance and textual similarity. Following the existing work [I.D.Felipe et al. 2008; Cong et al.
2009], we define a similarity metric, called spatial-textual similarity1, in Eqn(1), where parameter
α ∈ [0, 1] is used to adjust the importance of the spatial proximity and the textual similarity factors.
Note that users can adjust the parameter α at the query time.

SimST (p1, p2) = α ∗ SimS(p1.loc, p2.loc) +
(1− α) ∗ SimT (p1.vct, p2.vct) (1)

SimS(p1.loc, p2.loc) = 1− dist(p1.loc, p2.loc)− φs
ψs − φs

(2)

SimT (p1.vct, p2.vct) =
EJ(p1.vct, p2.vct)− φt

ψt − φt
(3)

As shown in Eqn(2), the spatial proximity SimS(., .) of objects p1, p2 ∈ P describes the spatial
closeness based on the Euclidean distance dist(p1.loc, p2.loc). In Eqn(2), φs and ψs denote the
minimum and maximum distance of pairs of distinct objects in P . They are used to normalize
the spatial distance to the range [0, 1]. The textual similarity SimT (., .) of objects p1, p2 ∈ P is
shown in Eqn(3). Similarly, φt and ψt are the minimum and maximum textual similarity of pairs of
distinct objects in the dataset, respectively. Specifically, EJ(p1.vct, p2.vct) is the Extended Jaccard
[Tan et al. 2005], which is widely used in textual similarity computing, as shown in Eqn(4).

EJ(v⃗, v⃗′) =

∑n
j=1 wj × w′

j∑n
j=1 w

2
j +

∑n
j=1 w

′
j
2 −

∑n
j=1 wj × w′

j

, (4)

where v⃗ =< w1, · · · , wn >, v⃗′ =< w′
1, · · · , w′

n >

Alternatively, the textual similarity can also be measured by other distance measures such as
cosine similarity, Euclidean similarity, Pearson Correlation Coefficient (PCC) [Strehl et al. 2000],
averaged Kullbak-Leibler divergence (KL divergence) [Kullback and Leibler 1951], or the categor-
ical similarity measures in [Boriah et al. 2008]. For example, cosine similarity between two textual
vectors v⃗ and v⃗′ is given in Eqn. (5), where cosine similarity is defined by the cosine of the angle
between two vectors independent from the length difference of the two vectors. Therefore, cosine is
translation variant but scale invariant, whereas Euclidean similarity is translation invariant but scale
variant. Extended Jaccard combines both aspects of direction and length differences of the two vec-
tors. Previous studies [Huang 2008; Lee and Welsh 2005; Haveliwala et al. 2002; Strehl et al. 2000],
which extensively compare various distance measures for text, show that there is no similarity mea-
sure that outperforms other measures in all cases. In fact, their difference in many applications is
not significant. In this article, we present our new algorithms using the extended Jaccard, but it is
important to note that our algorithm is not specific to the extended Jaccard and we will discuss how
to extend our method to other similarity measure such as cosine similarity.

Cosine(v⃗, v⃗′) =

∑n
j=1 wj × w′

j√∑n
j=1 w

2
j ∗

√∑n
j=1 w

′
j
2
, (5)

where v⃗ =< w1, · · · , wn >, v⃗′ =< w′
1, · · · , w′

n >

Formally, given a query object q=(loc, vct), an object q∈P is one of k most similar objects with
p, denoted by q∈ SKkNN (p, k, P) if and only if it satisfies the condition:

|{o ∈ P |SimST (o, p) ≥ SimST (q, p)}| < k

1Hereafter, “spatial-textual similarity” is also called “similarity” for short.

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

Efficient Algorithms and Cost Models for Reverse Spatial-Keyword k-Nearest Neighbor Search 1:5

Given a query q, RSKkNN query retrieves objects whose k most similar objects include q. It is
formally defined as:

RSKkNN (q, k, P) = {p ∈ P |q ∈ SKkNN (p, k, P)} (6)

For example, in Fig. 1, given a query q(12, 6) whose textual vector is <(stationery,8),
(sportwear,8)>, and k=2, α=0.6, then RSKkNN (q, k, P)={p1, p4, p5, p9}. Note that p1 is an
answer due to the high textual similarity between p1 and q.

3. Related Work
In this section, we review the existing studies on reverse kNN queries, and analyze why they are
not applicable to process RSKkNN queries. We also extensively survey related works on spatial
keyword queries and cost models on R-tree family index structures.

3.1. Reverse k Nearest Neighbor Queries
Reverse k Nearest Neighbor (RkNN) queries have applications in decision support systems, profile
based marketing, data streaming, document databases, and bio-informatics. There exist a host of
works on RkNN queries. The existing approaches for RkNN can be grouped into the following two
categories.

1) The first class of solutions is based on pre-computation. In particular, [Korn and Muthukrishnan
2000] shows a pre-processing based algorithm for answering RNN (i.e., k=1) queries. In the pre-
processing stage, each object’s nearest neighbor is found, and a circle centered at the object with
distance to its nearest neighbor as radius is created. Given a query node q, if q appears in the circle
of node n, then n is one of answers. [Lin et al. 2003] proposes an index structure called RDNN-
tree (R-tree containing Distance of Nearest Neighbors) to facilitate the processing of RNN queries.
Those pre-computing methods naturally extends to k > 1. However, they cannot work for RSKkNN
queries, since the value of k in an RSKkNN query is given online at the query time. It is impractical
to pre-compute each object’s k spatial-textual nearest neighbors for all possible values of k.

2) The second class of solutions is based on ℓp norm metric space [Stanoi et al. 2000; Stanoi
et al. 2001; Tao et al. 2004; Wu et al. 2008b; Cheema et al. 2011; Achtert et al. 2009]. Stanoi et
al. [Stanoi et al. 2000] propose an algorithm for processing an RNN query that does not require the
pre-computation of the nearest neighbor circles. The idea is to split the data space centered at query
point into six regions of 60◦ each. The algorithm finds the query point’s k nearest neighbors in each
of the six regions and examines whether they are the query’s RkNN by checking whether the query
point is one of their k nearest neighbors. This algorithm reduces an RkNN query to six conditional
kNN queries and 6 ∗ k kNN queries.

A variation of RkNN is called the bichromatic RNN query, for which Stanoi et al. further propose
a Voronoi based algorithm [Stanoi et al. 2001]. They observe that a bichromatic RNN query’s influ-
ence region is the query point’s Voronoi cell. Thus, they design a method that comprises three steps:
approximate, refine and filter. Their methods cannot be extended to process RSKkNN queries as the
textual space is a high dimensional space and the cardinality of regions increases exponentially in
terms of the number of n dimensions (i.e., 3n-1 for n dimensions [Singh et al. 2003]).

[Tao et al. 2004], [Wu et al. 2008b], and [Cheema et al. 2011] propose bisector-based solutions.
These solutions exploit the following geometric property of a bisector: a bisector between two points
p and q (query point) divides the data space into two half-planes, and p is closer than q to the points
in the half-plane that contains p. Hence, if an object is contained in more than k such half-planes,
there exist more than k objects that are closer to the object than the query point, and therefore the
object cannot be a result of the RkNN query q.

Achtert et al. [Achtert et al. 2009] propose an algorithm that processes RkNN queries by estimat-
ing the lower bound and the upper bound of an object’s (and an index entry’s) distance to its kth
nearest neighbor. If the distance between a query point and an object is larger than the estimated
upper bound of the kNN distance, the object is pruned. On the other hand, if the distance between
the query point and an object is shorter than the estimated lower bound of the kNN distance, the

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

1:6 Y. Lu et al.

object belongs to the result set. As more objects are retrieved, their upper bound and lower bound of
kNN distance becomes tighter, and finally all objects are either pruned out or included in the final
result set.

To sum up for the second class of solutions, the previous studies are based on ℓp norm metric
space and they exploit geometric properties to facilitate the processing of RkNN queries. Unfortu-
rally, they cannot address the RSKkNN queries, which combines the RkNN and textual similarity
search. This is because with textual information, the geometric properties are lost. Further, the ℓp
norm metric space is not suitable for computing the similarity between textual descriptions as their
vector representations are high dimensional and sparse [Tan et al. 2005].

3.2. Spatial Keyword Queries
Queries on spatial objects associated with textual information are closely related to the RSKkNN
query. Top-k spatial keyword query, proposed in [I.D.Felipe et al. 2008], is a combination of a
top-k spatial query and a keyword query. The result of a top-k query is a list of the top-k objects
ranked according to a ranking function that considers both distance and text relevance. Location-
aware top-k text retrieval (LkT) query [Cong et al. 2009] is similar to top-k spatial keyword query.
In an LkT query, the text relevancy score can be computed using the information retrieval models
(e.g., TF-IDF model). Cong et al. [Cong et al. 2009] propose an indexing structure called IR-tree
for processing the LkT query. During the processing of an LkT query, the minimum spatial-textual
similarity between query and index node is computed to guide the search for the top k spatial-
textual relevant objects. In addition, the LkPT query [Cao et al. 2010] extends the LkT query by
taking “prestige” into account in text relevance computation where a relevant object with nearby
objects that are also relevant is prestigious and thus preferred. These queries are different from the
RSKkNN queries, which can be considered as the “reverse” version of the spatial keyword query.

Indexing Structures for Spatial Keyword Queries Several indexing structures have been proposed to
facilitate the processing of spatial keyword queries ([Vaid et al. 2005] [Zhou et al. 2005] [I.D.Felipe
et al. 2008] [Cong et al. 2009] [Zhang et al. 2009] [Li et al. 2011]).

Vaid et al. [Vaid et al. 2005] propose two spatial-textual indexing schemes based on grid indexing
and inverted file. Zhou et al. [Zhou et al. 2005] consider three hybrid index structures that integrate
inverted files and R*-tree in different ways: (i) inverted file and R*-tree index, (ii) first inverted file
then R*-tree, (iii) first R*-tree then inverted file. It is shown that the second scheme works the best
for location-based web search.

The IR-tree [Cong et al. 2009] structure augments an R-tree node with inverted lists, which is
suitable for location-aware top-k text retrieval (LkT) queries that load posting lists only for the
query keywords. Li et al. [Li et al. 2011] presents an index structure, which is also called IR-tree.
To distinguish the two IR-trees, we refer to the IR-tree [Li et al. 2011] as the Li-IR-tree, and that
in [Cong et al. 2009] as the Cong-IR-tree. The difference between the Cong-IR-tree and the Li-IR-
tree is that the Cong-IR-tree stores the inverted files for each node separately while the Li-IR-tree
stores one integrated inverted file for all the nodes. More specifically, the posting list for each term
in the Li-IR-tree corresponds to the concatenation of the posting lists of all the nodes of the Cong-
IR-tree. Note that with the RSKkNN queries, we need the information about all the words in an
entry to estimate similarity between entries, which are provided in neither Cong-IR-tree nor Li-IR-
tree. In [Khodaei et al. 2012], Khodaei et. al also combine a spatial distance measure with a textual
distance measure. They use TF/IDF for text and then devise their own spatial similarity measure to
make it consistent with the fundamentals of TF/IDF. This way they could use a single inverted-file
index structure for both the textual and spatial features of the objects. However, they focuse on the
top-k queries only.

3.3. Reverse top-k queries
Recent work on reverse top-k queries [Vlachou et al. 2010] is also relevant to our work. Reverse
top-k query is a “reverse” version of top-k query and it also finds the objects that are influenced by

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

Efficient Algorithms and Cost Models for Reverse Spatial-Keyword k-Nearest Neighbor Search 1:7

a query object. Given a set of user preferences and a set of objects, a reverse top-k query finds an
object for a set of users for whom the object is one of their top-k objects. Reverse top-k queries and
RSKkNN queries are different in the following two aspects. First, RSKkNN queries consider spatial
proximity while reverse top-k queries do not. Second, RSKkNN queries work on objects associated
with location information and text description while reverse top-k queries work on objects and user
preferences described by a set of numerical attribute values. Due to these fundamental differences,
techniques developed for reverse top-k queries are not applicable to RSKkNN queries.

3.4. Cost models on R-tree family index structures
In this article, for the first time (to the best of our knowledge), we propose a cost model and theoret-
ical analysis for a query that considers the fusion of both location proximity and textual similarity.
Hence, in this section, we extensively review performance analysis on the R-tree family index struc-
tures that has been studied for various spatial queries in the past decades. The previous studies on
cost model can be divided into five groups: (i) for range queries and window queries; (ii) for k near-
est neighbor queries; (iii) for spatial join queries; and (iv) for continuous queries; and (v) for reverse
k nearest neighbor queries in Lp-norm space.

3.4.1. Cost analysis for range queries and window queries. There has been a large body of work
[Pagel et al. 1993; Kamel and Faloutsos 1993; Faloutsos and Kamel 1994; Theodoridis and Sel-
lis 1996; Papadopoulos and Manolopoulos 1997] that studies the cost models for predicting the
performance of R-trees on the execution of range (or window) queries. Specifically, Faloutsos et
al. [Faloutsos et al. 1987] present a model that estimates the performance of R-trees and R+-trees
assuming uniform distribution of the data. Kamel and Faloutsos [Kamel and Faloutsos 1993] and
Pagel et al. [Pagel et al. 1993] independently estimate the number of disk accesses for window
queries, assuming that the MBR of each node of the R-tree is already given. Based on the work
[Kamel and Faloutsos 1993; Pagel et al. 1993], Foloutsos and Kamel [Faloutsos and Kamel 1994]
use a property of the dataset called fractal dimension to model R-tree performance for non-uniform
distribution. However the model [Faloutsos and Kamel 1994] is applicable only to point datasets.
Theodoridis et al. [Theodoridis and Sellis 1996] propose an analytical model which predicts the per-
formance of R-trees for range queries based on the density property of the dataset without assuming
uniform data distribution. The model works for both point and non-point datasets.

3.4.2. Cost analysis for k nearest neighbor queries. Papadopoulos et al. [Papadopoulos and
Manolopoulos 1997] provide lower and upper bounds of the nearest neighbor query performance
on R-trees for the L2 norm metric. Korn et al. [Korn et al. 2001] extends the work [Papadopoulos
and Manolopoulos 1997] for k-nearest neighbor queries with arbitrary parameter k. However, the
bounds [Korn et al. 2001] become excessively loose when the dimensionality of k increases, ren-
dering it impractical for high dimensional data. Berchtold et al. [Berchtold et al. 1997] present a
cost model for query processing in high-dimensional data spaces, and Tao et al. [Tao et al. 2004]
propose a cost model for kNN queries in low and medium dimension spaces.

3.4.3. Cost analysis for spatial join queries. To the best of our knowledge, the work by Huang
et al. [Huang et al. 1997] is the first attempt to provide a formula to predict the efficiency for
spatial join queries. Theodoridis et al. [Theodoridis et al. 2000] present a model that predicts the
performance of R-tree-based index structures for selection queries and an extension of this model
for supporting join queries. Moreover, an analytical model and a performance study of the similarity
join operation is given in [Bohm and Kriegel 2001]. Furthermore, [Corral et al. 2006] gives a cost
model for the k-Closest-Pairs query (a type of distance join in spatial databases), which discovers
the k pairs of objects formed from two different datasets with the k smallest distances.

3.4.4. Cost analysis for continuous queries. [Tao and Papadias 2003] presents three cost models
for continuous queries, including continuous window queries, continuous k nearest neighbor queries
and continuous spatial joins, based on TPR-tree [Saltenis et al. 2000]. The three models are based
on a general framework for transforming any continuous spatial query to the corresponding time-

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

1:8 Y. Lu et al.

parameterized version query, which returns: (i) the objects that satisfy the corresponding spatial
query, (ii) the expiry time of the result, and (iii) the change that causes the expiration of the result.

3.4.5. Cost analysis for reverse k nearest neighbor queries in Lp-norm space. I/O cost analysis
for both monochromatic and bichromatic RkNN queries in Lp-norm space are studied in the recent
work [Cheema et al. 2011; 2012]. Their methods are based on the Euclidian geometric properties
and a concept of influence zone, which is the area such that every point inside this area is the RkNN
of query object q and every point outside this area is not the RkNN.

Finally, a preliminary version of this work appears in [Lu et al. 2011]. But in this journal article,
we first propose a new cost model to theoretically analyze the performance of algorithms dealing
with both location proximity and textual similarities, which is not discussed in any previous litera-
ture (to our best knowledge). We also propose a new index tree called C2IUR tree, which considers
both location proximity and textual similarity during the construction of the index tree.

4. Baseline Methods
As discussed in Section 3, the similarity metric proposed in Section 2 combines both textual and
location information, and therefore the existing methods for RkNN queries cannot be directly em-
ployed to handle RSKkNN queries due to the new challenge. One might be tempted to answer
an RSKkNN query by separately computing the results for the reverse spatial k nearest neighbors
(RSkNN) and the reverse keyword k nearest neighbors (RKkNN), and then select a proper subset
from the union of these two results. Besides performance shortcomings, this idea has another seri-
ous problem: the result of an RSKkNN query may not even be a subset of the union of the results
from the corresponding RSkNN and RKkNN queries. To illustrate, see the example given in Figure
2, assuming k = 1, α = 0.5, we have RSkNN(q) = {p1}, RKkNN(q) = {p2}, whereas RSKkNN(q)
= {p3}. This is because q is the nearest neighbor of p1 by spatial distance and the nearest neighbor
of p2 by textual similarity only. However, by combing spatial and textual distance, q is neither the
nearest neighbor of p1 nor p2. (In fact, q is the nearest neighbor of p3.) Therefore, RSKkNN results
cannot be directly derived from the union of the results of RSkNN and RKkNN queries.

y

x

p3

p2

q p1

(a) Spatial Distribution

p1 1.5 1 ObjVct1 1

p2 4 4 ObjVct2 9

p3 2 2 ObjVct3 4

q 1 1 ObjVctQ 9

1

9

4

9

x y vectors sta
tion
ery

spo
rts
we
ar

(b) Locations and vectors of points in (a)

Fig. 2. Example for illustrating the relationship of RSkNN, RKkNN and RSKkNN

In the following, we develop two non-trivial baseline algorithms to correctly find all answers for
RSKkNN queries.

First, for each object o ∈ P , we pre-compute its location proximity and textual similarity, respec-
tively, with each of the other objects to obtain two sorted lists o.Ls and o.Lt. In o.Ls, the objects
are sorted in ascending order of their spatial distance to o, and in o.Lt in descending order of their
textual similarity to o. The baseline algorithm is outlined in Algorithm 1. It takes as arguments the
database P , the two pre-computed lists for each object in P and the RSKkNN query q. For each
object o ∈ P , we find its kth similar object o.STkNN that has the highest score according to the
function in Eqn(1). We find o.stkNN by using the threshold algorithm (TA) [Fagin et al. 2003] on
the two precomputed lists o.Ls and o.Lt (Line 2). If the spatial-textual similarity between o and its
k-th similar object o.stkNN is equal to or larger than the similarity between o and query q, then we
prune object o, otherwise, we add o as a result (Line 3-6). Note that this method can also handle
dynamic parameters k and α.

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

Efficient Algorithms and Cost Models for Reverse Spatial-Keyword k-Nearest Neighbor Search 1:9

For the second baseline, we utilize the available indexes (i.e. IR-trees proposed in [Cong et al.
2009] or [Li et al. 2011]) that combine spatial and textual information to compute the STkNN
object of o. That is, for each object o, we find its top-k most similar objects using the existing
spatial-textual kNN query techniques, and if the kth result is less than the similarity between o and
query q, then o is added to the result set. Therefore, the only difference between the first and the
second baseline algorithms lies in Line 2 (Algorithm 1), where the second baseline use the optimized
IR-tree to compute the nearest k spatial-textual neighbors. As shown later, we will experimentally
compare these two baseline algorithms to each other and also to our proposed algorithms..

ALGORITHM 1: Baseline (P : Database objects, Two pre-computed lists Ls and Lt for each object o in P ,
q: query)
Output: All objects o, s.t. o∈RSKkNN(q, k, P).

1: for each object o in P do
2: o.STkNN ← TA(k, o.Ls, o.Lt);
3: if SimST (o, o.stkNN) ≥ SimST (o, q) then
4: Prune object o;
5: else
6: Report object o as a result;

5. A Hybrid Index: IUR-tree
To answer an RSKkNN query efficiently, we propose an effective hybrid index called IUR-tree
(Intersection-Union R-tree), which is a combination of textual vectors and R-trees [Guttman 1984].
Each node of an IUR-tree contains both spatial location and textual information. Each leaf node
contains entries2 in the form of (ObjPtr, ObjLoc, ObjV ct), where ObjPtr refers to an object in
the database; ObjLoc represents the coordinates of the object; and ObjVct is the textual vector of
the object. A non-leaf node R of IUR-tree contains entries in the form of (Ptr, mbr, IntUniV ct,
cnt), where 1) Ptr is the pointer to a child node of R; 2) mbr is the MBR of the child node of R;
3) IntUniVct is the pointer to two textual vectors: an intersection vector and a union vector. Each
item/dimension in a textual vector corresponds to a distinct word that appears in the documents
contained in the subtree rooted at Ptr. The weight of each item in the intersection (resp. union)
textual vector is the minimum (resp. maximum) weight of the items in the documents contained in
the subtree rooted at Ptr. The two vectors are used to compute the similarity approximations (to be
presented). Note that the two vectors are not stored inside the nodes of the IUR-tree. The reason is
that this guarantees the sizes of all index nodes are the identical and fixed; and 4) cnt is the number
of objects (in the leaf nodes) in the subtree rooted at Ptr.

Figure 3 illustrates the IUR-tree for the objects in Figure 1. The intersection and union textual
vectors are presented in Fig. 5. For example, the weights of item camera in the intersection and
union vectors (IntUniV ct2) of an entry in node N3 are 7 and 8, respectively, which are the mini-
mum and maximum weights of the item in the two text vectors ObjV ct7 and ObjV ct8 (shown in
Fig.1) in node N1.

The construction of the IUR-tree is presented in Algorithm 2. It uses an insert operation that
is adapted from the corresponding insert operation of the R-tree [Guttman 1984]. To update an
IUR-tree incrementally, we use the order preserving minimal perfect hashing function (OPMPHF)3

[A.Fox et al. 1991] to organize keywords contained in the subtree of the index node N in the form
of (di.p, di.w), i ∈ [0,m], where m is the total number of words contained in the document of N ,

2For brevity, objects in the dataset and the index nodes are collectively referred as entries.
3The motivation to use this hash function is because of the property of the order preserving. When we lookup a key by
reading an OPMPHF-hashed vector, we can stop earlier if the key does not appear in the vector. But other hash functions
also work for the purpose of IUR-trees.

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

1:10 Y. Lu et al.

ObjVct1

[3, 12]

[3, 12]

ObjVct2

[4,16]
[4,16]

ObjVct3

[14, 15]

[14, 15]

ObjVct9

[19, 10]
[19, 10]

[11,0]

[11,0]

[6, 5]

[6, 5]

[14,10]

[19,15]
[6, 0]
[11,5]

[0,11]
[4,16]

[14,10]
[25,22]

[0, 0]
[11,16]

ObjVct6

[0,11]
[0,11]

p
1

p
2

p
6

p
4

p
5p

3
p
9

ObjVct4 ObjVct5

54

2 2 2 3

[18,20]

[18,20]

[25,22]

[25,22]

p
7

p
8

ObjVct7 ObjVct8

N1N N N

NN

N

[18,20]

[25,22]

IntUniVct5 IntUniVct6

IntUniVct1

IntUniVct3

IntUniVct4IntUniVct2

Fig. 3. The IUR-tree of Figure 1

IntVct1 0 0 1 1 1

IntVct2 0 0 0 0 7

IntVct3 4 4 1 1 0

IntVct4 1 1 0 0 0

IntVct5 0 0 0 0 1

1

7

0

0

1

IntVct6 1 1 0 0 0 0

UniVct1 1 1 4 4 4

UniVct2 1 1 0 0 8

UniVct3 7 7 1 1 0

UniVct4 8 8 8 8 4

UniVct5 1 1 4 4 8

4

8

0

4

8

UniVct6 8 8 8 8 4 4

IntUniVct1

IntUniVct2

IntUniVct3
IntUniVct4
IntUniVct5

IntUniVct6

lap
top

cam
era

dia
per

panspo
rtsw

ear

stat
ion
ery

lap
top

cam
era

dia
per

panspo
rtsw

ear

stat
ion
ery

Fig. 4. Text vectors for IUR-tree in Figure 2

di.p is an integer (position in the word collection) hashed from word di using OPMPHF , and di.w
is the weight of word di. In particular, in Algorithm 2, Function Convert() in Line 1 is to convert a
document to a vector in the form of (di.p, di.w). Lines 2v14 use an R-tree based implementation of
ChooseLeaf and node-split and -append with text vectors. We modify the standard AdjustTree
method to maintain the text description (Lines 15 and 19): if a pair (di.p, di.w) is inserted to entry
E, then the intersection and union vectors of each E’s ancestor should be updated recursively.

6. RSKkNN Query Algorithm
In this section, we develop an efficient algorithm to answer RSKkNN queries. At high-level, the
algorithm descends the IUR-tree in the branch and bound manner, progressively computing the
upper and lower thresholds for each entry E. Then the algorithm decides whether to prune an entry
E, to report all objects inE as results, or to consider objects ofE as candidates. In the following, we
present a novel approach to compute the lower and upper bounds of similarity, denoted kNNL(E)
and kNNU(E), between a node E in IUR-trees and its kth most similar objects in Section 6.1, and
Section 6.2 is dedicated to the details of the algorithm. We summarize the symbols used in this
section in Table I.

6.1. Computing Lower and Upper Bounds
For each entryE in an IUR-tree, we need compute the lower and upper bounds of similarity between
E and its kth most similar object, denoted by kNNL(E) and kNNU(E), respectively.

6.1.1. Similarity Approximations. To efficiently compute kNNL(E) and kNNU(E) during IUR-tree
traversal, we make full use of each entry traveled by approximating the similarities among entries,
and by defining minimal and maximal similarity functions. We first present the definitions for the
spatial distance approximation, which is given in previous works (e.g., [N.Roussopoulos et al. 1995;
Achtert et al. 2009]), and then concentrate on the new textual part.

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

Efficient Algorithms and Cost Models for Reverse Spatial-Keyword k-Nearest Neighbor Search 1:11

ALGORITHM 2: Insert (MBR, document)
1: TextV ct←Convert(document); //Covert document into text vector in form of (di.p, di.w).
2: N ← ChooseLeaf(MBR);
3: add TextV ct and MBR to node N ;
4: if N needs to be split then
5: {O, P} ← N .split();
6: if N .isroot() then
7: initialize a new node M ;
8: M .append(O.MBR, O.TextV ct);
9: M .append(P.MBR, P.TextV ct);

10: StoreNode(M);
11: StoreNode(O);
12: StoreNode(P);
13: R.RootNode←M ;
14: else
15: AdjustTree(N.ParentNode, O, P);
16: else
17: StoreNode(N);
18: if ¬N .isroot() then
19: AdjustTree(N.ParentNode, N , null);

Table I. Summary of the notations used

E,E′ Two entries (nodes) in IUR-trees
kNNL(E) The lower bound of similarity between E and its kth most similar objects
kNNU(E) The upper bound of similarity between E and its kth most similar objects
MinS(E,E′) The minimum spatial distance between the objects in E and E′

MaxS(E,E′) The maximum spatial distance between the objects in E and E′

MinMaxS(E,E′) The minimal overestimation of the spatial distances between the objects in E and E′

MinST(E,E′) The lower bound of spatial-textual similarity between the objects in E and E′

TightMinST(E,E′) A tight lower bound of spatial-textual similarity between the objects in E and E′

MaxST(E,E′) The upper bound of spatial-textual similarity between the objects in E and E′

Spatial distance approximation Given two index entries E and E′, we define three distance
approximation as follows. i) MinS(E,E′) always underestimates the distance between the objects
in subtree(E) and subtree(E′): ∀o ∈ subtree(E), ∀o′ ∈ subtree(E′): dist(o,o′)≥ MinS(E,E′); ii)
MaxS(E,E′) always overestimates the distance between the objects in subtree(E) and subtree(E′):
∀o ∈ subtree(E), ∀o′ ∈ subtree(E′): dist(o,o′) ≤ MaxS(E,E′); iii) MinMaxS(E,E′) is the minimal
distance such that: ∀o ∈ subtree(E), ∃o′ ∈ subtree(E′): dist(o,o′) ≤ MinMaxS(E,E′). Intuitively,
MinMaxS(E,E′) is the minimal overestimation of the distances between the objects in subtree(E)
and subtree(E′).

MinS(E,E’)

E

E’

MinMaxS(E,E’)

MaxS(E,E’)

Fig. 5. Illustration of spatial approximation

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

1:12 Y. Lu et al.

We assume that the page region of an entry E which is a rectangle is specified by its lower left
corner (E.l1, E.l2) and upper right corner (E.r1, E.r2). Furthermore, the center of the page region
is denoted by the vector (E.m1,E.m2) withE.mi = (E.li +E.ri)/2. The MinS, MaxS and MinMaxS
approximations defined for E and E′ can be computed as follows.

MinS(E,E′) =
√
d21 + d22, where di=pi − p′i (i=1 or 2), and

p′i =


pi = E.ri, p

′
i = E′.li if E.ri < E′.li

pi = E.li, p
′
i = E′.ri if E.li > E′.ri

di = 0 otherwise
(7)

MaxS(E,E′) =
√
d21 + d22, where di= p′i − pi (i=1 or 2), and{

pi = E.li, p
′
i = E′.ri if E.mi ≤ E′.mi

pi = E′.li, p
′
i = E.ri otherwise

(8)

MinMaxS(E,E′) = min
1≤i≤2

√
(pi − p′i)

2 + max
1≤j≤2,j ̸=i

{(E.lj − E′.rj)2, (E.rj − E′.lj)2}, where

p′i =

{
E′.li if E.mi<E

′.mi

E′.ri otherwise
pi =

{
E.li if E.mi<p

′
i

E′.ri otherwise
(9)

Note that here we assume that the distance function is L2-norm. The intuition behind the above
formulas is that i) MinS is to find the distance between two closest points from two MBRs; ii) MaxS
is to find the distance between two farthest points from two MBRs; iii) MinMaxS is to find the
minimal distance such that for any object o in E, we can always find an object o′ in E′, MinMaxS
≥ dist(o,o′).

Spatial-textual similarity approximation Given two index entries E and E′, we define the
spatial-textual similarity approximation MinST (E,E′), which always underestimates the simi-
larity between the objects in subtree(E) and subtree(E′): ∀o ∈ subtree(E), ∀o′ ∈ subtree(E′):
SimST(o,o′) ≥ MinST(E,E′). Let the intersection and union textual vectors of an entry E in
IUR-tree be <E.i1,· · · ,E.in> and <E.u1,· · · ,E.un>, respectively, where n is the total number
of words.

DEFINITION 6.1 (MinST). An underestimation of the spatial-textual similarity between two
entries E and E′ in IUR-tree, denoted by MinST (E,E′), is defined as:

MinST (E,E′) = α(1− MaxS(E,E′)− φs
ψs − φs

) +

(1− α)
MinT (E,E′)− φt

ψt − φt
(10)

where MaxS(E,E′) is defined in Equation (8), and

MinT (E,E′)=
∑n
j=1 E.wj×E

′.wj∑n
j=1 E.w

2
j+

∑n
j=1 E

′.wj2−
∑n
j=1 E.wj×E′.wj

,{
E.wj = E.uj , E

′.wj = E′.ij if E.ij*E.uj≥E′.ij*E′.uj
E.wj = E.ij , E

′.wj = E′.uj otherwise
(11)

To understand the above formula about MinT , note that the textual similarity between two ob-
jects is defined by the extended Jaccard in Equation (4). Informally, given two entries E and E′,
MinT is derived from the maximum difference of weights for each word (dimension). The formal
proof is as follows.

LEMMA 1. MinST (E,E′) satisfies the property that ∀o∈E, ∀ o′∈E′, SimST (o, o′) ≥
MinST (E,E′).

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

Efficient Algorithms and Cost Models for Reverse Spatial-Keyword k-Nearest Neighbor Search 1:13

PROOF. To prove the property ofMinST in Lemma 1, we first give a definition called similarity
preserving function.

DEFINITION 6.2 (SIMILARITY PRESERVING FUNCTION). Given two functions fsim: V ×
V → R and fdim: R × R → R, where V denotes the domain of n-element vectors and R the
real numbers. We call fsim a similarity preserving function w.r.t. fdim, such that for any three
vectors −→p =<x1, · · · , xn>,

−→
p′=< x′1, · · · , x′n>,

−→
p′′=<x′′1 , · · · , x′′n>, if ∀i ∈ [1, n], fdim(xi, x

′
i)

≥fdim(xi, x
′′
i), then we have fsim(−→p ,

−→
p′)≥fsim(−→p ,

−→
p′′).

CLAIM 1. Euclidian distance function is a similarity preserving function, w.r.t. function
fdim(x, x′) = |x− x′|.

Given the Euclidian function dist(
−→
X,

−→
X ′) =

√
n∑
i=1

(xi − x′i)2, obviously, we have that if each

dimension i, |xi − x′i| ≥|xi − x′′i|, then dist(
−→
X,

−→
X ′) ≥ dist(

−→
X,

−→
X ′′). Thus Claim 1 is true.

CLAIM 2. Extended Jaccard is a similarity preserving function, w.r.t. function fdim(x, x′) =
min{x,x′}
max{x,x′} , x, x′ > 0.

Given xi, x′i, x
′′
i , where i ∈ [1, n], such that fdim(xi, x

′
i) ≥ fdim(xi, x

′′
i) and xi ,x′i, x

′′
i >

0, we can prove that 2xix
′
i

x2
i+x

′
i
2 ≥ 2xix

′′
i

x2
i+x

′′
i
2 , then we can derive inequality (12) is true by means of

mathematical induction. Thus extended Jaccard is a similarity preserving function, i.e., if ∀i ∈ [1, n],
xi ≤

√
x′ix

′′
i , and x′i ≤ x′′i , then EJ(p⃗, p⃗′)≥EJ(p⃗, p⃗′′). Therefore Claim 2 holds.∑n

i=1 xix
′
i∑n

i=1

x2i+x
′
i
2

2

≥
∑n
i=1 xix

′′
i∑n

i=1

x2i+x
′′
i
2

2

(12)

=⇒

n∑
i=1

xix
′
i

n∑
i=1

x2i +
n∑
i=1

x′i
2 −

n∑
i=1

xix′i

≥

n∑
i=1

xix
′′
i

n∑
i=1

x2i +
n∑
i=1

x′′i
2 −

n∑
i=1

xix′′i

=⇒ EJ(−→p ,
−→
p′) ≥ EJ(−→p ,

−→
p′′)

Based on Claim 2, we proceed to prove the property of MinST , which is the fusion of MaxS
and MinT .
MinT in Eqn(11): For each dimension j, as shown in Figure 6(a), when

√
E.ij · E.uj ≥√

E′.ij · E′.uj (Case 1), i.e., E
′.ij

E.uj
≤ E.ij

E′.uj
, then for ∀E.w ∈ [E.ij , E.uj] and ∀E′.w ∈ [E′.ij , E

′.uj],

we have E′.ij
E.uj

≤ min{E.wj ,E′.wj}
max{E.wj ,E′.wj} . Thus according to Claim 2, the assignments E.wj = E.uj ,

E′.wj = E′.ij can guarantee that MinST (E,E′) is the minimum similarity between two entries
E and E′, i.e., ∀ o∈subtree(E), ∀o′∈subtree(E′), MinT (E,E′) ≤SimT (o, o′). And for Case 2,
the property of MinST can be similarly proved.

ForMinST in Eqn(10), since ∀o∈E, ∀o′∈E′ are enclosed in the MBRs of index nodesE andE′

respectively, the maximum Euclidian distance between E and E′ MaxS(E,E′) is no less than the
Euclidian distance between o and o′, i.e., MaxS(E,E′)≥ dist(o, o′), thus α(1− MaxS(E,E′)−φs

ψs−φs)

≤ α(1 − dist(o,o′)−φs
ψs−φs), where φs, ψs are constants and α∈[0, 1]. And as proved above that

∀o∈E, ∀o′∈E′, MinT (E,E′) ≤SimT (o, o′). Thus Eqn(10) can guarantee that ∀o∈E, ∀o′∈E′,
MinST (E,E′) ≤SimST (o, o′), which concludes the proof.

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

1:14 Y. Lu et al.

Case1 Case2

jj uEE ..i ⋅ jj uEE ..i ⋅

jj uEE '..i' ⋅ jj uEE '..i' ⋅jE.i juE.

jE .i' juE '.

jE.i juE.

jE .i' juE '.

(a) for each dimension j in MinT (E,E′)

rr
uEE ..i ⋅

rr
uEE '..i' ⋅

r
E.i r

uE.

r
E .i'

r
uE '.

(b) for the rth dimension in
TightMinT(E, E′)

Case1 Case2 Case3 Case4

jE.i
juE.

jE .i' juE '.

jE.i juE.

jE .i' juE '. jE .i' juE '. jE .i' juE '.

jE.i
juE. jE.i

juE.

(c) for each dimension j in MaxT (E,E′)

Fig. 6. Illustration to the estimation of MinT, TightMinT and MaxT

Lemma 1 suggests that there are at least |E′| objects o′ in E′ s.t. ∀o∈E, SimST (o, o′) ≥
MinST (E,E′). Therefore, we can use MinST (E,E′) to estimate the lower bound kNNL(E)
that should be greater than MinST (E,E′).

We next propose another similarity definition which is larger than MinST (E,E′) and thus may
be used as a tighter bound estimation.

DEFINITION 6.3 (TightMinST). A tight lower bound of spatial-textual similarity between
two entries E and E′ in IUR-tree, denoted as TightMinST (E,E′), is defined as:

TightMinST (E,E′) = max

{
α(1− MinMaxS(E,E′)− φs

ψs − φs
) + (1− α)

MinT (E,E′)− φt
ψt − φt

,

α(1− MaxS(E,E′)− φs
ψs − φs

) + (1− α)
TightMinT (E,E′)− φt

ψt − φt

}
(13)

where, MinMaxS(E,E′) [Achtert et al. 2009] is showed in Equation (9).

TightMinT (E,E′) =

max
1≤r≤n

E.wr × E′.wr +
n∑

j=1,j ̸=r
E.wj × E′.wj

E.w2
r + E′.w2

r − E.wr × E′.wr +
n∑

j=1,j ̸=r
(E.w2

j + E′.w2
j − E.wj × E′.wj)

(14)

E′.wr =

{
E′.ur if E.ir ∗ E.ur > E′.ir ∗ E′.ur
E′.ir otherwise

(15)

E.wr =

{
E.ir if

√
E.ir ∗ E.ur < E′.wr;

E.ur otherwise;
(16)

and E.wj and E′.wj are assigned as Eqn(11).

Intuitively, the particular reason why TightMinST can provide a tighter lower bound than
MinST is that TightMinST guarantees that there is at least one object o′ ∈ E′ s.t. ∀o∈E,
SimST (o, o′) ≥ TightMinST (E,E′). But MinST can guarantee that ∀o ∈ E, ∀o′ ∈ E′,

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

Efficient Algorithms and Cost Models for Reverse Spatial-Keyword k-Nearest Neighbor Search 1:15

SimST (o, o′) ≥ MinST (E,E′). Therefore, this different property gives us an extra opportunity
to carve out a tighter bound. The formal description and proof are as followed.

LEMMA 2. TightMinST (E,E′) has the property that ∃ o′∈ E′ s.t. ∀o∈E, SimST (o, o′) ≥
TightMinST (E,E′).

PROOF. Eqn(13) suggests that TightMinST is composed of MinMaxS, MinT , MaxS and
TightMinT , which have the following properties respectively.
MinMaxS satisfies that ∃o′ ∈ E′, s.t. ∀o ∈ E, , dist(o, o′) ≤MinMaxS(E,E′).
MinT satisfies that ∀o ∈ E, ∀o′ ∈ E, EJ(o, o′) ≥MinT (E,E′).
TightMinT in Eqn(14): As shown the assignment of one dimension r in Figure 6(b), when√
E′.ir · E′.ur<

√
E.ir · E.ur, let E′.wr=E′.ur, then ∃E′.wr∈ [E′.ir, E

′.ur],
min{E.wr,E′.wr}
max{E.wr,E′.wr} ≤

min{E.wr,E′.ur}
max{E.wr,E′.ur} . Then given E′.wr>

√
E.ir · E.ur, let E.wr = E.ir so that ∀ E.wr ∈ [E.ir, E.ur],

min{E.wr,E′.wr}
max{E.wr,E′.wr} ≥ min{E.ir,E′.wr}

max{E.ir,E′.wr} , Additionally, the rest dimension weights E.wj and E′.wj are
assigned as Figure 6(a). Therefore, according to Claim 2, there exists an object o′∈E′, the rth di-
mension of which is E′.ur, so that ∀o∈E, SimT (o, o′)≥TightMinT (E,E′). Finally, to make the
approximation accurate, we take the maximum as the final approximation for TightMinT .
TightMinST (E,E′) in Eqn(13): Since ∃ o′ ∈E′, ∀ o ∈E, dist(o, o′) ≤ MinMaxS(E,E′),

moreover, since ∀o′′∈E, ∀o∈E, EJ(o, o′′)≥MinT (E,E′), so for o′∈E′, it is also true that
EJ(o, o′) ≥ MinT (E,E′). Thus ∃o′∈E′, ∀o∈E, SimST (o, o′)= α(1-dist(o,o

′)−φs
ψs−φs)+(1 −

α)EJ(o,o
′)−φt

ψt−φt ≥ α(1-MinMaxS(E,E′)−φs
ψs−φs) +(1-α)MinT (E,E′)−φt

ψt−φt . Similarly, ∃o′ ∈ E′, ∀o∈E
SimST (o, o′) ≥ α(1 − MaxS(E,E′)−φs

ψs−φs) + (1 − α)TightMinT (E,E′)−φt
ψt−φt . To make the approxi-

mation accurate, the final approximation of TightMinST (E,E′) is the maximum one with the
guarantee of satisfying the corresponding property.

As suggested from Lemma 2, there is at least one object o′ in E′ s.t. ∀o∈E, SimST (o, o′) ≥
TightMinST (E,E′). Hence, unlike MinST which can contribute |E| objects, TightMinST
can contribute only one object to be the kNNs of E′, but TightMinST is much tighter than
MinST .

DEFINITION 6.4 (MaxST). An overestimation of the spatial-textual similarity between two en-
tries E and E′ in IUR-tree, denoted as MaxST (E,E′), is defined as:

MaxST (E,E′) = α(1− MinS(E,E′)− φs
ψs − φs

) +

(1− α)
MaxT (E,E′)− φt

ψt − φt
(17)

where MinS(E,E′) is defined in Equation (7); and MaxT (E,E′) is:∑n
j=1E.wj × E′.wj∑n

j=1E.w
2
j +

∑n
j=1E

′.wj
2 −

∑n
j=1E.wj × E′.wj

E.wj = E.ij , E
′.wj = E′.uj if E.ij > E′.uj

E.wj = E.uj , E
′.wj = E′.ij if E.uj < E′.ij

E.wj = E′.wj = E.uj if E′.ij ≤ E.uj ≤ E′.uj
E.wj = E′.wj = E′.uj otherwise.

(18)

LEMMA 3. MaxST (E,E′) has the property that ∀ o′ ∈E′, ∀o∈E, SimST (o, o′) ≤
MaxST (E,E′).

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

1:16 Y. Lu et al.

The proof is similar to that in Lemma 1 and omitted here.

COROLLARY 6.5. There is at most one object o′ in E′ s.t. ∀o∈E, SimST (o, o′) ≤
MaxST (E,E′).

Note that Lemma 1 ∼ 3 also hold when the two entries E and E′ in IUR-tree are identical, i.e.,
E = E′.

6.1.2. Lower and Upper Bound Contribution Lists. We are ready to explore the similarity approx-
imations defined above to identify the lower and upper bounds kNNL(E), kNNU (E) of the most
similar k objects for each entry E.

DEFINITION 6.6 (LOWER BOUND CONTRIBUTION LIST).
Let T be a set of entries in IUR-trees that do not have ancestor-descendant relationships. Given an
entry E∈T , a lower bound contribution list of E, denoted as E.LCL, is a sequence of t (1≤t≤k)
triples <si, E′

i, numi> sorted in descending order of si, where E′∈T , si is MinST (E,E′) or
TightMinST (E,E′), and

numi =


|E′| − 1 if si=MinST (E,E′) and E′ ̸=E
|E′| − 2 if si=MinST (E,E′) and E′=E

1 otherwise.
such that t is the minimal number fulfilling

∑t
i=1 numi ≥ k.

For si = MinST (E,E′) either when E′ ̸=E or E′=E, the rationale for subtracting one from
|E′| (|E′|-1 when E′=E) is due to the potential presence of one object in E′ with more precise
approximation by TightMinST .

Example 6.7. Given k=3, three entries E, E′
1, E′

2 in IUR-tree. Suppose the number of objects
in E, denoted as |E|, is 3, and |E′

1|=2, |E′
2|=3. Furthermore,

MinST (E,E) = 0.85, num = 1; TightMinST (E,E) = 0.85, num = 1

MinST (E,E′
1) = 0.55, num = 1; TightMinST (E,E′

1) = 0.61, num = 1

MinST (E,E′
2) = 0.72, num = 2; TightMinST (E,E′

2) = 0.82, num = 1

Then we sort the similarity approximations above in descending order obtaining <0.85, 0.85, 0.82,
0.61, 0.55>. Since

∑3
i=1 numi = 1 + 1 + 2 ≥ k = 3, thus we get the lower bound contribution

list of E is
⟨
< 0.85, E, 1 >,< 0.85, E, 1 >,< 0.82, E′

2, 2 >
⟩
.

Following the notations in Definition 6.6, we have the following lemma.

LEMMA 4. If the t-th element (i.e.,E.LCL.st) is larger than or equal to the maximal similarity
between E and q (denoted by MaxST (E, q)), no answer exists in subtree(E), the subtree rooted
at E, and thus we can safely prune subtree(E).

PROOF. The definition 6.6 for the lower bound contribution list of entry E is composed of
MinST (E,E′) and TightMinST (E,E′). IfE′ ̸=E, then there are at least one object o′ inE′ such
that ∀o ∈ E, T ightMinST (o, o′) ≥ MinST (E,E′), and there are |E′| − 1 objects o′′ (o′′ ̸= o′)
such that ∀o ∈ E,SimST (o, o′) ≥ MinST (E,E′). While, if E′ ̸=E, then for each object o ∈ E,
there are at least one object o′ (o′ ̸= o) in E′ such that SimST (o, o′) ≥ TightMinST (E,E′), and
there are |E′| − 2 objects o′′ (o′′ ̸= o′&&o′′ ̸= o) such that SimST (o, o′) ≥MinST (E,E′).

Thus E.LCL.st obtained from Definition 6.6 satisfies that for all the objects o∈E, there are at
least k objects o′ (o′ ̸=o) such that SimST (o, o′) ≥ E.LCL.st. If the condition in Lemma 4 holds,
i.e., E.LCL.st ≥ MaxST (E, q), then for all the objects o∈E, there are at least k distinct objects
o′ (o′ ̸=o) such that SimST (o, o′) ≥ SimST (o, q). Hence we can safely prune away subtree(E),
avoiding the traverse of subtree(E) during query processing.

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

Efficient Algorithms and Cost Models for Reverse Spatial-Keyword k-Nearest Neighbor Search 1:17

Thus we let the lower bound kNNL(E) be E.LCL.st. That is we can prune E if kNNL(E) ≥
MaxST (E, q).

DEFINITION 6.8 (UPPER BOUND CONTRIBUTION LIST).
Let T be a set of entries in the IUR-tree that do not have ancestor-descendant relationships.
Given an entry E∈T , an upper bound contribution list of E, denoted as E.UCL, is a sequence
of t (1≤t≤k) triples <si, E

′
i, numi> sorted in descending order of si, where E′∈T , si is

MaxST (E,E′) and

numi =

{
|E′| if E′ ̸=E
|E′| − 1 otherwise.

such that t is the minimal number fulfilling
t∑
i=1

numi ≥ k.

Example 6.9. Given k=3, three entries E, E′
1, E′

2 in IUR-tree. Suppose the objects number in
E, denoted as |E|, is 3, and |E′

1|=2, |E′
2|=3. Furthermore,

MaxST (E,E) = 1, num = 2;

MinST (E,E′
1) = 0.66, num = 2;

MinST (E,E′
2) = 0.88, num = 3

Then we sort the similarity approximations above in descending order obtaining <1, 0.88, 0.66>.
Since

∑2
i=1 numi = 2 + 2 ≥ k = 3, thus we get the upper bound contribution list of E is⟨

< 1, E, 2 >,< 0.88, E′
2, 3 >

⟩
.

Following the notations in Definition 6.8, we have the following lemma.

LEMMA 5. If the t-th element (i.e., E.UCL.st) is smaller than the minimal similarity between
E and q (denoted by MinST (E, q)), then q must be one of the top-k most similar objects for all
objects in E, and objects in E are included as results.

PROOF. The definition 6.6 for the upper bound contribution list of entry E is composed of
MaxST (E,E′). If E′ ̸= E, then for all the objects o∈E, there are |E′| objects o′∈E′ (o′ ̸= o)
such that SimST (o, o′)≤MaxST (E,E′), i.e., there is at most one object o′∈E′ (o′ ̸= o) such that
SimST (o, o′)≥MaxST (E,E′). While if E′ = E, then for all the objects o∈E, there are |E′| − 1
objects o′′∈E′ such that SimST (o, o′′)≤MaxST (E,E′).

Thus E.UCL.st obtained from Definition 6.8 satisfies that for all the objects o∈E, there are at
most k objects o′ (o′ ̸=o) such that SimST (o, o′) ≥ E.UCL.st. If the condition in Lemma 5 holds,
i.e., E.UCL.st ≤ MinST (E, q), then for all the objects o∈E, there are at most k distinct objects
o′ (o′ ̸=o) such that SimST (o, o′) ≤ SimST (o, q). Thus all objects in E will be reported as part of
the answer.

Note that the upper bound kNNU(E) is exactly E.UCL.st. That is, as shown in Lemma 5, we can
report E to be a result entry if kNNU(E) < MinST (E, q). Intuitively, this is because kNNU(E)
is the smallest similarity for objects to be one of kNNs of E. Since MinST(E, q) is greater than
kNNU(E), q is the kNN object of E. In other words, all objects in E are RSKkNN of q.

Figure 7 illustrates the strategies of using kNNL(E) and kNNU(E) to determine whether the
entry E is a result. The similarity approximations in E.LCL (resp. E.UCL) are within the shaded
ring “L” (resp. “U”). Specially, the dashed line in “L” (resp. “U”) is kNNL(E) (resp. kNNU(E)).
Note that the circle that is farther away from E indicates the similarity between object on the circle
and entry E is smaller. If q3 is the query object, we can prune E since the similarity MaxST (E, q)
between E and q3 is within the dashed ring kNNL(E) (i.e., equal to or larger than kNNL(E)). If
q1 is the query, we report E as a result entry since the similarity MinST (E, q) between E and q1

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

1:18 Y. Lu et al.

query objects

q2

q3

E
q1

L

u

kNNL(E)

kNNU(E)

Fig. 7. Illustration of pruning and reporting results using kNNL(E) and kNNU(E)

is within the ring kNNU(E). If the query is q2, we cannot determine whether E belongs to results
based on kNNL(E) and kNNU(E).
Extension to Cosine Similarities. Recall that besides the extended Jaccard, the textual similarity
can also be measured by other models such as the cosine similarity (see Equation 5). In order to
adapt our algorithm for the cosine similarity, we only need to change the textual similarity approx-
imations of MinT in Eqn(11) and MaxT in Eqn. (18). In particular, the minimal cosine textual
similarity MinTcos(E,E

′) between two entries E and E′ is given in Eqn(19) and the maximal
cosine textual similarity MaxTcos(E,E

′) is defined to be 1. It is not hard to prove ∀o′ ∈ E′, ∀o ∈
E, Cosine(o, o′) ≥ MinTcos(E,E

′), and ∀o′ ∈ E′,∀o ∈ E,Cosine(o, o′) ≤ MaxTcos(E,E
′).

Hence Lemmas 1 and 3 still hold under the cosine similarity.

MinTcos(E,E
′) =

∑n
j=1E.ij × E′.ij√∑n

j=1E.u
2
j ∗

√∑n
j=1E

′.uj
2

(19)

6.2. Search Algorithm
We proceed to develop an efficient algorithm to answer RSKkNN queries (see Algorithm 3 and 4).
At high-level, the algorithm descends the IUR-tree in the branch and bound manner, progressively
computing the thresholds kNNL(E) and kNNU(E) for each entry E by inheriting and updating the
lower and upper contribution lists. Based on the thresholds, the algorithm then decides whether to
prune an entryE, to report all objects inE as results, or to consider child entries ofE as candidates.

The algorithm uses the following data structures: a max-priority queue U , which stores nodes E
associated with the priority MaxST (E, q), a candidate object list COL that needs to be checked, a
pruned entry list PEL, and a result object list ROL.

The algorithm begins with initialization and then enqueues the root of the IUR-tree into U (Line
1–2 in Algorithm 3). When U is not empty (Line 3 in Algorithm 3), we dequeue the entry P from
U with the highest priority (Line 4 in Algorithm 3). For each child entry E of P , E first inherits
the upper/lower bound lists of P (which is discussed in more details later)(Line 6 in Algorithm
3), based on which, we determine whether E is a result entry (“hit”) or can be pruned (“drop”)
by invoking procedure IsHitOrDrop (Line 7 in Algorithm 3). If E can be pruned, E is added to
PEL (Line 10-11 in Algorithm 4), and if E is reported as a result entry , E is added to ROL (Line
14-15 in Algorithm 4); Otherwise, we use E to “mutually effect” E′∈ COL∪ROL∪U to update
the upper/lower bound contribution lists to mutually tighten their upper/lower bounds (Line 9 in
Algorithm 3). Note that entries E′ are selected in decreasing order of MaxST (E,E′) since entries
E′ with higher MaxST (E,E′) are more likely to be within the kNN of E (Line 8 in Algorithm 3).
IfE′ is pruned or reported as a result entry then removeE′ from its original data structure U orCOL
(Line 13–14 in Algorithm 3). If E is determined as a hit or drop, then consider next child entry of P
(Line 10 in Algorithm 3). If E still cannot be determined whether to be a result entry after effected

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

Efficient Algorithms and Cost Models for Reverse Spatial-Keyword k-Nearest Neighbor Search 1:19

ALGORITHM 3: RSKkNN (R: IUR-tree root, q: query)
Output: All objects o, s.t. o∈RSKkNN(q, k,R).

1: Initialize a priority queue U , and lists COL, ROL, PEL;
2: EnQueue(U , R);
3: while U is not empty do
4: P ← DeQueue(U);//Priority of U is MaxST (P, q)
5: for each child entry E of P do
6: Inherit(E.CLs, P.CLs);
7: if (IsHitOrDrop(E, q)=false) then
8: for each entry E′ in COL, ROL, U in decreasing order of MaxST (E,E′) do
9: UpdateCL(E,E′);//update contribution lists of E.

10: if (IsHitOrDrop(E, q)=true) then break;
11: if E′ ∈ U∪COL then
12: UpdateCL(E′,E);//update contribution lists of E′ using E.
13: if (IsHitOrDrop(E′, q)=true) then
14: Remove E′ from U or COL;
15: if (E is not a hit or drop) then
16: if E is an index node then
17: EnQueue(U , E);
18: else COL.append(E); //a database object
19: FinalVerification(COL, PEL, ROL);

by all the entries in COL, ROL and U , then add E to the corresponding list or queue (Line 15–18
in Algorithm 3). Finally, when the priority queue U is empty, we still need to process objects in the
candidate list COL to decide if they are part of answers by invoking Procedure FinalVerification
(Line 19 in Algorithm 3).

Note that here we adopt a tricky idea called “lazy travel-down” for each entryE′ in the pruned list
PEL to save I/O cost. That is, in Line 8 of Algorithm 3, we do not access the subtree of ∀E′∈PEL
to affect entryE that is processed currently until we reach the final verification phase. In this way, as
shown in the experimental section, “lazy travel-down” accelerates the query processing by avoiding
the scan of many portions of the IUR-tree.

Procedure FinalVerification in Algorithm 4: it is to determine if the candidate objects in COL
are “hits” or “drops”. The main idea is to check the effect of the entries in PEL on each candidate
in COL. Specifically, we update the contribution lists for candidates in COL until we can correctly
determine if each candidate object belongs to an answer or not. In particular, Line 2 selects the entry
E in PEL which has the lowest level in the IUR-tree. This is because the entries in the lower level
often have the tighter bounds than those in the higher level and thus they are more likely to identify
whether the candidates are results. Line 4 uses the entry E to update the contribution list of each
candidate o in COL and Line 5 checks if o can be removed from the candidate list. Finally, we add
children of E into PEL since they may also affect the candidates in COL (Line 8–9). This process
continues until COL becomes empty.

In particular, Line 6 in Algorithm 3 introduces an efficient technology called Inherit, i.e., a child
entry inherits (copies) the contribution lists from its parent entry. Inherit makes use of the parent
nodes to avoid computing contribution lists from the scratch, and thus reducing runtime (to be shown
in our experimental results). However, inherit will lead to a problem called object conflict: the same
object in the contribution lists of a child entry may be counted twice (one from the inheritance of
parent entry and the other one from itself after other entries’ affecting), resulting in wrong upper
or lower bounds of the child entry. In order to avoid such a problem, Line 18–20 in Algorithm 4
guarantee that there is no object in contribution lists which is double counted, as illustrated in the
following example.

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

1:20 Y. Lu et al.

ALGORITHM 4: Procedures in RSKkNN
Procedure FinalVerification(COL, PEL, q)

1: while (COL̸=∅) do
2: Let E be an entry in PEL with the lowest level;
3: PEL=PEL-{E};
4: for each object o in COL in decreasing order of MaxST (E, o) do
5: UpdateCL(o,E);//update contribution lists of o.
6: if (IsHitOrDrop(o, q)=true) then
7: COL=COL-{o};
8: for each child entry E′ of E do
9: PEL=PEL∪{E′}; //access the children of E′

Procedure IsHitOrDrop(E: entry, q: query)
10: if kNNL(E)≥MaxST (E, q) then
11: PEL.append(E); //Lemma 4
12: return true;
13: else
14: if kNNU (E)<MinST (E, q) and E is the rightest child entry then
15: ROL.append(subtree(E)); //Lemma 5
16: return true;
17: else return false;

Procedure UpdateCL(E: entry, E′: entry)
18: for each tuple <si,E′

i,numi>∈E.LCL do
19: if E′

i=E or E′
i=Parent(E) then

20: remove <si,E′
i,numi> from E.LCL; //Clean Conflicts

21: if kNNU (E) < MaxST (E,E′) then
22: E.UCL←TopkMax(E.UCL, MaxST (E,E′), 1);
23: if kNNL(E) < TightMinST (E,E′) then
24: E.LCL←TopkMax(E.LCL, TightMinST (E,E′), 1);
25: if kNNL(E) <MinST (E,E′) then
26: E.LCL←TopkMax(E.LCL, MinST (E,E′), |E′|-1);

SubProcedure TopkMax(L,f(E,E′),C)
27: Return the t-th triple in contribution list L, where t is the minimal number fulfilling

∑t
i=1 L.numi ≥ k.

Table II. Trace of RSKkNN algorithm in Example1

Steps Actions U COL ROL PEL

1 Dequeue N7; N6,N3 ∅ ∅ ∅Enqueue N3,N6

2 Dequeue N6; N2, N3, N4 ∅ ∅ ∅Enqueue N2, N4
3 Dequeue N2; N3, N4 p5 p4 ∅

4 Dequeue N3; N5, N4 p5 p4 N1Enqueue N5
5 Dequeue N5 N4 p5, p9 p4 N1, p3
6 Dequeue N4 ∅ p9 p4, p1, p5 N1, p2, p3, p6
7 Verify p9 ∅ ∅ p4, p1, p5, p9 N1, p2, p3, p6

Example 6.10. We use this example to illustrate RSKkNN algorithm. Consider the dataset in
Figure 1 and a query object q(12, 6), q.vct = <(stationary, 8), (sportswear, 8)>, and let k=2,
α=0.6. The algorithm starts by enqueueing N7 into a priority queue U , and the trace of the algorithm
is shown in Table 1. The query answers have four objects: p1, p4, p5 and p9, as shown in Step 7 of
Table 1.

Here we focus on Step 4 of Table 1 to illustrate the mutual-effect strategy and inherit technology
(See Figure 4). After N3 is dequeued from U in Step 4, we access its child entries N5 and N1.

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

Efficient Algorithms and Cost Models for Reverse Spatial-Keyword k-Nearest Neighbor Search 1:21

Step 4:

ROL={p4} COL={p5} U={N5,N4} PEL={N1}

0.338

0.312

N3.LCL

N2

N4

p4

p50.411

0.621p4

N40.417

0.621

Inherit

Access the child

entries of N3

d
e
c
re
a
s
e

Inherit

Effect

with p5

Effect

with N4

N2

N40.312

0.338

N5.LCL
Effect

with p4 p4

N40.312

0.621

N2

N40.312

0.338

N1.LCL

Prune N1

1

1

1

1

1

1

1

1

1

1

1

1

conflict

Fig. 8. Illustration to RSKkNN algorithm

1) N5 also inherits the contribution list from N3 (Line 6 in Algorithm 3). However, it can neither
be pruned nor be determined to be results (Line 7 in Algorithm 3). Thus it will “mutual-effect” with
p4, p5, and N4 (Line 8–14 in Algorithm 3). When we consider the effect of p4 on the contribution
list (N5.LCL) of N5 (Line 9 in Algorithm 3), N2 (inherited from N3.LCL) in N5.LCL conflicts
with p4 since p4 is a child of N2 and N2 may contribute the same object p4 for N5.LCL. To solve
the conflict, we remove N2 from N5.LCL (Line 20 in Algorithm 4), and add p4 to N5.LCL with
a more accurate estimation (0.621) of similarity with N5 than N2. The triple <0.621, p4, 1> is
added inN5.LCL. Next in a similar way, we use p5 andN4 to effect withN5, respectively. Finally
N5 still cannot be determined to be a hit or drop and it is enqueued to U (Line 17 in Algorithm 3).

2) N1 inherits the contribution list from N3 (Line 6 in Algorithm 3) and is pruned imme-
diately according to Lemma 4 (Line 11 in Algorithm 4) without having effect on any other
entries, which illustrates the benefit of inherit technology. This is because MaxST (N1, q)=
0.308 is smaller than N3.LCL.s2=0.312, thus MaxST (N1, q) ≤ TightMinST (N1, N4) ≤
TightMinST (N1, N2), i.e., there are at least two objects o′ in N4 and N2, s.t. ∀o∈N1,
SimST (o, o′) ≥ TightMinST (N1,q), therefore we can prune N1 according to Lemma 4.

Theorem 1. Given an integer k, a query q and an index tree R, Algorithm 3 correctly returns all
RSKkNN points.

PROOF. We prove that (1) Algorithm RSKkNN does not return false positive, that is all returned
objects are the desired answers; and that (2) the returned results are complete (no false negative).

Correctness: The search strategy in RSKkNN algorithm is to prune entries E in the tree using
the lower bound of spatial-textual kNN of E: kNNL(E) (Line 10-11 in Algorithm 4) and to report
entries E using the upper bound kNNU(E) (Line 14-15 in Algorithm 4). kNNL(E) is calculated by
means of MinST and TightMinST in the lower-bound contribution list of E. According to the
properties ofMinST and TightMinST in Lemma 1 and Lemma 2, entryE can be safely pruned if
MaxST (E, q)≤ kNNL(E) since it can guarantee that there are at least k objects whose similarities
are larger than or equal to the maximum similarity between E and query object q. Analogously,
based on Lemma 3, entry E can be safely reported as a result entry if MinST (E, q)>kNNU(E)
with the condition that there are at most k objects (among all the objects) whose similarities are
smaller than MinST (E, q).

Furthermore, based on the observation that the similarity approximations of ancestor entries are
more conservative than that of descendant entries, we can prove the correctness of the techniques of
“inherit” (Line 6 in Algorithm 3) and “lazy travel-down” (Line 8 in Algorithm 3), respectively.

CLAIM 3. “Inherit” technology used in Algorithm 3 is correct.

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

1:22 Y. Lu et al.

PROOF: We need to prove that an entry in IUR-tree can be pruned or be reported as results safely
using the contribution lists “inherited” from its parent entry. That is, given a child entry C and the
lower (resp. upper) bound contribution list P.LCL (resp. P.UCL) of its parent entry P , we can prune
entry C if the lower bound kNNL(P) derived from P.LCL is larger than or equal to MaxST (C, q),
and we can report all objects in C to be results if kNNU (P) derived from P.UCL is smaller
than MinST (C, q). Since the functions MinST , TightMinST in P.LCL between parent en-
tries are more conservative than those between child entries, i.e., MinST (C,Ei)≥MinST (P,Ei)
and TightMinST (C,Ei) ≥ TightMinST (P,Ei), thus the lower bound kNNL(C) derived from
C.LCL is larger than or equal to kNNL(P) derived from P.LCL. Thus ifMaxST (C, q)≤ kNNL(P),
then MaxST (C, q) ≤ kNNL(C). Therefore we can safely prune child entry C. It is similar for the
inheritance of upper bound contribution list. Since the function MaxST between parent entries is
more conservative than that between child entries, thus kNNU (C) ≤ kNNU (P). If MinST (C, q)
> kNNU (P) inherited from parent P , then MinST (C, q) > kNNU (C), and thus we can add child
entry C as a result safely. Therefore, Claim 3 holds.

CLAIM 4. “Lazy travel down” technology used in Algorithm 3 is correct.

PROOF: We need to prove that entries can be safely pruned or be reported to be results without
accessing the subtrees of the pruned entries due to “lazy travel down”. That is, in Line 8 of Algorithm
3, we do not need to access the pruned entries to affect entries being processed currently. Obviously
it does not influence an entry that is not part of results, since we can prune an entry E as long as
we find at least k objects that are more similar than the query object. Meanwhile, entries E can
be safely reported as results if it satisfies the condition of MinST (E, q)>kNNU (E) even without
accessing the subtrees of the pruned entries by “lazy traveled down”, as according to the algorithm,
all the pruned entries must be already used to compute the upper bound kNNU (E) of the entry E or
the upper bound kNNU (A) of E’s ancestor entry A. In particular, if the pruned entries are already
used to compute the bounds of entry E, then it holds trivially. If the pruned entries are used to
compute the bounds of the entry A, it is also correct due to the “inherit” technology. That is, the
inherited value kNNU (A) is larger than or equal to kNNU (E). Thus if MinST (E, q) > kNNU (A),
then MinST (E, q) > kNNU (E), and then entry E can be safely reported as results. Therefore,
Claim 4 holds.

Completeness: All objects which can not be safely pruned or reported as results, are appended
to the candidate object list COL (Line 19 in Algorithm 3). In the FinalV erification procedure,
all the candidate objects can be determined whether they are results through traveling down the
pruned entries. It is because that even in the worst case, we can access all the objects in the subtree
of the pruned entries to determine each candidate object if it is an answer in IsHitOrDrop (Line
6 in Algorithm 4) while MinST and MaxST between two database objects are equal. Thus our
algorithm is complete, i.e., it can return all the RSKkNN data points.

Hence, Theorem 1 is true.

6.3. Performance Analysis
In this subsection, we propose an analytical model to estimate the cost of the RSKkNN queries
and theoretically analyze the performance of the RSKkNN algorithm based on the IUR-tree. The
number of accessed nodes in the IUR-tree is computed in Theorem 2.
Theorem 2. Assume that the locations of N objects are uniformly distributed in 2-dimension space,
and the word frequencies in each object follow the Zipf distribution. With high probability, the
number of IUR-tree index nodes accessed using the RSKkNN algorithm is O(f logf N), where f
is the fanout of the IUR-tree.

To show the superiority of the RSKkNN search algorithm, recall the baseline method that is
discussed in Section 4, which computes the top-k spatial-textual nearest neighbor objects using

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

Efficient Algorithms and Cost Models for Reverse Spatial-Keyword k-Nearest Neighbor Search 1:23

the threshold algorithm [Fagin et al. 2003]. The computational cost of the threshold algorithm is√
kN [Fagin et al. 2003]. Given that one needs to check whether query object q is one of the

top-k nearest neighbors for each object, the overall computational cost of the baseline method is
O(N

√
kN), which is much higher than that of the RSKkNN algorithm.

We proceed to introduce the analytical model and prove Theorem 2 in details in this section.

6.3.1. Analysis Model Settings. Following the assumption in [Theodoridis and Sellis 1996], we
assume the locations of N objects are uniformly distributed in 2-dimension space. The word fre-
quencies of objects follow the Zipf distribution. Specifically, we assume that there is a word pool
with M distinct words whose frequencies are assumed to follow the Zipf distribution, i.e., the fre-
quency of the k-th most popular word is 1/ks∑M

i=1(1/i
s)

, where k ∈ [1,M], and s is a parameter char-
acterizing the distribution. Then we randomly select m words from the word pool for each object.
Our goal is to estimate the expected number DA of the IUR-tree by Algorithms 3 and 4.

To facilitate the analysis, suppose thatN objects are indexed in an IUR-tree with the height h (the
root is assumed to be at level h and leaf-nodes are assumed to be at level 1), and let NNl denote the
number of index nodes at level l, and let Pl and Al be the number of index nodes that can be pruned
and can be reported as results at level l, respectively. Let f denote the fanout of the IUR-tree. Thus,
Rl, which is the number of entries that should be processed at level l is at least:

Rl = NNl − f(Pl+1 +Al+1) (20)

Let Xl denote the number of additional entries that are accessed to compute the lower and upper
kNN bounds of entries at level l. Therefore, at level l in the IUR-tree, the number of accessed index
nodes is:

DAl = Rl +Xl (21)

Thus the total number of node accesses in the IUR-tree can be derived as:

DA = 1 +
h−1∑
l=1

(NNl − f(Pl+1 +Al+1) +Xl) (22)

The height h of an R-tree with the fanout f that stores N data entries is given by Eqn(23) in
[Faloutsos et al. 1987]. The number of index nodes at level l is given in Eqn(24). Note that the
number of objects in each node at level l is f l.

h = 1 + ⌈logf
N

f
⌉ (23)

NNl =
N

f l
(24)

In the following, we first estimate Pl in Section 6.3.2 (resp. Al in Section 6.3.3), the number
of index nodes pruned (resp. reported as results) at level l in the IUR-tree by considering only the
spatial information, denoted by PSl and ASl, respectively, and then show how to take into account
the textual information in Section 6.3.4.

6.3.2. Estimation of the number of pruned entries at level l without texts. Figure 9 illustrates the
layout of entries and the query q at level l. Let sl denote the side extent of the MBR of an entry at
level l and let tl be the distance between the centers of two consecutive MBRs at level l. As men-
tioned above, f denotes the fanout of the IUR-tree. Subsequently, Equation (25), which describes
the relationships among sl+1, tl and f , are given in [Theodoridis and Sellis 1996]. We then derive
the value of sl in Eqn(26).

sl+1 = (f
1
2 − 1)tl + sl and tl = (

f l

N
)

1
2 (25)

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

1:24 Y. Lu et al.

q

E1,1

E1,1

E1,2 E2,2

E2,1

E2,3E2,2

E2,2E1,2

E2,3E2,2

E2,1E2,2E2,3

E1,1E1,2E2,2

E1,1E2,1

E1,2

E2,1E2,2

E2,2

E2,3

E3,3E3,2E3,1E3,2E3,3

E3,3E3,2E3,1E3,2E3,3

E3,2

E3,1

E3,3

E3,2

E3,3

E3,3

E3,2

E3,1

E3,2

E3,3

E3,4E3,4

E3,4 E3,4l
s

l
t

(a) Layout of entries Ei,j and query object q,
where Ei,j denotes the entries that are at the
i-th layer around q and the j-th minimal dis-
tance to entry q. Note that Ei,j may refer to
multiple entries. For example there are 4 en-
tries denoted by E2,1, and 8 entries denoted
by E2,2.

N3,4 N3,3 N3,2 N3,1 N3,2 N3,3 N3,4

N3,3 N2,3 N2,2 N2,1 N2,2 N2,3 N3,3

N3,2 N2,2 N1,2 N1,1 N1,2 N2,2 N3,2

N3,1 N2,1 N1,1 Eij N1,1 N2,1 N3,1

N3,2 N2,2 N1,2 N1,1 N1,2 N2,2 N3,2

N3,3 N2,3 N2,2 N2,1 N2,2 N2,3 N3,3

N3,4 N3,3 N3,2 N3,1 N3,2 N3,3 N3,4

l
s

l
t

(b) Layout of entries Ei,j (in Figure 9(a))
and Ni,j , where Ni,j is an entry that is at
the i-th layer around Ei,j and the j-th min-
imal distance to entry Ei,j . Note that Ni,j
refers multiple entries, all of which has the
same distance from Ei,j .

Fig. 9. Layout of query q and entries at level l

sl = tl − (
1

N
)

1
2 (26)

As shown in Figure 9(a), intuitively, entries that are far away from the query object q are more
likely to be pruned. The number of pruned entries, PSl, is formally computed in Lemma 6 as fol-
lows.

LEMMA 6. The number PSl of pruned entries at level l in the IUR-tree (by taking into account

only spatial information) is : PSl = N
f l

−
[
(8
√
2 − 4)r2 + 20

√
2 ∗ r + 8

√
2 + 1

]
, where r =⌈

0.25
√

4k+4
f l

+ 13− 0.5

⌉
.

PROOF. Recall that in our algorithm, we can safely prune an entry Ei,j in Figure 9(a) if ∀o ∈
Ei,j , there are at least k objects o′ such that MinS(Ei,j , q) > dist(o, o′), where MinS(Ei,j , q) is
the minimal spatial distance between entry Ei,j and q. Thus, we need first to estimate a distance,
denoted by MaxkNN , such that there are at least k objects whose distance to Ei,j is no greater
than MaxkNN .

As shown in Figure 9(b), which gives the layout of the entry Ei,j and the surrounded entries
Ni,j , we need to identify the layer r such that there are at least k − (f l − 1) objects in entries
Ni,j , i≤r, j≤r, around Ei,j . Subtracting f l − 1 is because that for any object o in Ei,j , there are
already |Ei,j |− 1 other objects within Ei,j . We show a table in Figure 10(a), where each cell at row
i and column j contains a binary-tuple <Ai,j , Bi,j>, where Ai,j is the maximal spatial distance
MaxS(Ei,j , Ni,j) between entry Ei,j and Ni,j ; and Bi,j is the number of objects in Ni,j . For
example, for the cell < A1,1, B1,1 >, A1,1 =

√
s2l + (sl + tl)2 is the maximal distance between

entries N1,1 and Ei,j , and B1,1 = 4f l is the total number of objects in the 4 entries N1,1. Note
that the number of objects in each entry at level l is f l. Given any three distance values Ai,j ,
Ai,j+1 and Ai+1,j in three adjacent cells of Figure 10(a), it is easy to prove that Ai,j < Ai,j+1 and
Ai,j < Ai+1,j hold.

Thus, as shown in Eqn(27), we can get the value of r in Ar,r+1 (i.e., Nr,r+1) such that there are
at least k − (f l − 1) objects in entries Ni,j , i≤r, j≤r, around Ei,j :

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

Efficient Algorithms and Cost Models for Reverse Spatial-Keyword k-Nearest Neighbor Search 1:25

1 2 3 4

1

2

3

>++< l

lll ftss 4,)(22 >+++< l

llll ftsts 4,)()(22

>++< l

lll ftss 4,)2(22 >+++< l

llll ftsts 8,)2()(22 >+++< l

llll ftsts 4,)2()2(22

>++< l

lll ftss 4,)3(22 >+++< l

llll ftsts 8,)3()(22 >+++< l

llll ftsts 8,)3()2(22 >+++< l

llll ftsts 4,)3()3(22

(a) Summary for the maximal distances between the entry Ei,j and entries Ni,j around Ei,j in Figure 9(b) and
the numbers of objects in Ni,j . Assume that the entry Ni,j at row i and column j in the table is <Ai,j , Bi,j>,
where Ai,j is the maximal spatial distance MaxS(Ei,j , Ni,j); and Bi,j is the number of objects in entry
Ni,j .

1 2 3 4

1

2

3

>< 4,)
2

1
-(2

ll
st >+< 4,)

2

1
-()

2

1
-(22

llll
stst

>< 4,)
2

1
-2(2

ll
st

>< 4,)
2

1
-3(2

ll
st

>+< 8,)
2

1
-2()

2

1
-(22

llll
stst

>+< 8,)
2

1
-3()

2

1
-(22

llll
stst

>+< 4,)
2

1
-2()

2

1
-2(22

llll
stst

>+< 8,)
2

1
-3()

2

1
-2(22

llll
stst >+< 4,)

2

1
-3()

2

1
-3(22

llll
stst

(b) Summary for the minimal distance between entries Ei,j and query q in Figure.9(a) and the number of entries
Ei,j . Let <A′

i,j , B
′
i,j> denote the entry Ei,j at row i and column j, where A′

i,j is the minimal spatial distance
MinS(Ei,j , q) between entry Ei,j and query q; B′

i,j is the number of entries Ei,j s.t. MinS(Ei,j , q) =

A′
i,j .

Fig. 10. Illustration for the maximal spatial distances between entries and minimal spatial distances between query object
q and entries at level l.

r−1∑
i=1

(2 ∗ 4f l + 8f l(i− 1)) + 4f l + 8f l(r − 1) = k − (f l − 1)

=⇒ r =

⌈
0.25

√
4k + 4

f l
+ 13− 0.5

⌉
(27)

We then identify entries Ei,j in Figure 9(a) which can safely be pruned, i.e., finding entries
whose minimal spatial distances to query object q are larger than the value of Ar,r+1. Intuitively,
entries that are farther away from q are more likely to be pruned. Figure 10(b) illustrates the min-
imal distances MinS(Ei,j , q) between entry Ei,j and query object q. In particular, assume that
<A′

i,j , B
′
i,j> is an entry at row i and column j in Figure 10(b), then A′

i,j is the minimal spatial dis-
tance between entry Ei,j and query q; B′

i,j is the number of entries Ei,j s.t. MinS(Ei,j , q) = A′
i,j .

For example, for the cell < A′
2,2, B

′
2,2 >, A′

2,2 =
√

(tl − 1
2sl)

2 + (2tl − 1
2sl)

2 is the minimal dis-
tance between entries E2,2 and q, and B′

2,2 = 8 is the number entries denoted by E2,2, i.e., entries
whose minimal distance to q is A′

2,2. Given any three distance values A′
i,j , A

′
i,j+1 and A′

i+1,j in
three adjacent cells in Figure 10(b), it is easy to verify that A′

i,j+1 > A′
i,j , A

′
i+1,j > A′

i,j and
A′

⌈
√
2∗i⌉,1 > A′

i,i+1 hold. Further, we can explore the relationship of distance values in Figures
10(a) and (b) as follows. Let Ai,j denote the distance value at row i column j in Figure 10(a), and

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

1:26 Y. Lu et al.

let A′
i,j denote the distance value in Figure 10(b). We can see A′

i+2,j+2 > Ai,j . Therefore, given
the distanceAr,r+1 in Figure 10(a), then the valuesAi,j in Figure 10(b), where (i≥r+2 and j≥r+2)
or (i≥⌈

√
2(r + 2)⌉ and j<r + 2), are larger than A′

r,r+1.
Therefore, to compute the number of pruned index nodes PSl, we use the total number of entries

at level l, N
f l

, to subtract the number of entries that cannot be pruned, i.e., the entry containing q in
Figure 10(b), and entries Ei,j where (i<r+2 and j<r+2) or (i<⌈

√
2(r+ 2)⌉ and j<r+ 2), that is:

PSl =
N

f l
−
[
1 +

r∑
i=1

(
8 + 8(i− 1)

)
+ 4 + 8r +

(√
2(r + 2)− (r + 1)

)(
4 + 8r

)]
=

N

f l
−
[
(8
√
2− 4)r2 + 20

√
2 ∗ r + 8

√
2 + 1

]
(28)

Together with Eqn(27) and Eqn(28), Lemma 6 holds.

6.3.3. Estimation for the number of entries reported as results at Level l without texts. As shown
in Figure 9(a), intuitively, entries that are closer to the query object q are more likely to be reported
as results. The number ASl of entries that can be reported as results is given in Lemma 7.

LEMMA 7. The number ASl of entries that can be reported as results at level l in the IUR-tree
(by taking into account only spatial information) is ASl = 4p2 − 12p + 5, where p =

⌈
0.387 +√

0.137(k+1)
f l

+ 1.617
⌉
.

PROOF. Recall that in our algorithm, we can safely report an entry Ei,j in Figure 9(a) to be a
result entry (i.e., all the objects in Ei,j are results) if ∀o ∈ Ei,j , there are at most k objects o′ such
that MaxS(Ei,j , q) < dist(o, o′), where MaxS(Ei,j , q) is the maximal spatial distance between
entry Ei,j and q. Thus to decide entries Ei,j in Figure 9(a) whether to be a result entry, we first
need to estimate a distance value, denoted by MinkNN , such that within the distance MinkNN
to Ei,j , there are at most k objects, and then determine Ei,j whether to be a result entry according
to the relationship between the values of MinkNN and MaxS(Ei,j , q).

We first compute the value of MinkNN . As shown in Figure 9(b), we need to identify an entry
Np,p+1 such that there are at most k − (f l − 1) objects in entries Ni,j , i≤p, j≤p, around Ei,j .
Again subtracting f l − 1 is because that for any object o in Ei,j , there are already |Ei,j | − 1 other
objects within Ei,j . Thus to facilitate identify Np,p+1, we need to compute the minimal spatial
distances between the entryEi,j in Figure 9(b) and entriesNi,j aroundEi,j . As illustrated in Figure
11(a), given any three distance values Ai,j , Ai,j+1 and Ai+1,j in three adjacent cells, we have
Ai,j < Ai,j+1 and Ai,j < Ai+1,j . Further, given any a row number i, we have A⌈

√
2∗i⌉,1 > Ai,i+1

as well. Therefore, in Figure 11(a), the values Ai,j , (i ≤ p and j ≤ p) or (i <
√
2 ∗ p and j ≤ p),

are smaller than Ap,p+1. Thus as shown in Eqn(29), we can compute the value of p in Ap,p+1

(MinkNN = Ap,p+1) such that there are at most k − (f l − 1) objects in entries Ni,j , (i ≤ p and
j ≤ p) or (i <

√
2 ∗ p and j ≤ p), around Ei,j .

p−1∑
i=1

(
8f l + 8f l(i− 1)

)
+ 4f l + 8f l(p− 1) + (

√
2p− p)

(
4f l + 8f l(p− 1)

)
= k − (f l − 1)

=⇒ p =
⌈
0.387 +

√
0.137(k + 1)

f l
+ 1.617

⌉
(29)

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

Efficient Algorithms and Cost Models for Reverse Spatial-Keyword k-Nearest Neighbor Search 1:27

1 2 3 4

1

2

3

>< l

ll fst 4,)-(2

>< l

ll fst 4,)-2(2

>< l

ll fst 4,)-3(2

>+< l

llll fstst 4,)-()-(22

>+< l

llll fstst 8,)-2()-(22

>+< l

llll fstst 8,)-3()-(22

>+< l

llll fstst 4,)-2()-2(22

>+< l

llll fstst 8,)-3()-2(22 >+< l

llll fstst 4,)-3()-3(22

(a) Summary for the minimal distances between the entry Ei,j and entries Ni,j around Ei,j in Figure 9(b) and
the number of objects in Ni,j . Assume that the entry Ni,j at row i and column j in the table is <Ai,j , Bi,j>,
where Ai,j is the minimal spatial distance MinS(Ei,j , Ni,j); and Bi,j is the number of objects in entry Ni,j .

1 2 3 4

1

2

3

>++< 4,)
2

1
(

2

1 22

lll
sts）（

>++< 4,)
2

1
2(

2

1 22

lll
sts）（

>++< 4,)
2

1
3(

2

1 22

lll
sts）（

>+++< 4,)
2

1
(

2

1 22

llll
stst ）（

>+++< 8,)
2

1
2(

2

1 22

llll
stst ）（

>+++< 8,)
2

1
3(

2

1 22

llll
stst ）（

>+++< 4,)
2

1
2(

2

1
2 22

llll
stst ）（

>+++< 8,)
2

1
3(

2

1
2 22

llll
stst ）（ >+++< 4,)

2

1
3(

2

1
3 22

llll
stst ）（

(b) Summary for the maximal distances between entries Ei,j and query object q and the number of entries
Ei,j in Figure 9(a). Let <A′

i,j , B
′
i,j> denote the entry Ei,j at row i and column j, where A′

i,j is the max-
imal spatial distance MaxS(Ei,j , q) between entry Ei,j and query q; B′

i,j is the number of entries Ei,j s.t.
MaxS(Ei,j , q) = A′

i,j .

Fig. 11. Illustration for the minimal spatial distances between entries and maximal spatial distances between query object
q and entries at level l.

We then identify which entries Ei,j in Figure 9(a) to be result entries, i.e., find entries whose
maximal spatial distances to query object q are definitely smaller than value of MinkNN . Intu-
itively, entries that are closer to q are more likely to be result entries. Figure 11(b) illustrates the
maximal distancesMaxS(Ei,j , q) between entry Ei,j and query object q. In particular, assume that
<A′

i,j , B
′
i,j> is an entry at row i and column j in Figure 11(b), then A′

i,j is the maximal spatial
distance between Ei,j and q; B′

i,j is the number of entries Ei,j s.t. MaxS(Ei,j , q) = A′
i,j . Given

any three distance values A′
i,j , A

′
i,j+1 and A′

i+1,j in three adjacent cells in Figure 10(b), we have
A′
i,j+1 > A′

i,j and A′
i+1,j > A′

i,j . Furthermore, we can explore the relationship of distance values
in Figures 11(a) and (b) as follows: Let Ai,j denote the distance value at row i column j in Figure
11(a), and let A′

i,j denote the distance value in Figure 11(b), we have A′
i−2,j−2 < Ai,j .

Based the observations above, we can derive the following: Given the distance Ap,p+1 (whose
value is MinkNN) in Figure 11(a), then the values Ai,j in Figure 11(b) satisfying (i≤p-2 and
j≤p-2) are smaller than A′

p,p+1. Therefore, any entry Ei,j in Figure 11(b) can be reported as a
result entry if (i≤p-2 and j≤p-2). Thus we can derive the number of index nodes ASl that can be
reported as results:

ASl = 1 +

p−3∑
i=1

(2 ∗ 4 + 8(i− 1)) + 4 + 8(p− 2− 1) = 4p2 − 12p+ 5 (30)

Together with Eqn(29) and Eqn(30), Lemma 7 holds.

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

1:28 Y. Lu et al.

6.3.4. Estimation for the number of accessed nodes with texts. We now describe how to take into
account the textual information. The main idea is to investigate how the textual information can
influence the number of pruned and reported index nodes.

LEMMA 8. Considering both spatial and textual information, the number Pl of pruned en-

tries at level l in the IUR-tree satisfies: Pl ≥ PSl − 8
1−α
α ∗ψs−φsψt−φt

∗[MaxT (E,q)−MinT (E,E′)]

tl
, where

MaxT (E, q) is the maximum textual relevance between an entry E at level l and query object q,
MinT (E,E′) is the minimum textual relevance between two entries E and E′ at level l in the
IUR-tree, and tl is given in Eqn(25).

PROOF. Recall Line 10 in Algorithm 4. We can prune an entry E if and only if:

kNNL(E) ≥MaxST (E, q)

⇒ α(1− MaxS(E,E′)− φs
ψs − φs

) + (1− α)MinT (E,E′)− φt
ψt − φt

≥ α(1− MinS(E, q)− φs
ψs − φs

) + (1− α)MaxT (E, q)− φt
ψt − φt

⇒ MinS(E, q) ≥MaxS(E,E′) +
1− α
α
∗ ψs − φs
ψt − φt

∗ [MaxT (E, q)−MinT (E,E′)]

The above formula shows that the number of pruned nodes should be reduced due to the textual
values. In particular, consider Figure 10(b) again, since we can prove that the gap between two
adjacent cells with respect to the values Ai,j is no less than tl, and there are at most 8 entries in any
cell of Figure 10(b) (i.e., ∀B′

i,j ≤ 8), we can derive the number of pruned entries has been changed
as shown in Lemma 8. Hence Lemma holds.

LEMMA 9. Considering both spatial and textual information, at level l in the IUR-
tree, the number Al of entries that are reported as results satisfies that: Al ≥ ASl +

4
1−α
α ∗ψs−φsψt−φt

∗[MinT (E,q)−MaxT (E,E′)]

tl
, where MinT (E, q) is the minimum textual relevance be-

tween an entry E at level l and query object q, MaxT (E,E′) is the maximum textual relevance
between two entries E and E′ at level l in the IUR-tree, and tl is given in Eqn(25).

PROOF. Recall Line 14 in Algorithm 4. We report entry E as a result entry if and only if:

kNNU(E) < MinST (E, q)

⇒ α(1− MinS(E,E′)− φs
ψs − φs

) + (1− α)MaxT (E,E′)− φt
ψt − φt

< α(1− MaxS(E, q)− φs
ψs − φs

) + (1− α)MinT (E, q)− φt
ψt − φt

⇒ MaxS(E, q) < MinS(E,E′) +
1− α
α
∗ ψs − φs
ψt − φt

∗ [MinT (E, q)−MaxT (E,E′)]

Further, there are at least 4 entries in any cell of Figure 11(b) (i.e., ∀B′
i,j ≥ 4), and thus Al can

be derived as that in Lemma 9.

LEMMA 10. Considering spatial and textual information, under a high probability lager than
1− 1√

2s−1
, the number Rl of the entries that need to be processed at level l in the IUR-tree is:

Rl ≤
1.28(k + 1)

f l
+ 5.243f

√
4(k + 1)

f l+1
+ 13 + 8.904f

√
0.137(k + 1)

f l+1
+ 1.617− 1.48f

+8f

1−α
α
∗ ψs−φs
ψt−φt ∗

(2ζ(s)2mf
i+1

−2)(2s−1)+ 2
m

ζ(s)2mf
i+1√

2s−1

ti+1

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

Efficient Algorithms and Cost Models for Reverse Spatial-Keyword k-Nearest Neighbor Search 1:29

where ζ(s) = lim
M→∞

∑M
i=1(1/i

s), which is known as Riemann’s zeta function [Titchmarsh 2005], s is the

parameter in Zipf distribution assumption.

PROOF. According to Lemmas 6, 7, 8, and 9, and Eqn(20), the number Rl of the entries which
needs to be processed at level l is:

Rl = NNl − f(Pl+1 +Al+1)

=
1.28(k + 1)

f l
+ 5.243f

√
4(k + 1)

f l+1 + 13
+ 8.904f

√
0.137(k + 1)

f l+1
+ 1.617− 1.48f

+8f

1−α
α ∗ ψs−φs

ψt−φt ∗
(
MaxT (E, q)−MinT (E,E′) +MaxT (E,E′)−MinT (E, q)

)
tl+1

≤ 1.28(k + 1)

f l
+ 5.243f

√
4(k + 1)

f l+1 + 13
+ 8.904f

√
0.137(k + 1)

f l+1
+ 1.617− 1.48f

+8f

1−α
α ∗ ψs−φs

ψt−φt ∗
(
2−MinT (E,E′)−MinT (E, q)

)
tl+1

(31)

In the following, we proceed to estimate the values of MinT (E,E′) and MinT (E, q) to com-
pute Rl.

Recall the assumption about textual distribution that each object contains m words randomly
selected from a word pool with M distinct words following Zipf distribution: the frequency of
the k-th most popular word wk is Pk = 1/ks∑M

i=1(1/i
s)

. In our algorithm, we estimate MinT (E,E′)

(resp. MinT (E, q)) by Equation (11). For simplicity, assume that all weights are binary, i.e., 0 or
1. Therefore, the key idea in Equation (11) is to estimate the total number of intersection words for
each object between two entries E and E′ (resp. objects in entry E and query object q). Let Xn be
the random variable representing the number of intersection words of all the n objects. Then the
probability that there are x common words appearing in the n objects is no less than that of one
special case, where the word w1 (which is the most popular word in Zipf distribution) is the only
common words for all n objects, and the word w1 appears x times in all the n objects, and the rest
m− x words for n− 1 objects are also word w1, but the remaining m− x words for the last object
are all w2. Therefore,

Pr(Xn = x) ≥ (P x1)
n ∗ P (n−1)(m−x)

1 ∗ Pm−x
2 =

2sx

(
∑M
i=1(1/i

s))nm ∗ 2sm

Then the expectation E(Xn) of random variable Xn is:

E(Xn) =
m∑
x=1

x ∗ Pr(Xn = x) ≥ m2s −m− 1

(
∑M
i=1(1/i

s))nm(2s − 1)
≥ m2s −m− 1

ζ(s)nm ∗ (2s − 1)
(32)

When n = 2f l, the expectation of the number of intersection words for 2f l objects in entries E
and E′ is 2f l

ζ(s)2flm
∗ m2s−m−1

2s−1 , and we can get the expectation E(MinT (E,E′)):

E(MinT (E,E′)) ≤ m2s −m− 1

ζ(s)nm ∗ (2s − 1)
∗ 1

m
=

2s − 1− 1
m

ζ(s)2f lm(2s − 1)
. (33)

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

1:30 Y. Lu et al.

Similarly, we can derive the expectation of MinT (E, q):

E(MinT (E, q)) ≤
2s − 1− 1

m

ζ(s)(f l+1)m(2s − 1)
. (34)

According to the Markov’s inequality [DeGroot and Schervish 2004], we have:

Pr

(
(2−MinT (E,E′)−MinT (E, q)) ≥

(2ζ(s)2f
lm − 2)(2s − 1) + 2

m

ζ(s)2f lm
√
2s − 1

)
≤ 2− E(MinT (E,E′)− E(MinT (E, q))

(2ζ(s)2flm−2)(2s−1)+ 2
m

ζ(s)2flm
√
2s−1

=
1√

2s − 1
(35)

Hence, together with Eqn(31) and Eqn(35) the number Rl of the entries which need to be pro-
cessed at level l can be derived as in Lemma 10, as desired.

In the following, we estimate the additional number of disk accesses Xl. In order to compute
the lower and upper kNN bounds of the rest Rl entries at level l, we may need to visit additional
entries at level l that are already pruned or reported as results at the upper levels, besides the Rl
entries that are visited. According to the RSKkNN search algorithm, given k, to compute the lower
(or upper) bound of entry E at layer l, we visit its top-k most similar objects, which are within the
⌈k−(f l−1)

f l
+ 1⌉ entries around entry E as shown in Figure 10. Thus the additional number of disk

accesses Xl = ⌈(k−(f l−1)
f l

+ 1)⌉Rl ≤ (k
f l

+ 1)Rl.
Thus, with a probability larger than 1- 1√

2s−1
, the total expected number of disk accesses DAl at

level l is Xl +Rl = (k
f l

+ 2)Rl.
Therefore, the number (DA) of index nodes accessed in the IUR-tree using the RSKkNN algo-

rithm is:

DA = 1 +
h−1∑
l=1

(
k

f l
+ 2)Rl

≤ 1 + 1.28k(k + 1)
1− f2

N2

f2 − 1
+ 13.782k

√
f(k + 1)

1− f
√
f

N
√
N

f
√
f − 1

+ 28.746fk
1− f

N

f − 1

+2.56(k + 1)
1− f

N

f − 1
+ 27.564

√
f(k + 1)

1−
√

f
N√

f − 1
+ 57.492f logf N

+8f
1− α

α
∗ ψs − φs
ψt − φt

∗
(2ζ(s)2mf

2 − 2)(2s − 1) + 2
m

ζ(s)2mf2
√
2s − 1

∗
√
N(1− f

N)
√
f − 1

In particular, if s → ∞, then probability 1 − 1√
2s−1

→ 1, and ζ(s) → 1 [Titchmarsh 2005]. In

addition, if f≪N , together with s → ∞, then, with a high probability, DA ≤ 1 + 1.28k k+1
f2 +

13.782k

√
(k+1)

f + 28.746k + 2.56k+1
f + 27.564

√
k + 1 + 57.492f logf N = O(k

2

f2 + k
√
k

f + k +

f logf N). Further, assuming constant and small values for f and k, the number (DA) of index nodes
accessed in the IUR-tree using theRSKkNN algorithm is O(f logf N), which finally concludes the
proof of Theorem 2.

Extension to Cosine Similarities. Using the cosine distance defined in Eqn (5) as the textual sim-
ilarity measurement, we only need to replace the estimations of MinT (E,E′) and MinT (E, q)

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

Efficient Algorithms and Cost Models for Reverse Spatial-Keyword k-Nearest Neighbor Search 1:31

with the estimations of MinTcos(E,E
′) and MinTcos(E, q), respectively, in the Eqn(31) in Sec-

tion 6.3.4. Under the same assumption of the textual distribution given in Section 6.3.1, the expecta-
tion ofMinTcos(E,E

′) (resp.MinTcos(E, q)) defined in Eqn(19) is the same as the expectation of
MinT (E,E′) (resp. MinT (E, q)) given in Eqn(33) (resp. Eqn(34)). Hence Theorem 2 still holds
using cosine as the textual similarity measurement.

7. Refinements for Hybrid Index
Like the R-tree, the IUR-tree is built based on the heuristics of minimizing the area of MBR of
nodes. However, the associated texts of the spatial objects in the same MBR can be very different,
because the near spatial objects often belong to different specific categories, such as retail, accom-
modations, restaurants, and tourist attractions. To compute tighter kNN bounds of the entries, we
enhance the IUR-tree with text cluster, yielding an index tree called CIUR-tree given in Section 7.1.
Then in Section 7.2 we propose a Combined CIUR-tree (called C2IUR-tree), which aims at com-
bining both location and textual information into account during tree construction, by modifying the
similarity functions between enclosing rectangles using textual cluster IDs and locations of objects.
We also present two optimization methods to improve the search performance based on CIUR-tree
and C2IUR-tree in Section 7.3 and Section 7.4, respectively.

7.1. Cluster IUR-tree: CIUR-tree
We propose to use text clustering to enhance IUR-tree. In the pre-processing stage, we group all the
database objects into clusters C1, · · ·Cn according to their text similarities. We extend each IUR-
tree node by the cluster information to generate a hybrid tree called Cluster IUR-tree(CIUR-tree).
The CIUR-tree is built based on the spatial proximity as does the IUR-tee. However, each node of
the CIUR-tree includes a new entry ClusterList in the form of (ID:N), where ID is the cluster id
and N is the number of objects of cluster ID in the subtree of the node. The ClusterList on the
upper layer CParent is the superimposing of that on lower layer CChild. That is, CParent.N =∑M
j=1 CChildj .N , where M is the number of children of the node.
Similar to the intersection and union textual vectors in IUR-tree, there are intersection and union

cluster vectors at each node in CIUR-tree. For each cluster Ci, CIntV cti and CUniV cti include
the minimal and maximal weights of each word in Ci, respectively. For example, suppose all the
objects in Fig.1 are clustered into three clusters: C1={p1, p4, p5}, C2={p2, p3, p6} and C3={p7,
p8, p9}, the intersection and union text vectors of which are shown in Fig 12(a). The CIUR-tree is
shown in Fig 12(b).

7.2. Combined CIUR-tree: C2IUR-tree
The CIUR tree proposed in the previous section is built on the heuristics of placing nodes that
are spatially close in the same MBR. However, the RSKkNN query takes into account both loca-
tion proximity and text relevancy. In this subsection, we propose the Combined CIUR-tree (called
C2IUR-tree), which combines the information about both location and text during tree construction.
Specifically, during the construction of the C2IUR-tree, we compute the similarity between two en-
tries by both their spatial proximity and text similarity, which is computed using the cluster IDs in
the two entries.

Let E1,...,En be a set of entries. The spatial similarity of a pair of entries, < Ep, Eq >, 1 ≤
p, q ≤ n, is defined as follows:

∆Area(Ep, Eq) = Area(Epq)−Area(Ep)−Area(Eq) (36)

where Area(Epq) is the area of the minimum bounding rectangle enclosing Ep and Eq; Area(Ep)
and Area(Eq) are the areas of the minimum bounding rectangle enclosing Ep and Eq, respectively.
A bigger ∆Area(Ep, Eq) indicates that the two entries are less similar spatially.

Similarly, the similarity of textual description is defined as follows:

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

1:32 Y. Lu et al.

CIntVct1 4 4 0 0 0

CIntVct2 1 1 4 4 0

CIntVct3 0 0 0 0 4

0

0

4

CUniVct1 8 8 1 1 0

CUniVct2 1 1 8 8 4

CUniVct3 1 1 1 1 8

0

4

8

C1

C2

C3

lap
top

cam
era

dia
perpanspo

rtsw
ear

stat
ion
ery

lap
top

cam
era

dia
perpanspo

rtsw
ear

stat
ion
ery

(a) Intersection and union text vectors of each cluster

ObjVct1

[3, 12]

[3, 12]

ObjVct2

[4,16]
[4,16]

ObjVct3

[14, 15]

[14, 15]

ObjVct9

[19, 10]
[19, 10]

[11,0]

[11,0]

[6, 5]

[6, 5]

[14,10]

[19,15]
[6, 0]
[11,5]

[0,11]
[4,16]

[14,10]
[25,22]

[0, 0]
[11,16]

ObjVct6

[0,11]
[0,11]

p
1

p
2

p
6

p
4

p
5p

3
p
9

ObjVct4 ObjVct5

54

2 2 2 3

[18,20]

[18,20]

[25,22]

[25,22]

p
7

p
8

ObjVct7 ObjVct8

N1N5 N2 N4

N6N3

N7

[18,20]

[25,22]

IntUniVct5 IntUniVct6

IntUniVct1

IntUniVct3

IntUniVct4
IntUniVct2

(C2:1, C3:3) (C1:3 , C2:2)

(C2:1 , C3:1)
(C3:2)

(C1:2)

(C1:1 , C2:2)

(b) CIUR-tree

Fig. 12. The Cluster IUR-tree of Figure 1

∆Entropy(Ep, Eq) = Entropy(Epq)− Entropy(Ep)− Entropy(Eq) (37)

Entropy(E) = −
n∑
i=1

cnumi

|E|
log

cnumi

|E|
(38)

where cnumi is the number of objects of Cluster i in entry E, and |E| is the number of objects in
E. Entropy(Epq) is the entropy of the cluster IDs vector which combines the two entries Ep and
Eq. Larger ∆Entropy(Ep, Eq) implies that the textual descriptions of two entries are less similar.

Finally, we define the similarity of two entries as follows:

Sim(Ep, Eq) = 1−
(
β

∣∣∣∣∆Area(Ep, Eq)max∆Area

∣∣∣∣+ (1− β)

∣∣∣∣∆Entropy(Ep, Eq)max∆Entropy

∣∣∣∣) (39)

where max∆Area is the maximum value of ∆Area(Ep, Eq) for all the pair entries Ep and Eq,
1 ≤ p, q ≤ n, p ̸= q, which is used for normalization in spatial similarity part; max∆Entropy is
the maximum value of ∆Entropy(Ep, Eq) for all the pair entries Ep and Eq, 1 ≤ p, q ≤ n, p ̸= q,
to normalize the textual similarity part. Because ∆Area(Ep, Eq) and ∆Entropy(Ep, Eq) can be
negative, we use the absolute value to ensure Sim(Ep, Eq) to be positive and monotonic. Parameter
β, 0 ≤ β ≤ 1, is to balance the two similarities. In particular, if β = 1, then Sim(Ep, Eq) is
reduced to the spatial similarity; and if β = 0, Sim(Ep, Eq) measures only the textual similarity.

While the framework of the algorithm for building C2IUR-tree is similar to that of CIUR-tree,
the procedures ChooseLeaf and Split are different and are presented as follows.

Given a new object, the function ChooseLeaf (see Algorithm 5) selects a leaf entry to place it.
ChooseLeaf travels the tree from the root to a leaf. When it visits an internal node in the tree, it
will choose the subtreeE with the maximum value of Sim(E, object). Equation 39 can be naturally
extended to compute the similarity between an entry and an object. Therefore, the new object will
be inserted to the branch which is the most similar to it in terms of the combination of spatial and
textual similarity.

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

Efficient Algorithms and Cost Models for Reverse Spatial-Keyword k-Nearest Neighbor Search 1:33

ALGORITHM 5: ChooseLeaf (object)
1: N←root;
2: while N is not leaf do
3: Choose the child entry E of N with max value for Sim(E, object) // defined in Equa. 39;
4: N←E;
5: Return N ;

ALGORITHM 6: Split (N)
1: Es1 , Es2 = argmin

Ei,Ej∈N
Sim(Ei, Ej); // Equation 39

2: for each entry E in node N , where E ̸= Es1 and E ̸= Es2 do
3: if Sim(E, Es1)≥ Sim(E, Es2) then
4: Classify E as group 1;
5: else
6: Classify E as group 2;
7: split N into group 1 and 2

Fig. 13. The example of C2IUR-tree

The function Split (see Algorithm 6) is used to split a node N . First we pick two entries Es1
and Es2 in N that have the minimum value of similarity defined in Equation 39, i.e., the two entries
have the least similarity from each other. Then for each other entry E in N , if E is closer to Es1 in
terms of spatial and textual similarity, E is classified to group 1; otherwise it is in group 2. In this
way all entries are split to two groups.

Take the objects in Fig 12(b) for example, the C2IUR-tree is shown in Fig 13. In the CIUR-tree,
we group P1,P2 and P6 into a single node, because they are close to each other according to spatial
distance. In contrast, in the C2IUR-tree, these objects are partitioned into different nodes; and P1,
P4 and P5 are in the same node since they are similar when both textual and spatial information are
considered.

7.3. Outlier Detection and Extraction
To develop an optimized algorithm using cluster information in CIUR-tree and C2IUR-tree, one
way is to change the order of processing entries in Algorithm 3 to give a priority to entries which
have “outliers”. This way, we are more likely to quickly tighten the estimation of low/upper bounds

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

1:34 Y. Lu et al.

of entries. More precisely, we detect the index node E containing outlier clusters in the following
two cases:

Case I: Most objects in subtree(E) can be pruned, but there exist very few objects in subtree(E)
that cannot be pruned, and are called “outliers”, thus making the whole E non-prunable. More
precisely, given a query q, we say one entry E belongs to Case I if 1) MinST (E, q) < kNNL(E),
2) MaxST (E, q) > kNNL(E), and 3) there exists a subset of clusters in E, denoted by SI , such
that

∑
Ci∈SI Ci.N ≥ λ|E|, where parameter λ is a threshold close to 1, and ∀Ci ∈ SI s.t. α(1 −

MinS(E,q)−φs
ψs−φs) + (1 − α)MaxT (Ci, q) < kNNL(E). The objects that are in E but not in SI are

outliers.
Case II: Most objects in subtree(E) can be reported as answers, but there exist very few objects

that are not answers and thus the whole E cannot be reported as a result entry. More precisely,
given a query q, an entry E belongs to case II if 1) MinST (E, q)<kNNU (E), 2) MaxST (E, q)
>kNNU (E), and 3) there exist a subset of clusters inE, denoted by SII , such that

∑
Ci∈SII Ci.N ≥

µ|E|, where parameter µ is a threshold close to 1, and ∀Ci ∈ SII s.t. α(1− MaxS(E,q)−φs
ψs−φs) + (1−

α)MinT (Ci, q) > kNNU(E).
Having identified entries in Case I or Case II , we process (decompose) them immediately and

identify if their subtree entries can be pruned or added as results (without enqueue like normal
entries). To implement this optimization for RSKkNN queries, the only change is to replace Line 17
in Algorithm 3 with the following pseudocodes. First, we determine whether the index node E is in
Case I or II: if not, then add E into the priority queue U ; if yes, then we decompose E by checking
whether each subtree entry e of E can be pruned or is a result according to the corresponding
relationship between the set Ce of clusters in e and cluster set SI , SII .

Replace Line 17 in Algorithm 3
if (E is in Case I or II) then

for each entry e ∈ subtree(E)
if Ce⊂SI then prune e; //Ce is the set of clusters in e
else if Ce⊂SII then report e as a result entry;

else if (e is an index node) then EnQueue(U ,e);
else COL.append(e);

else EnQueue(U , E);

7.4. Text-entropy Based Optimization
We proceed to propose the second optimization to improve performance. In particular, we use
TextEntropy to depict the distribution of text clusters in an entry of CIUR-tree or C2IUR-tree.
Intuitively, the more diverse the clusters are, the larger the TextEntropy of the entry is. The fol-
lowing formula calculates TextEntropy for the leaf and inner nodes recursively.

H(E) =


−
∑n
i=1

cnumi
|E| log cnumi|E| if E is a leaf node;

∑M
j=1

|E.childj |
|E| H(E.childj) otherwise.

where cnumi is the number of objects of Cluster i in entry E, and |E| is the number of objects in
E. If E is a leaf node, the TextEntropy describes the distribution of textual cluster in E. If E is an
intermediate node, TextEntropy of E is a weighted combination of the TextEntropy of its child
entries E.childi.

We use TextEntropy as the priority (key) for the max-priority queue U . If an entry is more
diverse in its text description, it has a higher priority to be visited first. By doing so, we expect
that decomposing entries/nodes with diverse textual description in sub-entries would reduce the

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

Efficient Algorithms and Cost Models for Reverse Spatial-Keyword k-Nearest Neighbor Search 1:35

diversity of the entries, and thus would be more likely to enable to quickly tighten the estimation
of the lower/upper bounds of similarity between each entry and its kth most similar object through
“mutually effect” among entries. In addition, since TextEntropy can be computed offline during
the indexing construction, we do not need to access the ClusterLists from disk during the query
time. Therefore, TextEntropy based method needs less I/O cost compared to the outlier-detection
based optimization

A salient feature of the two above optimizations in Section 7.3 and Section 7.4 is that they are
orthogonal and can be combined, as implemented in our experiments.

8. Experimental Studies
We conducted a thorough experimental study to evaluate the efficiency and scalability of our meth-
ods in answering RSKkNN queries.
Implemented algorithms We implemented the proposed algorithms based on the IUR-tree as
well as the optimizations based on the CIUR-tree: outlier-detection-extraction optimization (ODE-
CIUR) and text-entropy optimization (TE-CIUR), and the combination of two optimizations (ODE-
TE). We also implemented the search algorithms based on the C2IUR-tree, namely ODE-C2IUR,
TE-C2IUR and ODE-TE-C2IUR. In addition, we implemented the two baseline methods discussed
in Section 4: the threshold TA-based method and the IR-tree-based method.

Table III. Datasets for the experiments

Statistics GN CD Shop
total # of objects 1,868,821 1,555,209 803,155

total unique words in dataset 222,409 21,578 3933
average # words per object 4 47 45

Datasets and Queries The algorithms are evaluated using three datasets: GeographicNames (GN),
CaliforniaDBpedia (CD), and ShopBranches (Shop). These datasets differ from each other in terms
of data-size, spatial-distribution, word-cardinality and text-size. Our goal in choosing these diverse
sources is to understand the effectiveness and efficiency of our algorithms in different environments.
The statistics of each dataset are shown in Table III.

In particular, the GeographicNames dataset (geonames.usgs.gov) is a real-life dataset from the
U.S. Board on geographic names with a large number of words to describe the information about
each geographic location. The CaliforniaDBpedia dataset combines a real spatial data at Cali-
fornia (www.usgs.gov) and a real collection of document abstracts about California in DBpedia
(wiki.dbpedia.org/Downloads351). Finally, the ShopBranches is generated from a real-life data de-
scribing 955 shop branches and their products. We enlarge the original data by copying and shifting
all objects to their neighborhood region while maintaining the distribution of the locations and tex-
tual information of the objects. In this way, the size of the data is scaled by up to more than 800
times.

For each dataset, we generated 7 sets of query sets, in each of which the number of keywords is
2, 4, 8, 16, 32, 64 and 128, respectively. Each query set comprises 100 queries, each corresponding
to a randomly selected object from the corresponding dataset. We report the average running time
of 100 queries for each query set. Note that the tested queries are meaningful in real application
scenarios. For example, in ShopBranches data, an RSKkNN query can be used to find shops that
will be influenced by a new store outlet. Alternatively, in GeographicNames data, an RSKkNN
query can be used to find national parks that will be influenced by a new park with a similar natural
landscape.
Setup and metrics We implemented all the algorithms with VC++6.0 on a server with an Intel(R)
Core(TM)2 Quad CPU Q8200 @2.33GHz and 4GB of RAM. We implemented the algorithms based
on both disk-resident and memory-resident data for the proposed index structures, namely IUR-tree,
CIUR-tree and C2IUR-tree. The page size is 4KB and the branch number of each index node is 102.

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

1:36 Y. Lu et al.

Both parameters λ and µ in ODE-CIUR are fixed at 0.9 by default. In the CIUR-tree and C2IUR-tree,
we cluster the textual vectors of objects into different number of clusters using the DBSCAN [Ester
et al. 1996] clustering algorithm.

We compare various algorithms with different experimental settings as follows:

parameter k: 1 ∼ 128, default 4
parameter α: 0 ∼ 1, default 0.7
number of query words qw: 1∼128, default 16
number of clusters: 18∼14337, default 187

Space requirement The space usage for the structures used by the algorithms is shown in Table
IV. The space usage of the CIUR-tree is slightly larger than that of the IUR-tree, since it needs extra
space to store the intersection and union vectors for each cluster and the additional new entry “Clus-
terList” on each node. In addition, the space requirement of the C2IUR-tree is also comparable with
that of the CIUR-tree. The reason is that the C2IUR-tree requires the same cluster information as
does the CIUR-tree. The difference between the CIUR-tree and the C2IUR-tree is that constructing
the CIUR-tree is based on the heuristic of minimizing the spatial proximities of objects in CIUR-tree
nodes; while the C2IUR-tree is built based on the heuristic of minimizing both spatial and textual
similarities of objects enclosed in the C2IUR-tree node. Thus the objects enclosed in a C2IUR-tree
node and a CIUR-tree node are different.

Table IV. Sizes of indexing structures

Data IUR-tree CIUR-tree C2IUR-tree
GN 264MB 306MB 302MB
CD 218MB 237MB 231MB

Shop 210MB 288MB 283MB

8.1. Experiments for search algorithms on IUR-trees and CIUR-trees
In the first set of experiments, we studied the performance and the scalability of different algorithms
on IUR-trees and CIUR-trees when varying data sizes. In particular, we generated different datasets
ranging from 100K to 1000K by randomly selecting objects from the original GN dataset shown in
Table III. As baselines, we implemented two methods described in Section 4, which are based on
the threshold algorithm (TA) [Fagin et al. 2003] (called Basline) and the IR-trees [Cong et al. 2009]
(called BasedIRTree), respectively. Furthermore, we also studied the performances of algorithms
based on the cosine similarity for textual similarity measurement.

8.1.1. Baselines vs. IUR-trees. Fig. 14(a) exhibits the running time of three algorithms based on
two baselines and the IUR-tree. Note that the query time is shown in log scale. The IUR-tree clearly
outperforms two baselines by orders of magnitude. The gap becomes larger when the size of datasets
gets bigger, which empirically verifies the theoretical analysis about the computation complexity of
baselines and our algorithms in Section 6.3. In addition, BasedIRtree outperforms Baseline when
the size of data is larger than 600K. It is because BasedIRtree uses the IR-tree to find k spatial-
textual neighbors and its superiority over the TA algorithm (in Baseline) becomes clear only in the
setting of a large data set.

Fig. 14(b) shows the performance of various algorithms based on the cosine similarity. Again, the
IUR-tree is clearly the winner in this setting and performs significantly better than two baselines.

Comparing Figures 14(a) and 14(b), we have some additional insights: the performances of Base-
line based on the extended Jaccard and the cosine similarity are similar, whereas the performances
of BasedIRtree and IUR-tree based on the cosine similarity perform worse than those based on
the extended Jaccard. The reason is that the lower and upper bounds (in Eqn. 19) between two in-
dex nodes for the cosine similarity are not as tight as those for the extended Jaccard. In addition,
BasedIRtree and IUR-tree rely on the bounds of textual similarity to prune nodes, but Baseline
does not use those bounds.

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

Efficient Algorithms and Cost Models for Reverse Spatial-Keyword k-Nearest Neighbor Search 1:37

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

100 200 300 400 500 600 700 800 9001000

Q
ue

ry
 ti

m
e

(s
ec

)

datasize (K)

Baseline
BasedIRtree

IUR-tree

(a) Varying data sizes (log-scale), Query
time, with the extended Jaccard

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

100 200 300 400 500 600 700 800 9001000

Q
ue

ry
 ti

m
e

(s
ec

)

datasize (K)

Baseline
BasedIRtree

IUR-tree

(b) Varying data sizes (log-scale), Query
time, with the cosine similarity

 0

 0.2

 0.4

 0.6

 0.8

 1

100 200 300 400 500 600 700 800 900 1000

Q
ue

ry
 ti

m
e

(s
ec

)

datasize (K)

IUR-tree
ODE-CIUR

TE-CIUR
ODE-TE

(c) Varying data sizes, Query time

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

100 200 300 400 500 600 700 800 900 1000

P

ag
e

ac
ce

ss
es

datasize (K)

IUR-tree
ODE-CIUR

TE-CIUR
ODE-TE

(d) Varying data sizes, Page access

 0

 0.2

 0.4

 0.6

 0.8

 1

IUR-tree ODE-CIUR TE-CIUR ODE-TE

Q
ue

ry
 ti

m
e

(s
ec

)

Lazy travel down

Without delay
With delay

(e) Lazy travel-down

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

IUR-tree ODE-CIUR TE-CIUR ODE-TE

Q
ue

ry
 ti

m
e

(s
ec

)

Inherit

Without inherit
With inherit

(f) Inherit

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 16 32 64 128

Q
ue

ry
 ti

m
e

(s
ec

)

k

IUR-tree
ODE-CIUR

TE-CIUR
ODE-TE

(g) Varying k, Query time

 0

 0.05

 0.1

 0.15

 0.2

0 0.1 0.3 0.5 0.7 0.9 1

qu
er

y
tim

e
(s

ec
)

alpha

IUR-tree
ODE-CIUR

TE-CIUR
ODE-TE

(h) Varying α, Query time

 0

 0.05

 0.1

 0.15

 0.2

 0.25

2 4 8 16 32 64 128
qu

er
y

tim
e

(s
ec

)
query words

IUR-tree
ODE-CIUR

TE-CIUR
ODE-TE

(i) Varying the number of query words,
Query time

Fig. 14. Experimental results on the GN dataset

8.1.2. IUR-trees vs. CIUR-trees. In Fig. 14(c) and Fig. 14(d), we observe that the CIUR-tree-
based algorithms outperform the IUR-tree-based approaches, which indicates that the two optimiza-
tions (i.e. Outline Detection and Extraction (ODE) and Text Entropy (TE) optimizations) enhance
the filtering power and reduce the number of index nodes visited. Note that the ODE-TE algorithm
that combines the two optimization approaches is the fastest algorithm in this experiment and scales
well with the size of the data sets.

8.1.3. Effect of “lazy travel-down” and “inherit”. To demonstrate the usefulness of the techniques
used in our RSKkNN algorithm: “lazy travel-down” and “inherit” individually, we study the per-
formance when one of the two techniques is turned off. First, Figure 14(e) shows that the “lazy
travel-down” approach speeds up all four algorithms by more than 50%. This is because it can
avoid visiting some irrelevant entries. Second, Figure 14(f) shows the benefit of inherit technology
for all the algorithms. We observe that inherit can significantly improve the performance since it
avoids computing contribution lists from the scratch.

8.1.4. Effect of parameters k, α and qw. In this set of experiments, we study how system perfor-
mance is affected by the following parameters: the number of returned top results k, the combination
ratio of the similarity function α and the number of words in queries qw. The results are reported in
Figures 14(g)∼ 14(i).

Figures 14(g) shows the runtime w.r.t. k. We fix α=0.7 and qw=16, and vary k from 1 to 9. The
results show that the runtime and required I/O of our algorithms increase slightly as k grows.

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

1:38 Y. Lu et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0.75 0.8 0.85 0.9 0.95 0.99

qu
er

y
tim

e
(s

ec
)

lambda

ODE-CIUR

(a) Effect of λ for ODE-CIUR

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0.75 0.8 0.85 0.9 0.95 0.99

Q
ue

ry
 ti

m
e

(s
ec

)

mu

ODE-CIUR

(b) Effect of µ for ODE-CIUR

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

18 62 187 714 1940 5274 14337

qu
er

y
tim

e
(s

ec
)

Cluster number

ODE-CIUR
TE-CIUR

(c) Effect of textual cluster number

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

1 2 4 8 16 32 64 128

Q
ue

ry
 ti

m
e

(s
ec

)

k

IUR-tree
ODE-CIUR

TE-CIUR
ODE-TE

(d) Memory resident

 0

 0.1

 0.2

 0.3

 0.4

 0.5

100 200 300 400 500 600 700 800 900 1000

Q
ue

ry
 ti

m
e

(s
ec

)

datasize (K)

ODE-TE
C2IUR-tree

ODE-C2IUR
TE-C2IUR

ODE-TE-C2IUR

(e) Varying data size for C2IUR-tree,
Query time

 0

 500

 1000

 1500

 2000

100 200 300 400 500 600 700 800 900 1000

P

ag
e

ac
ce

ss
es

datasize (K)

ODE-TE
C2IUR-tree

ODE-C2IUR
TE-C2IUR

ODE-TE-C2IUR

(f) Varying data size for C2IUR-tree,
Page accesses

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

1 2 4 8 16 32 64 128

Q
ue

ry
 ti

m
e

(s
ec

)

k

ODE-TE
C2IUR-tree

ODE-C2IUR
TE-C2IUR

ODE-TE-C2IUR

(g) Varying k for C2IUR-tree

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

18 62 187 714 1940 5274 14337

qu
er

y
tim

e
(s

ec
)

cluster number

C2IUR-tree

(h) Varying cluster number for C2IUR-
tree

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

0 30 60 90 120

P

ag
e

ac
ce

ss
es

cache size (MB)

IUR-tree
ODE-CIUR

TE-CIUR
ODE-TE

(i) Speedup vs cache size, Page accesses

Fig. 15. Experimental results on the GN dataset

To evaluate the impact of α, we vary α from 0 to 1, thus adjusting the importance between textual
similarity and spatial proximity. Figure 14(h) shows that our algorithm is insensitive to α. At α=1,
i.e., text documents are totally ignored, the runtime is obviously shorter, as expected.

Figures 14(i) shows the results when we vary the number of query words qw. We can see that
the algorithms run faster as we increase qw from 2 to 32. This is because more query words may
improve the pruning power by decreasing the average textual similarity between query words and
data points.

8.1.5. Effect of parameters λ and µ for ODE-CIUR. This experiment is to study the effects of
parameters λ and µ for ODE-CIUR. As shown in Fig. 15(a), with the increase of λ, the runtime
first decreases and then increases. The interplay between λ and the running time can be illustrated
as follows. Smaller λ means that the condition of Case I (described in Section 7.3) is easier to be
satisfied and thus more entries are identified as Case I , which will lead to unnecessary accesses of
entries. However, if the value of λ is too large (e.g., 0.99), the condition of Case I is too strict to
be satisfied and thus the benefit of the optimization is marginal. Intuitively, there is a sweet spot
between the two extremes. In our experiments, we found the best spot to be λ=0.9. As shown in
Fig. 15(b), the effect of parameter µ is similar to that of the parameter λ. When µ is around 0.9, the
performance is the best.

8.1.6. Effect of cluster number. As shown in Fig. 15(c), the performance of both ODE-CIUR and
TE-CIUR is insensitive to the number of clusters, and they achieve the best performance when the

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

Efficient Algorithms and Cost Models for Reverse Spatial-Keyword k-Nearest Neighbor Search 1:39

number of cluster is around 200-1000. We can see that the runtime decreases as the number of
clusters changes from 18 to 187, but increases as the number changes from 1,940 to 14,337. This
is because the time needed for processing clusters counteracts the time saved by the text cluster
enhancement.

8.1.7. Memory-resident implementation. This experiment is to evaluate the performance of the al-
gorithms on memory-resident indexes. Since the size of the two ranking lists in the baseline method
is too big to fit in memory, we evaluate the performance of the other four algorithms on the GN
dataset when the indexes are in memory. As shown in Fig. 15(d), when varying the parameter k,
ODE-TE outperforms the other algorithms, which is consistent with the results reported on disk-
resident indexes.

8.1.8. Effect of cache. This experiment is to evaluate the impact of the cache strategy on our
algorithms. We used the well-known LRU cache method [Johnson and Shasha 1994], and varied the
cache size from 0 to 120MB, where 120MB corresponds to about 20% of IUR-tree. As shown in
Fig. 15(i) on the GN dataset, the cache method improves the I/O performance of all the algorithms.
This is expected since caches save the I/O cost by reducing page accesses. Note that the cache
strategy does not change the trend in the performance of different methods. That is the ODE-TE
CIUR-tree, which combines two optimization strategies, is still the best of all the five algorithms.

8.2. Experiments for search algorithms on C2IUR-tree
8.2.1. Performance of different algorithms and scalability. In this set of experiments, we eval-

uate the performance and the scalability of various algorithms on the C2IUR-tree. As shown in
Figures 15(e) and 15(f), all the search algorithms based on the C2IUR-tree (including the C2IUR,
ODE-C2IUR, TE-C2IUR and ODE-TE-C2IUR) outperform the ODE-TE algorithm which is the
fastest among the search algorithms based on the CIUR-tree and its optimizations (ODE-CIUR,
TE-CIUR and ODE-TE). Therefore, all the search algorithms based on the C2IUR-tree are superior
to the algorithms on the CIUR-tree and its optimizations. In addition, Figures 15(e) and 15(f) show
that the optimization algorithms “Outlier Detection and Extraction” and “ Textual Entropy”, are also
applicable to the C2IUR-tree to prune the irrelevant objects and improve the performance. More-
over, we observe that the ODE-TE-C2IUR algorithm that combines the two optimization approaches
based on the C2IUR-tree is the fastest among all the algorithms in our experiments.

8.2.2. Effect of parameter k. This experiment is to evaluate the impact of parameter k on the
performance of the search algorithms on the C2IUR-tree. As shown in Figure 15(g), by varying
parameter k from 1 to 128, the runtime of our algorithms increase slightly with the increase of k.

8.2.3. Effect of cluster number. As discussed in Section 7.2, we use textual clusters to compute
the textual entropy in the construction of C2IUR-trees. In this set of experiments, we evaluated the
effect of the number of clusters on the performance of the C2IUR-tree. Note that this experiment
is different from the one evaluating the effect of the number of clusters on the search optimiza-
tions based on the CIUR-tree in Figure 15(c) in Section 8.1.6. Figure 15(h) demonstrates that the
query time tends to decline with the increase of the number of clusters. The reason is that with a
larger number of clusters, the textual entropy would become more precise to represent the textual
information in an index node, thus improving the efficiency of the algorithms.

8.3. Experiments on other datasets
All the above experimental results are reported on the GN dataset. We also conducted extensive
sets of experiments on the other two datasets Shop and CD, and part of the experimental results
are shown in Figures 16(a)-16(f). We can see that the trends of both sets of experimental results
are consistent with those of the GN dataset. Therefore, they demonstrate the effectiveness and
efficiency of our algorithms under different datasets with various data-sizes, spatial-distributions,
word-cardinalities and text-sizes.

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

1:40 Y. Lu et al.

To summarize, our experimental results show that the proposed hybrid indexes and search al-
gorithms outperform the baseline method, and the two optimizations with text-entropy and outline-
detection based on CIUR-tree and C2IUR-tree can further improve the performance of the RSKkNN
query.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

100 200 300 400 500 600 700 800 9001000

qu
er

y
tim

e
(s

ec
)

datasize(K)

Baseline
IUR-tree

ODE-CIUR
TE-CIUR
ODE-TE

(a) Varying data sizes, CD, Query time

 1000

 10000

 100000

 1e+006

 1e+007

 1e+008

100 200 300 400 500 600 700 800 9001000

pa
ge

 a
cc

es
se

s

datasize(K)

Baseline
IUR-tree

ODE-CIUR
TE-CIUR
ODE-TE

(b) Varying data sizes, CD, Page access

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 16 32 64 128

qu
er

y
tim

e
(s

ec
)

k

IUR-tree
ODE-CIUR

TE-CIUR
ODE-TE

(c) Varying k, CD, Query time

 0

 5000

 10000

 15000

 20000

1 2 4 8 16 32 64 128

pa

ge
 a

cc
es

se
s

k

IUR-tree
ODE-CIUR

TE-CIUR
ODE-TE

(d) Varying k, CD, Page access

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

100 200 300 400 500 600 700 800 9001000

Q
ue

ry
 ti

m
e

(s
ec

)

datasize (K)

Baseline
IUR-tree

ODE-CIUR
TE-CIUR
ODE-TE

(e) Varying data sizes, Shop, Query time

 1000

 10000

 100000

 1e+006

 1e+007

100 200 300 400 500 600 700 800 9001000

P

ag
e

ac
ce

ss
es

datasize (K)

Baseline
IUR-tree

ODE-CIUR
TE-CIUR
ODE-TE

(f) Varying data sizes, Shop, Page access

Fig. 16. Experimental results on CD and Shop datasets

9. Conclusions and Future Work
In this paper we introduced and addressed a new problem called RSKkNN queries, which is an ex-
tension of RkNN queries where the search criteria is based on the fusion of spatial information and
textual description. This extension renders the existing solutions to answer RkNN queries inapplica-
ble to RSKkNN queries. Thus, we presented the IUR-tree and its two optimizations CIUR-tree and
C2IUR-tree to represent and index the hybrid information and proposed the RSKkNN algorithm,
which quickly computes contribution lists, and adjusts the thresholds to prune unrelated points and
identify true hits as early as possible. We also provided a new cost model to theoretically analyze the
performance of our algorithms. Finally, we conducted extensive experiments to verify the scalability
and the performances of our proposed algorithms and optimizations.

As for the future work, this article opens a number of promising directions. First, we plan to
extend our algorithms to the bichromatic version of RSKkNN queries, considering the textual rel-
evance for documents belonging to two different types of objects. Second, we intend to consider
other variants of RSKkNN queries, such as the skyline RSKkNN queries. Finally, we would like
to develop algorithms for the scenarios where the spatial objects are moving, uncertain objects or
objects that are constrained to a road network.

REFERENCES
ACHTERT, E., BÖHM, C., KRÖGER, P., AND KUNATH, P. 2006. Efficient reverse k-nearest neighbor search in arbitrary

metric spaces. In SIGMOD. 515–526.
ACHTERT, E., KRIEGEL, H.-P., KRÖGER, P., RENZ, M., AND ZÜFLE, A. 2009. Reverse k-nearest neighbor search in

dynamic and general metric databases. In EDBT. 886–897.
A.FOX, E., CHEN, Q. F., M.DAOUD, A., AND S.HEATH, L. 1991. Order-preserving minimal perfect hash functions and

information retrieval. In TOIS. 281–308.

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

Efficient Algorithms and Cost Models for Reverse Spatial-Keyword k-Nearest Neighbor Search 1:41

BERCHTOLD, S., BÖHM, C., KEIM, D., AND KRIEGEL, H. 1997. A cost model for nearest neighbour search in high-
dimensional data space. In Proceedings 16th ACM Conference on Principles of Database Systems(PODS). 78–86.

BOHM, C. AND KRIEGEL, H. 2001. A cost model and index architecture for the similarity join. In Proceedings 17th IEEE
International Conference on Data Engineering (ICDE). 411–420.

BORIAH, S., CHANDOLA, V., AND KUMAR, V. 2008. Similarity measures for categorical data: A comparative evaluation.
In SDM. 243–254.

CAO, X., CONG, G., AND JENSEN, C. S. 2010. Retrieving top-k prestige-based relevant spatial web objects. PVLDB 3, 1,
373–384.

CHEEMA, M. A., LIN, X., ZHANG, W., AND ZHANG, Y. 2011. Influence zone: Efficiently processing reverse k nearest
neighbors queries. In ICDE. 577–588.

CHEEMA, M. A., LIN, X., ZHANG, W., AND ZHANG, Y. 2012. Efficiently processing snapshot and continuous reverse k
nearest neighbors queries. In Proceedings of the VLDB Journal.

CHEEMA, M. A., LIN, X., ZHANG, Y., 0011, W. W., AND ZHANG, W. 2009. Lazy updates: An efficient technique to
continuously monitoring reverse knn. PVLDB 2, 1, 1138–1149.

CONG, G., S.JENSEN, C., AND WU, D. 2009. Efficient retrieval of the top-k most relevant spatial web objects. In PVLDB.
337–348.

CORRAL, A., MANOLOPOULOS, Y., THEODORIDIS, Y., AND VASSILAKOPOULOS, M. 2006. Cost models for distance
joins queries using r-trees. In Data & Knowledge Engineering. 1–36.

DEGROOT, M. H. AND SCHERVISH, M. J. 2004. Probability and statistics. In Pearson Education (US).
EMRICH, T., KRIEGEL, H.-P., KROGER, P., RENZ, M., XU, N., AND ZUFLE, A. 2010. Reverse k-nearest neighbor moni-

toring on mobile objects. In GIS. 494–497.
ESTER, M., KRIEGEL, H.-P., SANDER, J., AND XU, X. 1996. A density-based algorithm for discovering clusters in large

spatial databases with noise. In KDD. 226–231.
FAGIN, R., LOTEM, A., AND NAOR, M. 2003. Optimal aggregation algorithms for middleware. In J.Comput. Syst. Sci.

614–656.
FALOUTSOS, C. AND KAMEL, I. 1994. Beyond uniformity and independence: Analysis of r-trees using the concept of

fractal dimension. In Proceeding of the 13th ACM SIGACT-SIGMODE-SIGART Symposium on Principles of Database
Systems. 4–13.

FALOUTSOS, C., SELLIS, T. K., AND ROUSSOPOULOS, N. 1987. Analysis of object oriented spatial access methods. In
SIGMOD Conference. 426–439.

GUTTMAN, A. 1984. R-trees: a dynamic index structure for spatial searching. In SIGMOD. 47–57.
HAVELIWALA, T. H., GIONIS, A., KLEIN, D., AND INDYK, P. 2002. Evaluating strategies for similarity search on the web.

In Proceedings of the 11th international conference on World Wide Web. WWW ’02. 432–442.
HUANG, A. 2008. Similarity measures for text document clustering. In In New Zealand Computer Science Research Student

Conference. 49–56.
HUANG, Y., JING, N., AND E.A.RUNDENSTEINER. 1997. A cost model for estimating the performance of spatial joins using

r-trees. In Proceedings 9th International Conference on Scientific and Statistical Database Management (SSDBM). 30–
38.

I.D.FELIPE, V.HRISTIDIS, AND N.RISHE. 2008. Keyword search on spatial databases. In ICDE. 656–665.
JOHNSON, T. AND SHASHA, D. 1994. 2q: A low overhead high performance buffer management replacement algorithm. In

VLDB. 439–450.
KAMEL, I. AND FALOUTSOS, C. 1993. On packing r-trees. In ICDE. 490–499.
KANG, J. M., MOKBEL, M. F., SHEKHAR, S., XIA, T., AND ZHANG, D. 2007. Continuous evaluation of monochromatic

and bichromatic reverse nearest neighbors. In ICDE. 806–815.
KHODAEI, A., SHAHABI, C., AND LI, C. 2012. Skif-p: a point-based indexing and ranking of web documents for spatial-

keyword search. Geoinformatica 16, 3, 563–596.
KORN, F. AND MUTHUKRISHNAN, S. 2000. Influenced sets based on reverse nearest neighbor queries. In SIGMOD. 201–

212.
KORN, F., PAGEL, B., AND FALOUTSOS, C. 2001. On the ’dimensionlity curse’ and the ’self-similarity blessing’. In IEEE

Transactions on Knowledge and Data Engineering. 96–111.
KULLBACK, S. AND LEIBLER, R. A. 1951. On information and sufficiency. The Annals of Mathematical Statistics 22, 1,

79–86.
LEE, M. D. AND WELSH, M. 2005. An empirical evaluation of models of text document similarity. In In CogSci2005.

1254–1259.
LI, Z., LEE, K. C. K., ZHENG, B., LEE, W.-C., LEE, D. L., AND WANG, X. 2011. Ir-tree: An efficient index for geographic

document search. IEEE Trans. Knowl. Data Eng. 23, 4, 585–599.

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

1:42 Y. Lu et al.

LIN, K.-I., NOLEN, M., AND YANG, C. 2003. Applying bulk insertion techniques for dynamic reverse nearest neighbor
problems. In IDEAS. 290–297.

LU, J., LU, Y., AND CONG, G. 2011. Reverse spatial and textual k nearest neighbor search. In SIGMOD Conference.
349–360.

N.ROUSSOPOULOS, S.KELLEY, AND F.VINCENT. 1995. Nearest neighbor queries. In SIGMOD. 71–79.
PAGEL, B., SIX, H.-W., TOBEN, H., AND WIDMAYER, P. 1993. Towards an analysis of range query performance in spatial

data structures. In Proceeding of the 12th ACM SIGACT-SIGMODE-SIGART Symposium on Principles of Database
Systems. 214–221.

PAPADOPOULOS, A. AND MANOLOPOULOS, Y. 1997. Performance of nearest neighbour queries in r-trees. In Proceeding
of the 6th International Conference on Database Theory. 394–408.

SALTENIS, S., JENSEN, C. S., LEUTENEGGER, S. T., AND LOPEZ, M. A. 2000. Indexing the positions of continuously
moving objects. In Proceedings of the ACM SIGMOD Conference. 331–342.

SALTON. 1988. Term-weighting approaches in automatic text retrieval. In Information Processing and Management. 513–
523.

SINGH, A., FERHATOSMANOGLU, H., AND TOSUN, A. S. 2003. High dimensional reverse nearest neighbor queries. In
CIKM. 91–98.

STANOI, I., AGRAWAL, D., AND ABBADI, A. E. 2000. Reverse nearest neighbor queries for dynamic databases. In ACM
SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery. 44–53.

STANOI, I., RIEDEWALD, M., AGRAWAL, D., AND ABBADI, A. 2001. Discovery of influence sets in frequently updated
databases. In VLDB. 99–108.

STREHL, A., STREHL, E., GHOSH, J., AND MOONEY, R. 2000. Impact of similarity measures on web-page clustering. In
In Workshop on Artificial Intelligence for Web Search (AAAI 2000). AAAI, 58–64.

TAN, P.-N., STEINBACH, M., AND KUMAR, V. 2005. Introduction to Data Mining. Addison-Wesley.
TAO, Y. AND PAPADIAS, D. 2003. Spatial queries in dynamic environments. In ACM Transactions on Database Systems

(TODS). Vol. 28.
TAO, Y., PAPADIAS, D., AND LIAN, X. 2004. Reverse knn search in arbitrary dimensionality. In VLDB. 744–755.
TAO, Y., ZHANG, J., PAPADIAS, D., AND MAMOULIS, N. 2004. An efficient cost model for optimization of nearest neigh-

bour search in low and medium dimensional spaces. In IEEE Transactions on Knowledge and Data Engineering. 1169–
1184.

THEODORIDIS, Y. AND SELLIS, T. 1996. A model for the prediction of r-tree performance. In PODS. 161–171.
THEODORIDIS, Y., STEFANAKIS, E., AND SELLIS, T. 2000. Efficient cost models for spatial queries using r-trees. In IEEE

Transactions on Knowledge and Data Engineering. 19–32.
TITCHMARSH, E. C. 2005. The theory of the riemann zeta-function. In Oxford University Press.
VAID, S., JONES, C. B., JOHO, H., AND SANDERSON, M. 2005. Spatio-textual indexing for geographical search on the

web. In SSTD. 218–235.
VLACHOU, A., DOULKERIDIS, C., KOTIDIS, Y., AND NØRVÅG, K. 2010. Reverse top-k queries. In ICDE. 365–376.
WU, W., YANG, F., CHAN, C. Y., AND TAN, K.-L. 2008a. Continuous reverse k-nearest-neighbor monitoring. In MDM.

Beijing, 132–139.
WU, W., YANG, F., CHAN, C.-Y., AND TAN, K.-L. 2008b. Finch:evaluating reverse k-nearest-neighbor queries on location

data. In PVLDB. 1056–1067.
ZHANG, D., CHEE, Y. M., MONDAL, A., TUNG, A. K. H., AND KITSUREGAWA, M. 2009. Keyword search in spatial

databases: Towards searching by document. In ICDE. 688–699.
ZHOU, Y., XIE, X., WANG, C., GONG, Y., AND MA, W.-Y. 2005. Hybrid index structures for location-based web search. In

Proceedings of the 14th ACM international conference on Information and knowledge management. CIKM ’05. ACM,
New York, NY, USA, 155–162.

Received June 2012; revised June 2013; accepted January 2014

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

