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Abstract. The Network Voronoi diagram and its variants have been extensively
used in the context of numerous applications in road networks, particularly to effi-
ciently evaluate various spatial proximity queries such as k nearest neighbor (kNN),
reverse KNN, and closest pair. Although the existing approaches successfully uti-
lize the network Voronoi diagram as a way to partition the space for their specific
problems, there is little emphasis on how to efficiently find and access the network
Voronoi cell containing a particular point or edge of the network. In this paper,
we study the index structures on network Voronoi diagrams that enable exact and
fast response to contain query in road networks. We show that existing index struc-
tures, treating a network Voronoi cell as a simple polygon, may yield inaccurate
results due to the network topology, and fail to scale to large networks with numer-
ous Voronoi generators. With our method, termed Voronoi-Quad-tree (or VQ-tree
for short), we use Quad-tree to index network Voronoi diagrams to address both
of these shortcomings. We demonstrate the efficiency of VQ-tree via experimental
evaluations with real-world datasets consisting of a variety of large road networks
with numerous data objects.

1 Introduction

The latest developments in wireless technologies as well as the widespread use of GPS-
enabled mobile devices have led to the recent prevalence of location-based services. An
important class of location based queries consists of proximity queries such as k Nearest
Neighbor(kNN) query [15,32,21,6,7] and its variations, e.g., Reverse k Nearest Neighbor
(RKNN) [23,29], k Aggregate Nearest Neighbor (kANN) [28]. The proximity queries in
general search for data objects that minimize a distance-based function with reference to
one or more query objects.

With proximity queries, potentially the distance between the query point and every
object in the database (e.g., all the points-of-interest) must be computed in order to find
the closest (or the k closest) object(s) to the query point. Hence, the main research focus
has been on indexing the objects to avoid the exhaustive search. Earlier studies assumed
Euclidean distance as the distance function and hence indexed the objects in Euclidean
space (e.g., [32,30,21,24]) using R-tree [4] like index structures. With the advent of online
mapping systems such as Google Maps and Mapquest and the availability of accurate
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nation-wide road network data, the proximity queries have been extended from Euclidean
space to the road network space as natural artifact. The challenge in processing proximity
queries on road networks is that the computation of the distance function is complex
and hence the indexing techniques incorporated some sort of pre-computation of distances
(in network) into their structures. One such approach is based on using network Voronoi
diagrams [12].

A network Voronoi diagram is a specialization of a Voronoi diagram in which the lo-
cations of objects are restricted to the network edges and the distance between objects
is defined as the length of the shortest network distance (e.g., shortest path or shortest
time), instead of the Euclidean distance. Any network node located in a Voronoi cell has
a shortest path to its corresponding Voronoi generator that is always shorter than that
to any other Voronoi generator. A large number of studies adopted network Voronoi di-
agrams [12] to evaluate variety of proximity queries on road networks (e.g., [7,11,13,27,
17]). For example, in [13] Okabe et al. introduced six different types of network Voronoi
diagrams (each corresponds to very important real-world applications) whose generators
are based on points, sets of points, lines and polygons, and whose distances are given by in-
ward/outward distances, and additively /multiplicatively weighted shortest path distances.

Given a query point g and network Voronoi diagram (NV D), the first step in answer-
ing any proximity query is to locate the network Voronoi cell NV C(p;) that contains ¢
(the generator p; of NV C(p;) is the nearest neighbor of g). We refer to this operation as
contain(q) in the rest of the paper. Considering the large size of the underlying space (e.g.,
a continental size road network) with numerous data objects as well as the online nature
of the queries that requires fast response-time, an index structure is necessary to efficiently
access the portion of NV D associated with ¢. Although the existing approaches success-
fully used network Voronoi diagrams as a pre-computation approach for partitioning the
network space, they overlooked the indexing techniques that enable efficient evaluation of
contain(q). Currently, indexing network Voronoi diagram with R-tree (referred as Voronoi
R-tree or VR-tree for short) is the only known method for locating the network Voronoi
cell that contains a particular point or edge of the network. VR~tree is first proposed in [7]
and later used in many other approaches based on NVD (e.g., [11,27,17]).

In this paper, we show that VR-tree has two main problems. First, VR-tree may yield
inaccurate results due to the way the Voronoi cells are formed in network space, i.e.,
although a NV D is generated based on the network distance metric, its Voronoi cells
are created and indexed as regular polygons in Euclidean space. This inconsistency may
result in a network edge belonging to a cell NVC(p;), to be classified as a member of
the cell NVC(p;) because due to the network topology, the edge falls inside the polygon
of NVC(p;) even though its network distance is closer to the generator of NV C(p;). For
example, Figure 1 depicts the network Voronoi diagram of a hypothetical road network
where each line style corresponds to network Voronoi cells of the generators pi, po and p3.
With VR-tree the network Voronoi cells are formed by connecting the border points (i.e.,
{b1,ba,...,b7}) * and bounded by straight line segments (i.e., bold lines in the Figure). As
shown, the edges marked by false-negative are included in the Voronoi cell of p; NVC(p1),
however the network distance from any point on the false-negative edges to ps is shorter
than that to p;.

Second, VR-tree is inefficient because of the non-disjoint partitioning of the space.
Specifically, VR-tree splits the network space with hierarchically nested and largely over-
lapping minimum bounding rectangles (MBR) created around network Voronoi cells. The

! We discuss the network Voronoi diagram generation in Section 4.1



Fig. 1. Network Voronoi Diagram

overhead of executing contain(q) query is prohibitively high particularly in large networks
with a dense (but perhaps large) set of data objects. This is because VR~tree has to re-
dundantly visit the parent node(s) of the overlapping MBRs (aka, backtracking problem)
in the index structure.

To address both of the aforementioned drawbacks, we propose a new indexing approach
for network Voronoi diagrams based on region Quad-tree [18], termed Voronoi-Quad-tree
or VQ-tree for short. VQ-tree, unlike VR-tree that approximates network Voronoi cells
using regular polygons in the Euclidean space, enables exact representation of the network
Voronoi cells based on quad-tree blocks in the network space, and hence always yields
correct results. VQ-tree does not suffer from the backtracking problem of VR-tree. This
is because VQ-tree enables disjoint decomposition of the network space and encodes each
of the quad-tree blocks to indicate the identity of the network Voronoi cell of which it is
a member. Thus, once the quad-tree block containing ¢ is located, VQ-tree immediately
identifies the nearest Voronoi generator based on the encoded value of that block. Our
experiments with real-world datasets show that the ratio of false-negative edges is %16 on
average with respect to the total number of edges in the network and VQ-tree outperforms
VR-tree with 12 times improved response time (see Section 5).

The remainder of this paper is organized as follows. In Section 2, we review the related
work about proximity queries in spatial networks. In Section 3, we overview Network
Voronoi diagrams and it’s properties. In Section 4, we establish the theoretical foundation
of the proposed solution for indexing Network Voronoi diagrams for efficient and accurate
processing of proximity queries in spatial networks. In Section 5, we present the results of
our experiments with a variety of spatial networks with large number of query and data
objects. Finally, in Section 6 we conclude and discuss our future work.

2 Related Work

The most widely studied class of proximity queries consists of k nearest-neighbor (kNN)
and its variations. The research on kNN query processing can be categorized into two main
areas, namely, Euclidean space and road networks. In the past, numerous algorithms (e.g.,
[32, 30,21, 24, 9]) have been proposed to solve kNN problem in the Euclidean space. All of
these approaches are applicable to the spaces where the distance between objects is only a
function of their spatial attributes (e.g., Euclidean distance). In network spaces, however,
the query and data objects are located in predefined network segments, where the distance
between a pair of objects is defined as the length of the shortest path connecting them.
The challenge with processing kNN queries in road-network space is that the computa-
tion of the distance function (e.g., shortest path) is complex. Therefore, to enable efficient



evaluation of kNN queries in road networks, the research in this area largely focused on
techniques which utilize precomputed network distances and/or partial results. One com-
mon example of such techniques is the network Voronoi diagrams. Kolahdouzan and Sha-
habi proposed first network Voronoi based kNN search technique, termed VN3 [7,8]. They
retrieve the kNN of a query point ¢ based on precomputed first-order network Voronoi
diagram. Specifically, they first find the network Voronoi cell that contains ¢ and then, to
find k-1 nearest neighbors, search the adjacent Voronoi polygons iteratively. With their ap-
proach, they indexed the Voronoi cells with R-tree (i.e., VR-tree) to reduce the contain(q)
query to a point location problem in the Euclidean space. In [14], Papadias et al. intro-
duced Incremental Network Expansion (INE) and Incremental Euclidean Restriction (IER)
methods to support kNN queries in spatial networks. While I /N E is an adaption of the Di-
jkstra algorithm, I ER exploits the Euclidean restriction principle in which the results are
first computed in Euclidean space and then refined by using the network distance. Several
other kNN algorithms are proposed based on the improved (precomputation) version of
INE [1,25,5]. In [19], Samet et al. proposed shortest path quadtree algorithm for efficient
evaluation of both shortest path and kNN queries in road networks. VQ-tree is mainly dif-
ferent than the shortest path quadtree for the following reason. With SPQ-tree, N region
quad-trees are created, one for each vertex of a road network (with N vertices), where each
quad-tree(SPQ-tree) represents the adjacency list of its corresponding vertex as regions.
However, VQ-tree is a single quad-tree created for the entire road network with each of
its encoded quad-blocks corresponding to one network Voronoi cell. In [13], Okabe et al.
introduced a variety of network Voronoi diagrams where they assumed Voronoi generators
as points, sets of points, lines and polygons, and network distances as inward/outward, and
additively /multiplicatively weighted shortest path distances. Although they proposed very
useful network Voronoi diagram based solutions to real-world road network problems, they
did not focus on indexing techniques that efficiently find and access the network Voronoi
cells in large scale road networks. In [11], Nutanong et al. proposed a technique called local
network Voronoi diagram (LNVD) to continuously monitor kNN queries in road networks.
With their approach, instead of creating NVD that covers the entire road network, they
construct a network Voronoi diagram for a subspace around the query point. In different
studies Zhao, Xuan, Taniar and Safar et al. utilized network Voronoi diagrams to evaluate
different types of proximity queries including group kNN [16], mulitple kNN [31], reverse
kNN [22], and range [26] queries in road networks. With all these studies, VR~tree is used
to index the network Voronoi cells. However, as we mentioned VR-tree may return false
results and inefficient in large networks with numerous data objects.

3 Background

In this section, we review the principles of Euclidean and Network Voronoi diagrams. We
first introduce 2-dimensional Euclidean space Voronoi diagrams and describe the properties
of Voronoi diagrams. We then explain the network Voronoi diagram. We refer readers to
[12] for a comprehensive discussion of Euclidean and network Voronoi diagrams.

3.1 Voronoi Diagrams

Let P : {p1,p2,.,pn} be a set of n distinct sites (i.e., generator points) distributed in
the Euclidean space. These generator points can be considered any spatial type of objects
(e.g., gas station, restaurant). We define the Voronoi diagram of P as the subdivision of
the space into n cells, one for each site in P, with the property that a point ¢ lies in the cell



corresponding to a site p; if and only if distance(q,p;) < distance(q,p;) for each p; € P
with j # i. Figure 2 shows the ordinary Voronoi diagram of eight points where the distance
metric is Euclidean.

Voronoi Edge

®pg

Fig. 2. Voronoi diagram in Euclidean space

We refer to the region containing the point p; as its Voronoi cell VC(p;) or Voronoi
polygon (see VC(p4) in the Figure). In Euclidean space, VC(p;) is a convex polygon. Each
edge of VC(p;) is a segment of the perpendicular bisector of the line segment connecting p
to another point of the set P. We call each of these edges a Voronoi edge. The Voronoi cells
that have common edges are called adjacent cells and their generators are called adjacent
generators. The Voronoi cells are collectively exhaustive and mutually exclusive except
their boundaries (i.e., Voronoi edges). We define the Voronoi cell and Voronoi diagram as
follows.

Definition 1. Consider P : {p1,p2,..,pn} where 2 < n and p; # p; fori # j, i,j € I, =
1,..n. The region given by VC(p;) = pld(p,p;) < (p,p;) where d(p,p;) is the minimum
Euclidean distance between p and p; is called the Voronoi Cell (VC) associated with p;.

Definition 2. The set of Voronoi cells given by VD(P) = {VC(p1),...,VC(pn)} is called
the Voronoi Diagram (VD) generated by P.

3.2 Network Voronoi Diagrams

With network Voronoi diagrams (NV D), the V D described above is generalized by replac-
ing the Euclidean space with a spatial network (e.g., road network), hence the distance
with the network distance (e.g., shortest-path) between the objects.

Definition 3. A road network is represented as a directional weighted graph G(N, E),
where N is a set of nodes representing intersections and terminal points, and E (E C NxN)
s a set of edges representing the network edges each connecting two nodes. Fach edge e is
denoted as e(n;,n;) where n;, and n; are starting and ending nodes, respectively.

In this study, we consider planar graph where edges intersect only at their endpoints.
We assume that Voronoi generators are located on the network segments as the graph
nodes. Each edge connecting nodes p;, p; stores the network distance dy (p;, p;). For nodes
that are not directly connected, dn (p;,p;) is the length of the shortest path from p; to p;.

Given a weighted graph G(N, E) consisting of a set of nodes N = {p1,...0n, Pn+1, --Po }
where the first n nodes represent the Voronoi generators and a set of edges F = {ey, ...ex}
that connects the nodes, we define the set dominance region and border points as follows,



Definition 4. The dominance region of p; over p;

k
Dom(p;,p;) = {plp € | eo,dn(p,pi) < dn(p,p;j)} represents all points in all edges in E
o=1

that are closer (or equal distance) to p; than p;.

k

Definition 5. The border points between p; and p; b(p;,p;) = {plp € |l €o,dn(p,pi) =
o=1

dn(p,pj)} represent all points in all edges that are equally distanced from p; and p;.

Definition 6. Based on the above definitions, the Voronoi edge set Veqge 0f pi as Veage(pi) =
LI Dom(p;,p;) represents all the points in all edges in E that are closer to p; than any

JeI\{i}

other generator point in N. Consequently, we define network Voronoi diagram NV D(P)

w.r.t set of points P as NVD(P) = {Veqge(p1), -, Vedge (Pn) }-

Similar to VD described in Section 3.1, the elements of NV D are mutually exclusive
and collectively exhaustive.

4 Indexing Network Voronoi Diagrams

In this section, we will first explain how to construct a network Voronoi diagram in road
networks and then discuss two different index structures, namely the Voronoi R-tree and
Voronoi Quad-tree that efficiently identifies the subdivision of the network space that
contains a particular query point or network edge.

4.1 Network Voronoi Diagram Construction

The network Voronoi diagrams can be constructed using parallel Dijkstra algorithm [2] with
the Voronoi generators as multiple sources. Specifically, one can expand shortest path trees
from each Voronoi generator simultaneously and stop the expansions when the shortest
path trees meet.

o
S
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(a) Road Network (b) Network Voronoi Diagram

Fig. 3. A Road network and network Voronoi diagram

Figure 3 shows an example of road network and the corresponding network Voronoi
diagram. Figure 3a depicts the original weighted graph G(N, E) which consists of N =
{p1,p2, D3, P4, .-.p16} nodes where p1,pa, and ps are the Voronoi generators (i.e., data ob-
jects such as restaurants, hotels) and py to p1g are the intersections on a road network that
are interconnected by a set of edges. Figure 3b shows the NVD of the road network where



each line style corresponds to the shortest path tree based on the generators {pi,p2,p3}.
Each shortest path tree composes a network Voronoi cell and some edges (e.g., e(ps, ps))
can be partially contained in different network Voronoi cells. The border points b; to by are
the nodes where the shortest path trees meet as a result of the parallel Dijkstra algorithm.
The border points between any two generator p; and p; are equally distanced from p; and
p;. Figure 4 shows a real network Voronoi diagram with respect to 50 data objects in Los
Angeles road network. Each network node marked with a different color corresponds to a
network Voronoi cell.

Fig. 4. Network Voronoi diagram with P = {p1, ..., ps0} in Los Angeles road network.

4.2 Index Generation on Network Voronoi Diagram

As we discussed, to answer any proximity query with respect to a query point ¢, one first
needs to find the Voronoi cell that contains ¢q. There remains a basic question concerning
how to efficiently access the portion of the NVD associated with a particular query point
q. This can be achieved by utilizing a spatial index structure that is generated on Voronoi
cells. Below, we discuss two types of spatial index structures that can be used to index
NVCs, namely, the Voronoi R-tree(VR-tree) and Voronoi Quad-tree (VQ-tree).

4.2.1 The Voronoi R-tree (VR-tree) VR-tree is first introduced in [7] where NVD is
used to evaluate kNN queries in road networks. VR-tree is based on the R-tree [4] that splits
the network space with hierarchically nested Minimum Bound Rectangels (MBR) generated
around network Voronoi cells. Given the location of a query point ¢, a contain(q) query
invoked on VR-tree starts from the root node and iteratively checks the MBRs (of NVCs)
with respect to a ¢ to decide whether or not to further search the child nodes.

VR-tree has two main shortcomings. First, VR-tree may yield inaccurate results for a
contain(q) query. This is because VR-tree makes the simplifying assumption that although
the NVD is computed based on the network distance metric, its NVCs are treated as regular
polygons (by connecting border points of NVCs) and indexed using R-tree that is designed
for the Euclidean distance metric. However, such approach may cause misclassification
of the network edges (i.e., false-negative edges) in the network Voronoi cells, and hence
inaccurate results. Specifically, a network edge belonging to a network Voronoi cell of p;
NV C(p;) may be classified as a member of another network Voronoi cell NV C(p;). For
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Fig. 5. Network Voronoi cell construction in VR-tree

instance, continuing with our running example in Figure 3, Figure 5(a) shows how adjacent
border points are connected to each other: if two adjacent border points are between two
similar generators (e.g., b5 and b; are between p; and p3), they can be connected with an
arbitrary line. Three or more adjacent border points (e.g., ba, b3 and bs) can be connected
to each other through an arbitrary auxiliary point (e.g., v in the figure). As a result, similar
to its Euclidean counterpart, the NVCs are represented with polygons in the network space.
However, to illustrate why VR-tree may fail to yield correct results, consider Figure 5(b)
where we introduce two new edges (as an extension of pi2) to the road network. As shown,
although the new edges (marked by false-negative edges in the Figure) are included inside
the Voronoi cell of p;, the network distance from any point on the false-negative edges
to ps is shorter than that to p;. Thus, with VR-tree, when ¢ is located on false-negative
edges, a contain(q) will return incorrect Voronoi generator as the NN. With our example
we only show one particular case that can happen in real-world road networks. Arguably, it
is possible to increase the number of such examples under different road network topologies.
Figure 6 depicts the NVC of a particular data object in Los Angeles road network where
border nodes and false-negative edges are marked by light blue and red color, respectively.

Fig. 6. False-negative edges of a NVC in Los Angeles road network

One naive solution to the inaccuracy problem of VR-tree is to perform an additional
refinement step. Specifically, one can maintain false-negative edges (along with their corre-
sponding Voronoi generators) in a separate index structure and, for each contain(q) query,
check ¢ against this index structure. If ¢ is located in any of the false-negative edges, the
corresponding Voronoi generator is returned as the nearest neighbor. Otherwise, VR-tree
continues the search based on MBRs of the Voronoi cells as explained above.



Second, VR-tree is inefficient due to non-disjoint partitioning of the space. Specifically,
with VR-tree the hierarchy of NVCs is enforced by minimum bounding rectangles created
around network Voronoi cells. Depending on the different topologies of the road network
and the distribution of the objects on the network segments, the overlapping areas of MBRs
of network Voronoi cells may be quite large, and hence significant computation overhead
in traversing R-tree for contain(q) query. For example, Figure 7 illustrates the MBRs of
network Voronoi cells in Figure 4. For the sake of clarity, we do not include the Voronoi
cells in the picture. As shown, the MBRs around network Voronoi cells result in a non-
disjoint decomposition of the underlying space which means that the location occupied
by a Voronoi cell may be contained in several bounding boxes. This degrades the search
performance in VR-tree because of the backtracking [4] problem, i.e., the parent node(s)
of the overlapping MBRs have to be accessed repeatedly in order to search the child nodes
that contain q. Thus, with VR-tree the amount of work often depends on the overlapping
areas of MBRs. We also implemented VR-tree with R+ tree [20] to reduce the impact of
overlapping areas. However, we observe that the performance of VR+ tree is still less as
compared to VQ-tree (see Section 5.2.4).

Fig. 7. Minimum bounding rectangles on network Voronoi cells

4.2.2 The Voronoi Quad-tree (VQ-tree) The alternative to VR-tree is to index
network Voronoi cells using Quad-tree [18, 3], termed Voronoi Quad-tree (VQ-tree), that
enables disjoint decomposition of the underlying space. The main observation behind VQ-
tree is that each color coded area in Figure 4 is a spatially contiguous region in the network
space. The regions are mutually exclusive as they do not have any overlapping areas and
collectively exhaustive as every location in the network space is associated with at least
one generator. Therefore, an exact approrimation of the network Voronoi diagram can be
obtained by using a region quad-tree [18] where the leaf nodes of the quad-tree correspond to
a region in a Voronoi cell in NVD. In particular, with VQ-tree the root node represents the
rectangular region enclosing the entire span of the road network (and hence NVD) under
consideration. We subdivide this rectangular region into four equal quadrants where each
quadrant is one of the four child nodes of the root. Subsequently, we recursively subdivide
the quadrants until each quadrant contains only one network Voronoi cell information.



That is, for each quadrant, we search for two (or more) different color-coded nodes 2.
If we find such a quadrant (meaning that the quadrant includes more than one network
Voronoi cell), we subdivide that quadrant into four subquadrants. This subdivision process

continues recursively until all nodes in a quadrant have the same color code.

Fig. 8. VQ-tree on Los Angeles road network

Figure 8 illustrates the quad-blocks generated on the road network in Figure 4. We note
that the leaf nodes of VQ-tree does not store any information about the network nodes. As
shown in Figure 9, the leaf nodes only store the region information (i.e., coordinates) of the
quad-blocks as well as a single value (e.g, a color code or a integer number) which indicates
the identity of the network Voronoi cell of which the quad-tree block is a member. We
note that a leaf node in the quad-tree corresponds to a particular subdivision of a network
Voronoi cell.

As shown in 8, each network Voronoi cell NV C; consists of disjoint quad-tree blocks.
The disjoint decomposition of the network Voronoi diagram with VQ-tree addresses the
two drawbacks of VR-tree. Specifically, unlike VR-tree that roughly estimates the network
Voronoi cells with polygons in the Euclidean space, VQ-tree enables the exact represen-
tation of the network Voronoi cells using quad-tree blocks and hence always yield correct
results. VQ-tree does not suffer from the backtracking problem of VR-tree, and hence fast
response time for contain(q). This is due to non-overlapping partitioning of the network
Voronoi cells: once the quad-tree block containing ¢ is located in the leaf nodes, VQ-tree
immediately identifies the nearest Voronoi generator based on the value (e.g, a color code)
of that block.

Algorithm 1 presents the outline for VQ-tree. Given a set of N nodes with their color
codes and bounding box [z1; 2]X[y1;y=2] that contains N as an input, Algorithm 1 creates
VQ-tree by recursively splitting the quadrants until all the nodes in a quadrant have the
same color code.

2 During NVD construction parallel Dijkstra algorithm can encode each node with a Voronoi cell
identifier, e.g., a color
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Fig. 9. VQ-tree

Algorithm 1 VQ-Tree Algorithm

VQuadTree(N,z1,z2,y1,y2){
/* Scan distinct color codes in the region
cellColor|] <= checkRegion(N,z1,x2,y1,Y2);
/* If there exist more than one color-code then split
if cellColor.length > 1 then
/*Initialize intermediate node
node <= QuadTreeNode();
/*Set Quadrants
node.SE < VQuadTree(N, z1, (x2+21)/2,y1, (y1+y2)/2);
node.SW < VQuadTree(N, (z24x1)/2, 22, y1, (y1+y2)/2);
node.NE < VQuadTree(N, z1, (x2+x1)/2, (y1+y2)/2,y2);
node. NW < VQuadTree(N, (zo+z1)/2, z2, (y1+y2)/2, y2);
else
/*Create leaf node
QuadT'reeLeaf Node(cellColor[0]);
end if

}

5 Experimental Evaluation

5.1 Experimental Setup

We conducted experiments with different spatial networks and various parameters to evalu-
ate the performance of VQ-tree and VR-tree. We measured the ratio of false-negative edges
with varying object cardinality (i.e., number of Voronoi generators) and object distribution
in the road network. In addition, we compared the precomputation, index rebuilding (for
dynamic environments) and response time of VQ-tree and VR-tree with respect to different
network sizes and object cardinality. As of our dataset, we used California (C'A), Los An-
geles (LA) and San Joaquin County (S.J) road network data (obtained from Navteq [10])
with approximately 1,965,300, 304,162 and 24,123 nodes, respectively. Since the experi-
mental results with LA and SJ networks differ insignificantly, we only present the results
from the CA and LA datasets. We conducted our experiments on a workstation with 2.7
GHz Pentium Core Duo processor and 12GB RAM memory. For each set of experiments,
we only vary one parameter and fix the remaining to the default values in Table 1.
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Table 1. Experimental parameters

Parameters Default Range
Object Cardinality 100 |10,50,100,500,1000
Road Network LA SJ, LA, CA
Object Distribution|Uniform|Uniform, Gaussian

5.2 Results

5.2.1 Ratio of False-negative Edges First, we study the ratio of false-negative edges
with respect to object cardinality (i.e., number of Voronoi generators) and object distri-
bution. To identify false-negative edges, we compare the encoded values (i.e., color code)
of each node based on VR-tree and VQ-tree. Specifically, we first encode each edge to its
corresponding Voronoi generator by using VR-tree polygons and then compare the encoded
values to that we obtained from VQ-tree. We repeat each experiment 100 times and report
the average number of incorrectly encoded (i.e., false-negative) edges with respect to total
number of edges in the network. Figure 10(a) shows the ratio of false-negative edges of both
networks where the object cardinality ranging from 10 to 1000. As illustrated, the ratio of
incorrectly identified edges is %16 on average in both networks. The maximum recorded
false-negative edge ratio for LA and CA road networks is %24 and %29, respectively.

Figure 10(b) illustrates the ratio of false-negative edges with different object distribution
for both CA and LA road networks. We observe that the number of false-negative edges
is less in Gaussian distribution. This is because as objects are clustered in the spatial
network with Gaussian distribution, the corresponding shortest path trees would be less
disperse and hence spatially close border points. As mentioned, with VR-tree we encode
the edges based on the Euclidean polygon generated by connecting the border points. The
more spatially close border points provides the more accurate presentation of the NBCs
and hence less false-negative edges.
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Fig. 10. Impact of object cardinality and distribution

5.2.2 Precomputation Time With another set of experiments, we compare the pre-
computation (i.e., index construction) time of VR-tree and VQ-tree with varying network
sizes and number of objects. In order to evaluate the impact of network size, we conducted
experiments with the sub-networks of CA dataset ranging from 50K to 250K segments.
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We set the the node size of VR~tree to 4K bytes in all cases. Figure 11(a) shows the pre-
computation time of VQ-tree and VR-tree in CA road network with varying network size.
The results indicate that the precomputation time increases with the network size in both
methods where VQ-tree outperforms VR-tree with all numbers of edges. This is because
as the network size increases the perimeters of the polygons (and hence the number of
connected line segments that form a polygon) grow in VR-tree. Arguably, the overhead
of generating MBRs (to be used in VR-tree) around the polygons composed of numerous
connected line strings is time-consuming as the coordinates (that form the lines) needs
to be scanned to find the ultimate corners of the MBR. On the other hand, VQ-tree is
constructed based the underlying space (rather than objects in VR-tree) by recursively
dividing the road network to quad-blocks each corresponding to one NVC.

Figure 11(b) illustrates the impact of object cardinality over precomputation time in LA
road network (the results are similar in CA network and hence not presented). We observe
that as the number of objects in the road network increases, the preprocessing time for
both approaches increases. As shown, the precomputation time for VQ-tree outperforms
VR-tree. The reason is that the time for hierarchically clustering polygons in VR-tree for a
large datasets is relatively expensive. We also observe that the depth of VQ-tree increases
with the increasing number of data objects. This is because large number of data objects
yields smaller VCs and hence more splits.
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Fig. 11. Impact of network size

5.2.3 Index Reconstruction Next, we compare the index reconstruction overhead of
VR-tree and VQ-tree with respect to object updates. In this set of experiments, we update
the location of the randomly selected data objects and measure the index reconstruction
overhead in both VR-tree and VQ-tree. Figure 12(a) shows the index reconstruction time of
both index structures with varying object update ratio (i.e., the percentage of data objects
whose locations changed). We observe that VQ-tree outperforms VR~tree with respect to
index reconstruction. This is because the insert operations in VR-tree are expensive. When
new data objects are inserted into VR-tree, besides updating leaf nodes, it is likely that
updates are also required to non-leaf nodes (i.e., more than one branch of the tree maybe
expanded), which leads to a large overhead during insertion. On the other hand, with
VQ-tree we observe that most of the index updates take place in the leaf nodes.

5.2.4 Response Time In this experiment, we compare the performance (i.e., the re-
sponse time for contain(q) query) of VQ-tree and VR-tree with varying object cardinality.
We determine the location of the query object ¢ uniformly at random and report average
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Fig. 12. Response time vs object cardinality and Index reconstruction

of 100 queries. As we mentioned the original VR~tree proposed in [7] may yield inaccurate
results. In order to provide correct results with VR-tree, we modify VR-tree by adding an
additional index structure that maintains false-negative edges. Specifically, we construct
a R-tree on the false-negative network edges along with their Voronoi generators. With
each contain(q) query, we check ¢ against this index structure. If we locate ¢ on any of the
false-negative edges, the corresponding data object is returned as the first NN. Otherwise,
VR-tree continues the search based on the polygons explained in 4.2.1. Figure 12(b) plots
the average response time for contain(q) query. The results indicate that VQ-tree outper-
forms VR-tree and scales better with large number of data objects. The response time of
VQ-tree is approximately 12 times better than that of VR-tree with more than 200 data
objects. This is because of the fact that, with VR-tree, the amount of work often depends
on the size of the overlapping areas. In particular, the overlapping areas may belong to more
than one NVC and hence during the search the parent node(s) of the overlapping MBRs
have to be accessed repeatedly. We also implemented VR~tree using R+ tree (VR+) that
minimizes the impact of overlapping areas. We observe that the performance of VQ-tree is
still 7 times superior to VR+ tree.

6 Conclusion

In this paper, we study two different spatial index structures, namely the Voronoi R-
tree and Voronoi Quad-tree, to index network Voronoi diagrams. These index structures
enable efficient access to the network Voronoi cells containing a particular point or edge
of the network. We show that previously proposed Voronoi R-tree may yield inaccurate
results and fail to scale in large road networks with numerous data objects. We propose
a novel approach, termed Voronoi Quad-tree, that enables disjoint decomposition of the
network Voronoi diagram where network Voronoi cells are indexed with region quad-tree.
The precomputation overhead of the Voronoi Quad-tree is significantly less and the Voronoi
Quad-tree outperforms Voronoi R-tree in query response time by a factor of 1:4 to 12
depending on the network size and object cardinality. We intend to pursue this study in
two directions. First, we plan to investigate disk organization strategies for Voronoi Quad-
tree. Second, we intend to work on incremental index update techniques to avoid node
reconstruction overhead due to update in the location of Voronoi generators.
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