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ABSTRACT
Multivariate time series (MTS) datasets are common in vari-
ous multimedia, medical and financial applications. We pro-
pose a similarity measure for MTS datasets, Eros (Extended
Frobenius norm), which is based on Principal Component
Analysis (PCA). Eros applies PCA to MTS datasets repre-
sented as matrices to generate principal components and as-
sociated eigenvalues. These principal components and eigen-
values are then used to compare the similarity between MTS
matrices. Though Eros in itself does not satisfy the trian-
gle inequality, without which existing multidimensional in-
dexing structures may not be utilized, the lower and upper
bounds to satisfy the triangle inequality are obtained. In
order to show the validity of Eros for similarity search on
MTS datasets, we performed several experiments on three
datasets (2 real-world and 1 synthetic). The results show the
superiority of our approaches as compared to the traditional
similarity measures for MTS datasets, such as Euclidean
Distance (ED), Dynamic Time Warping (DTW), Weighted
Sum SVD (WSSVD) and PCA similarity factor (SPCA) in
precision/recall.

Categories and Subject Descriptors
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; G.3 [PROBABILITY AND STATISTICS]: Time se-
ries analysis, Multivariate statistics
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1. INTRODUCTION
A time series is a series of observations, xi(t); [i = 1, · · · , n; t =

1, · · · ,m], made sequentially through time where i indexes
the measurements made at each time point t [37]. It is called
a univariate time series when n is equal to 1, and a multi-
variate time series (MTS) when n is equal to, or greater than
2.
MTS datasets are common in various fields, such as in

multimedia, medicine and finance. For example, in multime-
dia, Cybergloves used in the Human and Computer Interface
applications have around 20 sensors, each of which generates
50∼100 values in a second [16, 31]. For gesture recognition
and video sequence matching using computer vision, several
features are extracted from each image continuously, which
renders them MTSs [6, 2, 26]. In medicine, Electro En-
cephalogram (EEG) from 64 electrodes placed on the scalp
are measured to examine the correlation of genetic predis-
position to alcoholism [41]. Functional Magnetic Resonance
Imaging (fMRI) from 696 voxels out of 4391 has been used
to detect similarities in activation between voxels in [11].
Univariate time series have been broadly explored by many

researchers. A time series is often regarded as a point in
multidimensional space. For similarity search in a multidi-
mensional space, the Euclidean distance is often employed.
Because of the dimensionality curse, many approaches have
tried to reduce the dimension while preserving most of the
“energy” of the time series in the reduced dimension. For
example, DFT (Discrete Fourier Transform) [1], DWT (Dis-
crete Wavelet Transform) [25] and SVD (Singular Value De-
composition) [20] have been used to transform the original
time series. After transformation, only the first few or the
best few coefficients are chosen to represent the original time
series. With the reduced dimensions, the time series can be
indexed using multidimensional indexing techniques, such as
R-tree [12] and its variants. For more details on univariate
time series analysis, please refer to [1, 25, 20, 7, 39].
By contrast, MTS datasets have not been extensively ex-

plored for k nearest neighbor (kNN) searches. Each MTS
item is usually stored in an m × n matrix, where m is the
number of observations and n is the number of variables
(e.g., sensors). An MTS item should be treated as a whole,
since there are usually important correlations among the



variables in MTS datasets. These correlations will be lost if
an MTS item is broken into multiple univariate time series
and each processed separately and then aggregated to gen-
erate the result. For the same reason, an MTS item may not
be transformed into one long univariate time series. With
some domain knowledge as in [41], the variables can be or-
ganized into subsets of variables, and then the similarity
can be checked using a subset of variables. However, the
domain knowledge is not always available, and to find the
interdependencies among the variables is in itself another
challenge [37, 14]. One of the example queries we are in-
terested in is, given a Cyberglove MTS data, find the most
similar behavior performed by other users in a virtual reality
environment.
In this paper, we propose a similarity measure Eros (Extended

Frobenius norm) for kNN searches in MTS databases. Eros
is based on the Frobenius norm that is used to compute
the matrix norm [22]. Eros extends the Frobenius norm to
measure the similarity between two matrices using the prin-
cipal components, i.e., the eigenvectors from the covariance
matrices and eigenvalues. That is, instead of computing
the similarities between the variables from two MTS items
and aggregating up the result to produce the final similarity,
we apply the following process. First, covariance matrices
of the two MTS items are computed. Next, the eigenvec-
tors and eigenvalues of the covariance matrices are calcu-
lated. Finally, the similarities between the corresponding
eigenvectors from each MTS item are measured with weights
that are based on the eigenvalues obtained from the MTS
dataset. Though Eros in itself does not satisfy the triangle
inequality, we can obtain the lower and upper bounds using
the weighted Euclidean distance, which satisfies the triangle
inequality. Without this property, the filter and refinement
phases of existing multidimensional indexing techniques can-
not be utilized, because false dismissals may occur in the
filter phase [3, 5, 17].
We conducted several experiments on two real-world datasets:

AUSLAN [16] obtained from UCI KDD repository [13] and
the Human Gait dataset [36]; and one synthetic dataset:
TRACE with 16 classes [28], and compared our approach
with traditional MTS similarity measures in recall/precision.
As shown in Section 5.3, Eros outperforms the other simi-
larity measures, such as Euclidean distance (ED), Dynamic
Time Warping (DTW), Weighted Sum SVD (WSSVD) [32]
and Principal Component Analysis (PCA) similarity factor
(SPCA) [33, 21].
The remainder of this paper is organized as follows. Sec-

tion 2 discusses the background. Our proposed methods are
described in Section 3. This is followed by the experiments
and results in Section 5. In Section 6, the related work is
discussed. Conclusions and future work are presented in
Section 7.

2. BACKGROUND
In this section, we briefly describe the distance metrics,

SVD, PCA Similarity Factor and the Frobenius norm, from
which our proposed method is extended. For more details
on these topics, please refer to [20, 21, 22].

2.1 Distance Metrics
A distance metric, D, must have the following properties

for all items A, B and C[8].

• D(A, B) ≥ 0

A

Q

N

C

Figure 1: Triangle Inequality.

• D(A, B) = 0 ⇐⇒ A = B

• D(A, B) = D(B, A)

• D(A, B) + D(B, C) ≥ D(A, C) (triangle inequality)

The examples of the distance metrics that satisfy the above
properties are the Euclidean distance and the Manhattan
distance. The fourth property ensures that the lower bound
can be calculated. For example, as shown in Figure 1, if we
know that D(Q,N), where Q is the query item and N is
the current nearest neighbor, is less than the lower bound
of D(Q,A), i.e., D(C,A)−D(Q,C), then we do not need to
compute D(Q,A). The triangle inequality is used in index-
ing techniques for filter & refinement phases guaranteeing
no false dismissals.
Since we use the weighted Euclidean distance to bound

Eros, we describe the Euclidean distance and the weighted
Euclidean distance for n dimensional row normal vectors in
more detail. Let a and b be n dimensional row normal vec-
tors, whose norms are all 1. The Euclidean distance between
a and b is

D(a, b) =

vuut nX
i=1

(ai − bi)2 =
p
2− 2 < a, b >

where < a, b > is the inner product of a and b. Let w be
a weight that is to be applied to the vectors and is greater
than 0. The weighted Euclidean distance between a and b
is

Dw(a, b, w) =

vuut nX
i=1

w(ai − bi)2 =
p
2w − 2w < a, b >

In Section 3.3, we extend this to MTS data to determine the
lower and upper bounds of Eros.

2.2 Singular Value Decomposition (SVD)

Definition 1. Singular Value Decomposition. Let A be a
general real M ×N matrix. The singular value decomposi-
tion (SVD) of A is the factorization

A = UΣV T (1)

where U is a column-orthonormal N × r matrix, r is the
rank of the matrix A, Σ is a diagonal r × r matrix of the
eigenvalues λi of A, where λ1 ≥ · · · ≥ λr ≥ 0 and V is a
column-orthonormal M × r matrix [20].

The eigenvalues and the corresponding eigenvectors are sorted
in non-increasing order. V is called the right eigenvector ma-
trix, and U the left eigenvector matrix.
Note that the eigenvectors obtained by applying SVD to

covariance matrix are the same as the principal components.



Throughout this paper, SVD is only applied to covariance
matrices. Hence, the eigenvectors and the principal compo-
nents are used interchangeably.

2.3 PCA Similarity Factor
PCA Similarity Factor, SPCA, is defined between two ma-

trices of the same number of columns, but not necessarily
the same number of rows. SPCA firstly obtains the prin-
cipal components for each matrix, and chooses the first k
principal components based on heuristics. For example, the
first k principal components whose variances represent 95%
of the total variance are chosen. SPCA then computes the
similarity between the first k principal components.

Definition 2. The PCA Similarity Factor, SPCA, between
two matrices, A and B, is defined as follows [21]:

SPCA(A,B) = trace(LM
TMLT ) =

kX
i=1

kX
j=1

cos2 θij

where L and M are the matrices that contain the first k
principal components of A and B, respectively, θij is the
angle between the ith principal component of A and the jth
principal component of B.

The range of SPCA is between 0 and k. Intuitively, SPCA

measures the similarity between two matrices by computing
the squared cosine values between all the combinations of
the first k principal components from two matrices, while
the Frobenius norm measures the cosine values between the
corresponding principal components as described in the fol-
lowing section.

2.4 Frobenius Norm
The Frobenius norm is one of the matrix norms [22], which

is also called the Euclidean norm. The Frobenius norm is
easy to compute, for example, when comparing how similar
two matrices A and B are, using ||A−B||F [22].

Definition 3. The Frobenius norm of an m× n matrix A
is defined as follows [22]:

||A||F = (
mX

i=1

nX
j=1

(aij)
2)1/2 = (trace(ATA))1/2. (2)

Let xi be a column vector of size m. A can then be rep-
resented as A = [x1, · · · , xn]. Subsequently, the squared
Frobenius norm of A is computed as follows:

||A||2F = trace(ATA) =
nX

i=1

< xi, xi >

where < a, b > is the inner product of a and b.
Now, consider two right eigenvector matrices, A and B

of size n× n, obtained by applying SVD to covariance ma-
trices, which are represented as A = [a1, · · · , an] and B =
[b1, · · · , bn], respectively. The squared Frobenius norm of
A-B is then computed as follows:

||C||2F = trace(CTC) = 2n− 2

nX
i=1

< ai, bi >

= 2n− 2
nX

i=1

cos θi

Symbol Definition
A an m× n matrix representing an MTS item

AT the transpose of A
MA the covariance matrix of size n× n for A
VA the right eigenvector matrix of size n× n for MA

VA = [ a1, a2, · · · , an ]
ΣA an n× n diagonal matrix that has all the

eigenvalues for MA obtained by SVD
ai a column orthonormal eigenvector of size n for VA

aij jth value of ai, i.e.,
a value at the ith column and the jth row of A

a∗j all the values at the jth row of A
w a weight vector of size nPr

i=1 wi = 1, ∀i wi ≥ 0

Table 1: Notations used in this paper

where C = A − B = [a1 − b1, · · · , an − bn], ai and bi are
orthonormal vectors, and cos θi is the angle between ai and
bi. Intuitively, the Frobenius norm between two eigenvec-
tor matrices computes the angles between the corresponding
eigenvectors and sums them up.
Let us define the weighted Frobenius form that gives dif-

ferent weight to each column:

Definition 4. The weighted Frobenius norm of an m × n
matrix A is defined as

||A||W,F = (
mX

i=1

wii

nX
j=1

(aij)
2)1/2 (3)

where W is a symmetric diagonal positive semidefinite ma-
trix, i.e., wij = 0 where i �= j, Pn

i=1 wii = 1 and wii ≥ 0 for
all i.

Subsequently, the weighted Frobenius norm between two
right eigenvector matrices, A and B, can be computed as
follows:

||C||W,F = (

nX
i=1

wii

nX
j=1

|cji|2)1/2

= (2− 2
nX

i=1

wii < ai, bi >)
1/2 (4)

= (2− 2

nX
i=1

wii cos θi)
1/2

where C = A − B = [a1 − b1, · · · , an − bn], ai and bi are
orthonormal vectors, and cos θi is the angle between ai and
bi.

3. THE PROPOSED ALGORITHM
In this section, we propose a similarity measure for MTS

datasets Eros, based on our observations from both SPCA

and the Frobenius norm. Table 1 lists the notations used
in the remainder of this paper, if not specified otherwise.
Note that in this paper, the whole matching queries are
considered, and the sub-sequence matching queries are part
of our future works (See Section 7).

3.1 Eros : Extended Frobenius norm
We first formally define our proposed similarity measure,

Eros. Next, we provide the intuitions behind it.



Definition 5. Eros (Extended Frobenius norm). Let A
and B be two MTS items of size mA×n andmB×n, respec-
tively. Let VA and VB be two right eigenvector matrices
by applying SVD to the covariance matrices, MA and MB,
respectively. Let VA = [a1, · · · , an] and VB = [b1, · · · , bn],
where ai and bi are column orthonormal vectors of size n.
The Eros similarity of A and B is then defined as

Eros(A,B, w) =
nX

i=1

wi| < ai, bi > | (5)

=

nX
i=1

wi| cos θi| (6)

where < ai, bi > is the inner product of ai and bi, w is a
weight vector which is based on the eigenvalues of the MTS
dataset (see Section 3.2),

Pn
i=1 wi = 1 and cos θi is the angle

between ai and bi
1. The range of Eros is between 0 and 1,

with 1 being the most similar.

We now discuss Eros. This algorithm measures the sim-
ilarity between two MTSs using the right eigenvector ma-
trices that contain the principal components and associated
eigenvalues. Using the right eigenvector matrices for simi-
larity computation has the following advantages:

• Same size for all the MTS data items : In general, MTS
items of a given application will have the same num-
ber of variables n, i.e., sensors, but different number
of observations m. Comparing two MTS items with
different sizes is a challenge. The size of a right eigen-
vector matrix, however, is fixed at n× n. Thusly, the
problem of different lengths is resolved.

• Dimension reduction: For MTS items, the number of
observations m, is usually far greater than the number
of variables, n. Considering that the size of a right
eigenvector matrix is n× n, the size of the data to be
dealt with is greatly reduced.

Intuitively, Eros measures the similarity between two MTS
items by comparing how far the principal components are
apart using the aggregated eigenvalues as weights taking into
account the variance for each principal component. Note
that Eros only considers the acute angle that the two cor-
responding axes (eigenvectors) generate. The eigenvectors
represent the axes with the maximum variances, not the di-
rection [15] (see Equation (6)). Therefore, as depicted in
Figure 2, when the angle (α) between the two correspond-
ing eigenvectors is not acute, we take the absolute value of
the inner product and compute the similarity between the
two corresponding eigenvectors using the acute angle (β).
More specifically, the inner product of two normal vectors,
a and b in Figure 2, yields cosα, while what we need is
cosβ = cos(π − α) = −cosα. Therefore, we take the ab-
solute value of the inner product, so that cosα is computed
when α ≤ π/2, while −cosα is computed when α > π/2.
Recall that, in general, there are three types of transfor-

mation that should be considered for similarity measures,
i.e., shift, scale and time warping. The similarity measures

1For simplicity, it is assumed that the covariance matrices
are of full rank. In general, the summations in Equation (5)
and (6) should be from 1 to min(rA, rB), where rA is the
rank of MA and rB the rank of MB.

α

β

a
b

Figure 2: Two corresponding eigenvectors, a and b

for time series should then be invariant to those transforma-
tions. For Eros, the covariance matrix is computed by first
subtracting the mean for each dataset, which addresses the
shift transformation. Moreover, the covariance matrix rep-
resents how scattered the data generated by one variable are
in relation to the other variables by computing the covari-
ances with all the other variables. Our intuition is that the
scatteredness would be similar for the data with the same
label. In addition, the size of covariance matrix is fixed at
n× n, where n is the number of variables. These properties
are empirically shown to address the time warping transfor-
mation in Section 5.
Intuitively, using the correlation matrix, not the covari-

ance matrix, would have addressed the scale transformation,
since the correlation is obtained by dividing the covariance
with the standard deviations. However, the performance of
Eros using the correlation matrix is worse than the one us-
ing the covariance matrix. This may suggest that for the
datasets used in our experiments the scale should not be
considered as invariant. That is, if the scale is different for
two MTS items, then those two MTS items should be con-
sidered different.

3.2 Computing Weights
Recall that by applying SVD to the covariance matrices,

we obtain not only the principal components but also the
eigenvalues that represent the variances for principal com-
ponents. When comparing two MTS items, Eros considers
both the principal components and the eigenvalues. In this
section, we propose two heuristics for computing the weight
vector w for Eros based on the eigenvalues obtained from
the MTS dataset satisfying the following conditions:

• Pn
i wi = 1

• wi ≥ 0 for all i

Note that the same weight vector should be used for all
the similarity measure computations for each kNN search.
Hence, the eigenvalues obtained from all the MTS items in
the database are aggregated into one weight vector as in Al-
gorithm 1 and 2. Algorithm 1 computes the weight vector
w based on the distribution of raw eigenvalues, while Algo-
rithm 2 first normalizes each si, and then calls Algorithm 1.
Function f() in Line 3 of Algorithm 1 is an aggregating func-
tion, e.g., min, mean and max. Intuitively, each wi in the
weight vector represents the aggregated variance for all the
ith principal components. The weights are then normalized
so that

Pn
i=1 wi = 1.

We store one weight vector whose size is n×1 for the Eros
approach, where n is the number of variables. Additionally,
we store the number of items in the database and the un-
normalized weight vector, so that the weight vector can be
updated when items are inserted into, or removed from the
database.



Algorithm 1 Computing a weight vector w based on the
distribution of raw eigenvalues

1: function computeWeightRaw(S)
Require: an n × N matrix S, where n is the number of vari-

ables for the dataset and N is the number of MTS items in
the dataset. Each column vector si in S represents all the
eigenvalues for ith MTS item in the dataset. sij is a value at
column i and row j in S. s∗i is ith row in S. si∗ is ith column,
i.e, si.

2: for i=1 to n do
3: wi ← f(s∗i);
4: end for
5: for i=1 to n do
6: wi ← wi/

Pn
j=1 wj ;

7: end for

Algorithm 2 Computing a weight vector w based on the
distribution of normalized eigenvalues

1: function computeWeightRatio(S)
Require: the same as Algorithm 1.
2: for i=1 to N do
3: si ← si/

Pn
j=1 sij ;

4: end for
5: computeWeightRaw(S);

3.3 Bounding Eros
We first define the Eros distance metric, DEros which pre-

serves the similarity relation of Eros. Subsequently, we de-
scribe two weighted Euclidean distances between two eigen-
vector matrices, which are used as the upper and lower
bounds of DEros.

Definition 6. DEros is defined as:

DEros(A,B, w) =
p
2− 2

Pn
i=1 wi| < ai, bi > |

=
q
2− 2

Pn
i=1 wi|Pn

j=1 aij × bij |
(7)

DEros preserves the similarity relation of Eros. That is, if
B is more similar to A than to C, then the Eros similarity
between A and B is greater than that between B and C,
while the Eros distance between A and B is shorter than
that between B and C.

Lemma 1. The similarity relation with Eros is reversely
preserved with DEros.

Proof. Assume that the following inequality with Eros
holds.

Eros(A,B, w) > Eros(B,C, w)

which means
nX

i=1

wi| < ai, bi > | >

nX
i=1

wi| < bi, ci > |

Therefore, we obtain the following:

DEros(A,B, w) =
p
2− 2

Pn
i=1 wi| < ai, bi > |

<
p
2− 2

Pn
i=1 wi| < bi, ci > | = DEros(B,C, w)

Consequently, the similarity relation with Eros is reversely
preserved with DEros.

Now, we use weighted Euclidean distance to bound DEros.
Let us consider the weighted Euclidean distance, calledDmax,

between A and B:

Dmax(A,B, w) =
qPn

i=1

Pn
j=1 wi(aij − bij)2

=
q
2− 2

Pn
i=1 wi

Pn
j=1 aijbij

(8)

The distance measure Dmax, which is a weighted Euclid-
ean Distance metric, satisfies the triangle inequality. Let us
consider one more distance metric.

Dmin(A,B, w) =
qPn

i=1

Pn
j=1 wi(|aij | − |bij |)2

=
q
2− 2

Pn
i=1 wi

Pn
j=1 |aijbij |

(9)

Dmin is hence defined by computing Dmax between two
MTS items A and B, after obtaining the absolute values
of ai and bi. Similarly, Dmin satisfies the triangle inequal-
ity. The upper and lower bounds of DEros are then obtained
as in the following lemma.

Lemma 2. The upper and lower bounds of
DEros are Dmax and Dmin, respectively.

Proof. Consider the summation parts in DEros, Dmax

and Dmin in Equations (7), (8) and (9), respectively. Thus,
we can find the inequalities among them as follows :

nX
i=1

wi

nX
j=1

|aijbij | ≥
nX

i=1

wi|
nX

j=1

aijbij | ≥
nX

i=1

wi

nX
j=1

aijbij

Hence, we conclude

Dmin ≤ DEros ≤ Dmax (10)

Consequently, we derived the upper and lower bounds of
DEros, i.e., Dmin and Dmax, that satisfy the triangle in-
equality.

4. THE OVERALL PROCESS
In this section, we describe how to preprocess the MTS

dataset and then how to perform the kNN search using
DEros.

4.1 Pre-processing
Given MTS items stored in the database, the pre-processing

is done according to Algorithm 3. Firstly, for all the MTS
items, the eigenvalues and the right eigenvector matrices are
computed by performing SVD on the covariance matrices.
Using Algorithms 1 or 2, the weight vector w is computed.
Recall that the weight vector w, can change when items are
added to or removed from the database.

Algorithm 3 Preprocessing Algorithm of Eros

Require: the number of all the MTS items in the dataset N .
1: for i=1 to N do
2: A ← the ith MTS item in the database;
3: B ← covariance matrix of A;
4: [C, D, E] ← SVD(B);
5: si ← the eigenvalues in D;
6: store E as the ith right eigenvector matrix;
7: end for
8: Compute the weight vector w using Algorithm 1 or 2.



Recall that the time complexity of SVD for an n×nmatrix
is O(n3) by optimized batch algorithms, such as the one used
in MATLABTM [4, 10]. However, the time complexity of
SVD is not a concern; it was shown to be acceptable with
a dataset that contains 70,000 time series of length 492 for
clustering [35]. On a PC with a 800MHz Pentium III CPU, a
64× 64 matrix A can be decomposed in less than 0.04 second
with one line MATLAB code, [a,b,c]=svd(A). Note also that
MTS items in the database are preprocessed with SVD off-
line. The MTS query is then the only item that requires
SVD during the online process, whose cost is negligible as
compared to that of the kNN search.

4.2 kNN Search
Once the MTS datasets are preprocessed for Eros, we per-

form kNN searches. We describe kNN search using two-
phase sequential scan in Algorithm 4. Note that though
sequential scan is performed, still the two phased, filter and
refinement scheme is utilized. Hence, firstly the data items
are filtered out using the lower bound of DEros, i.e., Dmin

between the query item and the MTS items in the database
in Line 6. This filter phase can be performed efficiently using
an indexing structure such as Spatial Transform Technique
(STT) in [30], of which the distance metric is the quadratic
form distance function d2M (p, q) = (p− q)M(p− q)T , where
M is positive definite (i.e, d2M (p, q) > 0) which may change
from the user relevance feedback without the need to re-
build the index. Due to the high dimensionality of MTS
items, the distance-based indexing techniques, such as iDis-
tance [40], would perform better for MTS datasets. To de-
vise a distance-based indexing structure for Eros is part of
our future work. In the refinement phase, DEros is com-
puted in Line 8. When a new NN is found, the nndist and
nnid arrays are updated in Line 12, so that the elements in
the nndist array are sorted in non-decreasing order of Eros
distance.

Algorithm 4 kNN Search Algorithm of Eros (Two-phase
Sequential Scan)

Require: Given an MTS user query Q and a weight vector w
1: for i=1 to k do
2: nndist[i] ←∞;
3: end for
4: for i=1 to N do
5: P ← the eigenvector matrix for the ith MTS item in the

database;
6: res ← Dmin(P, Q, w);
7: if res ≤ nndist[k] then
8: res ← DEros(P, Q, w);
9: if res ≤ nndist[k] then
10: nndist[k] ← res;
11: nnid[k] ← i;
12: update nndist, nnid;
13: end if
14: end if
15: end for

In order to validate our proposed similarity measure Eros,
a modified leave-one-out kNN search as in Algorithm 5 is
used in Section 5. That is, for each query item, we check
how many items were retrieved from the database in order
to retrieve r relevant items, where 1 ≤ r ≤ maxr. Relevant
items are the items in the database that have the same labels
as the query item. Subsequently, for each r, the precision
is computed (Line 12). Finally, we compute the average

precisions across all the items in the database for each r
(Lines 18-20).

Algorithm 5 Modified Leave-One-Out k Nearest Neighbor
Search for Recall-Precision graph

Require: the number of MTS items in the dataset, N , k, the
maximum number of relevant items, maxr;

1: for i=1 to 10 do
2: precision[i] ← 0;
3: end for
4: for i=1 to N do
5: Q ← ith item in the dataset;
6: k ← 1;
7: r ← 1;
8: repeat
9: Perform kNN search for Q;
10: c ← the number of the same label items as Q in the k

items retrieved;
11: if c = r then
12: precision[r] ← precision[r] + c / k;
13: r ← r + 1;
14: end if
15: k ← k + 1;
16: until r ≥ maxr;
17: end for
18: for i=1 to 10 do
19: precision[i] ← precision[i] / N;
20: end for

5. PERFORMANCE EVALUATION

5.1 Datasets
The experiments have been conducted on two different

real-world datasets, AUSLAN and HumanGait and one syn-
thetic dataset TRACE16, which are all labeled MTS datasets
whose labels are given.
The Australian Sign Language (AUSLAN) dataset [16]

uses 22 sensors on the hands to gather the datasets generated
by signing of a native AUSLAN speaker. It contains 95
distinct signs, each of which has 27 examples. In total, the
number of signs gathered is 2565. The size of the right
eigenvector is 22 × 22 and the average length is around 60.
The Human Gait dataset from [36] has been used for iden-

tifying a person by gait recognition at a distance. In order to
capture the gait data, a twelve-camera VICON system was
utilized with 22 reflective markers attached to each subject.
For each reflective marker, 3D position, i.e., x,y and z, are
acquired at 120Hz, generating 66 values at each timestamp.
15 subjects, which are the labels assigned to the dataset,
participated in the experiments and were required to walk
at four different speeds, nine times for each speed. The total
number of data items is 540 (15 × 4 × 9) and the average
length is 133.
The Transient Classification Benchmark (TRACE) datasets

have been used in [28] for plant diagnostics. For the TRACE
dataset with 16 classes (TRACE16), each class has 100 ex-
amples. There are 5 variables, out of which the first 4 vari-
ables are the four signals and the 5th is the class label. The
change of the class label from 0 to a class number (from 1
to 16) means the start of the transient. Using this informa-
tion, we first located exactly where the transient starts and
ends and removed those signals with class label 0. The size
of the right eigenvector is 4 × 4 and the average length is
250. Note that in [28], the focus is to find the transition
over the continuous data stream where the starting point is



AUSLAN TRACE16 Human Gait
# of variables 22 4 66
average length 60 250 133

# of labels 95 16 15
# of items per label 27 100 36

total # of items 2565 1600 540

Table 2: Summary of datasets used in the experi-
ments.

unknown, while the focus of this paper is to find k nearest
neighbors given a query MTS item, assuming that the end-
points of all MTS items are accurately located. Finding k
nearest neighbors over the continuous data stream is part of
our future research directions (see Section 7).
Table 2 shows the summary of the datasets used in the

experiments. Therefore, for the AUSLAN dataset, for ex-
ample, the Euclidean distance and dynamic time warping
should deal with MTS items of size 60 × 22, while Eros,
WSSVD deal with MTS items of size 22 × 22. This dimen-
sion reduction naturally results in reduced elapsed time as
shown in Section 5.3.
Note that though labeled datasets, where each data is

given a label, are used in order to validate our proposed sim-
ilarity measures, the classification is not of primary interests
to us, which could have been accomplished by model-based
machine learning approaches, such as Hidden Markov Model
(HMM) or Support Vector Machines (SVM). In most cases
where the MTSs are generated, a class label may not be
given to each data item, since there is no clear definition for
classes. For example, in a virtual reality environment, hu-
man behavior is captured by devices such as magnetic track-
ers and gloves. However, each behavior may not be given
a class label, such as frustration and being lost, since there
are no clear definitions for them yet. In addition, MTSs are
continuously generated, which would mean that the size of
training datasets keeps increasing. Consequently, the mod-
els for HMM and SVM should be re-generated frequently,
which would make model based approaches less attractive.

5.2 Methods
In order to validate our proposed similarity measure Eros,

we performed modified leave-one-out kNN search as in Al-
gorithm 5. For simplicity, we chose 10 formaxr. Recall that
each dataset used in the experiments has more than 10 rele-
vant items as shown in Table 2. For example, AUSLAN has
95 labels and each label has 27 items. The recall-precision
graph [9] is then plotted, which has been frequently used to
measure the performance of Content Based Image Retrieval
(CBIR) systems [34, 19] as well as Information Retrieval
(IR) systems.
For Eros, the weight vector w is computed using both Al-

gorithm 1 and 2 excluding the eigenvalues of the query item.
We employ three different aggregating functions, i.e., mean,
min and max. Subsequently, the one with the best perfor-
mance will be presented for Eros. We then compare the per-
formance of Eros with those of 4 other distance measures,
i.e., the Euclidean Distance (ED), Dynamic Time Warp-
ing (DTW), Principal Component Analysis (PCA) similar-
ity factor (SPCA) and Weighted Sum SVD (WSSVD).
DTW is a technique for performing time-alignment and

has been extensively employed in various applications, such
as speech recognition [29] and time series similarity search

[17]. Though DTW can be applied to 2 MTS items regard-
less of the items’ lengths, the performance is shown to be
the best when the ratio of the items’ lengths is close to 1
[23], and the indexing technique for DTW is available only
when the two items are of the same length [17, 27]. Also,
ED is not defined for 2 MTS items with different lengths.
Hence, before applying ED and DTW, all the MTS items are
linearly interpolated to be of identical length. We chose this
length to be the average length for each dataset as in [23].
For DTW, theMATLABTM DTW code in [22] is used with
slight modifications. A global limit on the maximum amount
of warping Q is set to 10% of the length, and the distance
between points, i.e., the local distance, is modified to be the
square of the Euclidean distance, as in [17]. In addition, for
ED and DTW, the experiments were performed with and
without z-normalization, which renders the data zero mean
and unit variance. The better performance between the two
are then presented. The ED and DTW with z-normalization
are denoted as EDZ and DTWZ, respectively.
SPCA is a similarity measure for MTS datasets [21, 33].

It first finds k principal components (PCs), such that the
corresponding k eigenvalues describe more than, e.g., 95% of
the total variance. Only the k PCs are then used to compare
the similarities between MTS items, and the eigenvalues are
not utilized. For SPCA similarity measure, we tried both
95% and 99% of the total variance for each dataset, which
are denoted as SPCA95 and SPCA99, respectively.
In [32], we proposed WSSVD, which employs the eigenvec-

tors and eigenvalues of MTS items to compute the similari-
ties between items using the inner product of the eigenvec-
tors with the eigenvalues as weights. Note that the eigen-
vectors utilized in WSSVD are not principal components,
since SVD is applied on the transpose-multiplication of the
data matrix, not on the covariance matrix. We tried both
transpose-multiplication as in [32] and covariance matrix for
WSSVD, denoted as WSSVD and WSSV DCOV , respec-
tively.
Note that SPCA andWSSVD cannot be used with existing

indexing techniques because they do not satisfy the triangle
inequality2.

5.3 RESULTS
Table 3 shows the elapsed time to compute the simi-

larity between two MTS items using 5 different similar-
ity measures used in the experiments, i.e., Eros, SPCA99,
WSSVD, Euclidean distance (ED) and DTW. As expected,
Eros, SPCA99 and WSSVD take less time than ED and
DTW, since the formers use the dimension reduced repre-
sentations of MTS items.
Figure 3 shows that Eros gives the best recall-precision

ratio for the AUSLAN dataset. Poor performances of ED
and DTW may indicate that there are correlations among

2Consider three 2 × 2 column-orthonormal eigenvector ma-
trices,

A =

�
0 1
1 0

�
, B =

�
1 0
0 1
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and C =
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whose eigenvalues are [2 0.1]. The triangle inequality

AB + BC ≥ AC does not hold in SPCA(when the first col-
umn eigenvector and the corresponding eigenvalue are used,
since the first eigenvalue describe more than 95% of the total
variance [33]) and WSSVD.



AUSLAN TRACE16 Human Gait
Eros 4.48E-05 3.13E-05 2.38E-04

SPCA99 1.01E-04 4.48E-05 1.18E-03
WSSVD 9.27E-05 6.98E-05 4.00E-04
ED 5.93E-04 2.17E-04 3.31E-03
DTW 9.21E-03 1.38E-01 2.45E-02

Table 3: Elapsed time to compute the similarity be-
tween two MTS items in seconds.
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Figure 3: Recall-precision graph (AUSLAN)

variables, which are not considered by those two similar-
ity measures. Note also that the performances of EDZ and
DTWZ are worse than those of ED and DTW. This may
suggest that for the AUSLAN dataset, the similarity mea-
sure should not be scale invariant. For Eros, the covariance
matrices are used.
Figure 4(a) shows that for TRACE16, Eros andWSSV DCOV

perform similarly. However, WSSV DCOV does not satisfy
the triangle inequality, and hence cannot be used with an ex-
isting indexing technique, while Eros can. Eros outperforms
all the other similarity measures. When recall is equal to 1.0,
Eros outperforms ED, DTW, SPCA and WSSVD by more
than 33%, 64% 69% and 100%, respectively. For TRACE16,
ED and DTW again outperform EDZ and DTWZ.
Figure 4(b) represents similar results for the Human Gait

dataset. Eros and SPCA yield similar performances. Note
again that for Eros, an indexing structure can be utilized
for efficient retrieval, while SPCA cannot. For Human Gait,
EDZ and DTWZ perform much better than ED and DTW.
This result may indicate that, before using ED and DTW,
the dataset should be analyzed to determine whether z-
normalization should be employed or not. Interestingly,
however, Eros using the covariance matrix still performs
better than the one using the correlation matrix. This may
require further investigations.
Recall that intuitively, SPCA considers only the angles be-

tween the corresponding principal components (see Section
2.3), WSSVD in [32] and WSSV DCOV consider both the
angles between the corresponding principal components and
the variance for each principal component and Eros consid-
ers both the acute angles and the variances for the principal
components (see Section 3.1), when comparing two MTS

items. Figure 3 shows that for the AUSLAN dataset, the
acute angles and the variances should be considered. Figure
4(a) indicates that for the TRACE16 dataset, it does not
matter whether the angles are acute or blunt, but the vari-
ances should be taken into account. Figure 4(b) represents
that for the Human Gait dataset, the acute angles should
be considered, but maybe not the variances. These results
show that for SPCA andWSSV D, the characteristics of the
dataset should be examined first, so that it can be decided
whether SPCA or WSSV D can be applied to the dataset.
However, with Eros the prior examination of the dataset’s
characteristics may not be required, as shown in Figures 3
and 4.

6. RELATED WORK
In [24], Oates proposes a method for identifying distinc-

tive subsequences in MTS items, which is based on proba-
bilistic models. Hence, they first try to build a model for
each distinctive sequence, then they perform the distinctive
subsequence matching based on the generated models. How-
ever, this model-based approach has the inherent scalability
problem that the model should be re-generated when data
are inserted or removed from the database [38]. In this pa-
per, our focus is on the whole matching queries on the entire
database. The subsequence matching queries will be part of
our future research directions.
In [38], Vlachos et.al propose a technique for the retrieval

of object trajectories, which can be regarded as an MTS
item. However, they only deal with the datasets of two or
three dimensional space for their similarity measure, Longest
Common SubSequence (LCSS). In their experiments, they
only used 2 attributes (X and Y) of the AUSLAN dataset, as
opposed to the 22 attributes used in our experiments. Out
of 95 distinct signs, only 10 signs with 5 samples for each
sign are used for the experiments. Moreover, they used hier-
archical clustering whose space complexity is approximately
O(N2/2), which may not be suitable since the clustering is
required whenever data are added to the training sets.

7. CONCLUSIONS AND FUTURE WORK
We proposed a similarity measure for MTS datasets, Eros,

which is based on Principal Component Analysis. In or-
der to compute the similarity between two MTS items, Eros
compares the similarity between the corresponding principal
components of the MTS items using the associated eigenval-
ues as weights. Experimentally, we show the validity of our
proposed measure. In precision/recall, Eros outperforms
ED, WSSVD, DTW and SPCA by a minimum of 6.5% when
recall is 0.1 and as much as 100% when recall is 1. In elapsed
time, Eros also benefits from using the dimension reduced
representations of MTS items and takes less time to compute
than the Euclidean distance and dynamic time warping.
We intend to extend this work in two directions. First,

we plan to extend our technique to continuous data streams
generating the result as soon as new data arrives. Sec-
ond, in this paper, we considered only the whole matching
queries. Subsequence matching queries for MTS datasets is
one of the interesting future directions of this work. In-
stead of using sliding window-based approaches for sub-
sequence matching, we plan to use a change detection tech-
nique, such as in [18], to segment the whole sequence into
multiple sub-sequences. This way, the time complexity for
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Figure 4: Recall-precision graphs

the sub-sequence matching would be much lower than the
sliding window-based approaches.
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