Online Computation of Fastest Path in Time-Dependent
Spatial Networks™

Ugur Demiryurek!, Farnoush Banaei-Kashani!, Cyrus Shahabi!,
and Anand Ranganathan?

1 University of Southern California- Department of Computer Science
Los Angeles, CA USA
{demiryur, banaeika, shahabi}@usc.edu
2 IBM T.J. Watson Research Center
Hawthorne, NY USA
aranganaus@ibm.com

Abstract. The problem of point-to-point fastest path computation in static spa-
tial networks is extensively studied with many precomputation techniques pro-
posed to speed-up the computation. Most of the existing approaches make the
simplifying assumption that travel-times of the network edges are constant. How-
ever, with real-world spatial networks the edge travel-times are time-dependent,
where the arrival-time to an edge determines the actual travel-time on the edge. In
this paper, we study the online computation of fastest path in time-dependent spa-
tial networks and present a technique which speeds-up the path computation. We
show that our fastest path computation based on a bidirectional time-dependent
A* search significantly improves the computation time and storage complexity.
With extensive experiments using real data-sets (including a variety of large spa-
tial networks with real traffic data) we demonstrate the efficacy of our proposed
techniques for online fastest path computation.

1 Introduction

With the ever-growing popularity of online map applications and their wide deployment
in mobile devices and car-navigation systems, an increasing number of users search for
point-to-point fastest paths and the corresponding travel-times. On static road networks
where edge costs are constant, this problem has been extensively studied and many
efficient speed-up techniques have been developed to compute the fastest path in a mat-
ter of milliseconds (e.g., [27031128/29]). The static fastest path approaches make the
simplifying assumption that the travel-time for each edge of the road network is con-
stant (e.g., proportional to the length of the edge). However, in real-world the actual
travel-time on a road segment heavily depends on the traffic congestion and, therefore,
is a function of time i.e., time-dependent. For example, Figure [Tl shows the variation

* This research has been funded in part by NSF grants I1S-0238560 (PECASE), IIS-
0534761,11S-0742811 and CNS-0831505 (CyberTrust), and in part from CENS and
METRANS Transportation Center, under grants from USDOT and Caltrans.Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the views of the National Science Foundation.

D. Pfoser et al. (Eds.): SSTD 2011, LNCS 6849, pp. 92-{1111 2011.
(© Springer-Verlag Berlin Heidelberg 2011

Online Computation of Fastest Path in Time-Dependent Spatial Networks 93

of travel-time (computed by averaging two-years of historical traffic sensor data) for a
particular road segment of I-10 freeway in Los Angeles as a function of arrival-time
to the segment. As shown, the travel-time changes with time (i.e, the time that one ar-
rives at the segment entry determines the travel-time), and the change in travel-time is
significant. For instance, from 8AM to 9AM the travel-time of the segment changes
from 32 minutes to 18 minutes (a 45% decrease). By induction, one can observe that
the time-dependent edge travel-times yield a considerable change in the actual fastest
path between any pair of nodes throughout the day. Specifically, the fastest between a
source and a destination node varies depending on the departure-time from the source.
Unfortunately, all those techniques that assume constant edge weights fail to address
the fastest path computation in real-world time-dependent spatial networks.

@
&

N oW
a S

N
3

Travel Time (min)
> o

o
L

0

L L N N L O N N O N N N N N
S LSS S S S S

Day Time

Fig. 1. Real-world travel-time on a segment of I-10 in LA

The time-dependent fastest path problem was first shown by Dreyfus [10] to be
polynomially solvable in FIFO networks by a trivial modification to Dijkstra algorithm
where, analogous to shortest path distances, the arrival-time to the nodes is used as the
labels that form the basis of the greedy algorithm. The FIFO property, which typically
holds for many networks including road networks, suggests that moving objects exit
from an edge in the same order they entered the edgeﬂ. However, the modified Dijkstra
algorithm [10] is far too slow for online map applications which are usually deployed on
very large networks and require almost instant response times. On the other hand, there
are many efficient precomputation approaches that answer fastest path queries in near
real-time (e.g., [27]) in static road networks. However, it is infeasible to extend these
approaches to time-dependent networks. This is because the input size (i.e., the number
of fastest paths) increases drastically in time-dependent networks. Specifically, since the
length of a s-d path changes depending on the departure-time from s, the fastest path
is not unique for any pair of nodes in time-dependent networks. It has been conjectured
in [3] and settled in [11] that the number of fastest paths between any pair of nodes
in time-dependent road networks can be super-polynomial. Hence, an algorithm which
considers the every possible path (corresponding to every possible departure-time from

! The fastest path computation is shown to be NP-hard in non-FIFO networks where waiting
at nodes is not allowed [23]]. Violation of the FIFO property rarely happens in real-world and
hence is not the focus of this study.

94 U. Demiryurek et al.

the source) for any pair of nodes in large time-dependent networks would suffer from
exponential time and prohibitively large storage requirements. For example, the time-
dependent extension of Contraction Hierarchies (CH) [1]] and SHARC [3] speed-up
techniques (which are proved to be very efficient for static networks) suffer from the
impractical precomputation times and intolerable storage complexity (see Section[3)).

In this study, we propose a bidirectional time-dependent fastest path algorithm (B-
TDFP) based on A* search [[17]. There are two main challenges to employ bidirectional
A* search in time-dependent networks. First, finding an admissible heuristic function
(i.e., lower-bound distance) between an intermediate v; node and the destination d is
challenging as the distance between v; and d changes based on the departure-time from
v;. Second, it is not possible to implement a backward search without knowing the
arrival-time at the destination. We address the former challenge by partitioning the road
network to non-overlapping partitions (an off-line operation) and precompute the intra
(node-to-border) and inter (border-to-border) partition distance labels with respect to
Lower-bound Graph G which is generated by substituting the edge travel-times in G
with minimum possible travel-times. We use the combination of intra and inter distance
labels as a heuristic function in the online computation. To address the latter challenge,
we run the backward search on the lower-bound graph (G) which enables us to filter-in
the set of the nodes that needs to be explored by the forward search.

The remainder of this paper is organized as follows. In Section 2] we explain the
importance of time-dependency for accurate and useful path planning. In Section[3] we
review the related work on time-dependent fastest path algorithms. In Section A we
formally define the time-dependent fastest path problem in spatial networks. In Sec-
tion 5] we establish the theoretical foundation of our proposed bidirectional algorithm
and explain our approach. In Section[f] we present the results of our experiments for
both approaches with a variety of spatial networks with real-world time-dependent edge
weights. Finally, in Section[Z, we conclude and discuss our future work.

2 Towards Time-Dependent Path Planning

In this section, we explain the difference between fastest computation in time-dependent
and static spatial networks. We also discuss the importance and the feasibility of time-
dependent route planning.

To illustrate why classic fastest path computations in static road networks may return
non-optimal results, we show a simple example in Figure 2] where a spatial network is
modeled as a time-dependent graph and edge travel-times are function of time. Con-
sider the snapshot of the network (i.e., a static network) with edge weights correspond-
ing to travel-time values at t=0. With classic fastest path computation approaches that
disregard time-dependent edge travel-times, the fastest path from s to d goes through
v1, V2, v4 With a cost of 13 time units. However, by the time when vs is reached (i.e.,
at t=b), the cost of edge e(vs, v4) changes from 8 to 12 time units, and hence reaching
d through vs takes 17 time units instead of 13 as it was anticipated at t=0. In con-
trast, if the time-dependency of edge travel-times are considered and hence the path
going through vs was taken, the total travel-cost would have been 15 units which is the
actual optimal fastest path. We call this shortcoming of the classic fastest path compu-
tation techniques as no-lookahead problem. Unfortunately, most of the existing state

Online Computation of Fastest Path in Time-Dependent Spatial Networks 95

of the art path planning applications (e.g., Google Maps, Bing Maps) suffer from the
no-lookahead shortcoming and, hence, their fastest path recommendation remains the
same throughout the day regardless of the departure-time from the source (i.e., query
time). Although some of these applications provide alternative paths under traffic con-
ditions (which may seem similar to time-dependent planning at first), we observe that
the recommended alternative paths and their corresponding travel-times still remain
unique during the day, and hence no time-dependent planning. To the best of our knowl-
edge, these applications compute top-k fastest paths (i.e., k alternative paths) and their
corresponding travel-times with and without taking into account the traffic conditions.
The travel-times which take into account the traffic conditions are simply computed
by considering increased edge weights (that corresponds to traffic congestion) for each
path. However, our time-dependent path planning results in different optimum paths
for different departure-times from the source. For example, consider Figure where
Google Maps offer two alternative paths (and their travel-times under no-traffic and
traffic conditions) for an origin and destination pair in Los Angeles road network. Note
that the path recommendation and the travel-times remain the same regardless of when
the user submits the query. On the other hand, Figure [3(b)| depicts the time-dependent
path recommendations (in different colors for different departure times) for the same
origin and destination pair where we computed the time-dependent fastest paths for 38
consecutive departure-times between 8AM and 5:30PM, spaced 15 minutes apar@. As
shown, the optimal paths change frequently during the course of the day.

Wia(t), Was(t) Wau(t)

25 8
Fig. 2. Time-dependent graph

One may argue against the feasibility of time-dependent path planning algorithms
due to a) unavailability of the time-dependent edge travel-times, or b) negligible gain
of time-dependent path planning (i.e., how much time-dependent planning can improve
the travel-time) over static path planning. To address the first argument, note that recent
advances in sensor networks enabled instrumentation of road networks in major cities
for collecting real-time traffic data, and hence it is now feasible to accurately model

2 The paths are computed using the algorithm presented in Section[§where time-dependent edge
travel-times are generated based on the two-years of historical traffic sensor data collected from
Los Angeles road network.

96 U. Demiryurek et al.

the time-dependent travel-times based on the vast amounts of historical data. For in-
stance, at our research center, we maintain a very large traffic sensor dataset of Los
Angeles County that we have been collecting and archiving the data for past two years
(see Section[6.Ifor the details of this dataset). As another example, PeMS [24] project
developed by UC Berkeley generates time-varying edge travel-times using historical
traffic sensor data throughout California. Meanwhile, we also witness that the leading
navigation service providers (such as Navteq [22] and TeleAtlas [30]) started releas-
ing their time-dependent travel-time data for road networks at high temporal resolution.
With regards to the second argument, several recent studies showed the importance of
time-dependent path planning in road networks where real-world traffic datasets have
been used for the assessment. For example, in [7] we report that the fastest path com-
putation that considers time-dependent edge travel-times in Los Angeles road network
decreases the travel-time by as much as 68% over the fastest path computation that
assumes constant edge travel-times. We made the similar observation in another study
[15] under IBM’s Smart Traffic Project where the time-dependent fastest path com-
putation in Stockholm road network can improve the travel-time accuracy up to 62%.
Considering the availability of high-resolution time-dependent travel-time data for road
networks, and the importance of time-dependency for accurate and useful path plan-
ning, the need for efficient algorithms to enable next-generation time-dependent path
planning applications becomes apparent and immediate.

D

(a) Static path planning (b) Time-dependent pa

compir- (D).

Bom | Zrme g | o E0uit comisier- (T

th planning

Fig. 3. Static vs Time-dependent path planning

3 Related Work

In the last decade, numerous efficient fastest path algorithms with precomputation meth-
ods have been proposed (see [29/27] for an overview). However, there are limited num-
ber of studies that focus on efficient computation of time-dependent fastest path (TDFP)
problem.

Cooke and Halsey [2] first studied TDFP computation where they solved the prob-
lem using Dynamic Programming in discrete time. Another discrete-time solution to
TDFP problem is to use time-expanded networks [19]. In general, time-expanded

Online Computation of Fastest Path in Time-Dependent Spatial Networks 97

network (TEN) and discrete-time approaches assume that the edge weight functions
are defined over a finite discrete window of time ¢t € to,t1,..,t,, Where t,, is deter-
mined by the total duration of time interval under consideration. Therefore, the prob-
lem is reduced to the problem of computing minimum-weight paths over a static static
network per time window. Hence, one can apply any static fastest path algorithms to
compute TDFP. Although these algorithms are easy to design and implement, they have
numerous shortcomings. First, TEN models create a separate instance of network for
each time instance hence yielding a substantial amount of storage overhead. Second,
such approaches can only provide approximate results because the model misses the
state of the network between any two discrete-time instants. Moreover, the difference
between the shortest path obtained using TEN approach and the optimal shortest path is
unbounded. This is because the query time can be always between any two of the inter-
vals which are not captured by the model, and hence the error is is accumulated on each
edge along the path. In [12]], George and Shekhar proposed a time-aggregated graph
approach where they aggregate the travel-times of each edge over the time instants into
a time series. Their model requires less space than that of the TEN and the results are
still approximate with no bounds.

In [10], Dreyfus showed that TDFP problem can be solved by a generalization of Di-
jkstra’s method as efficiently as for static fastest path problems. However, Halpern [16]]
proved that the generalization of Dijkstra’s algorithm is only true for FIFO networks.
If the FIFO property does not hold in a time-dependent network, then the problem is
NP-Hard. In [23]], Orda and Rom introduced Bellman-Ford based algorithm where they
determine the path toward destination by refining the arrival-time functions on each
node in the whole time interval 7. In [18]], Kanoulas et al. proposed Time-Interval All
Fastest Path (allFP) approach in which they maintain a priority queue of all paths to be
expanded instead of sorting the priority queue by scalar values. Therefore, they enumer-
ate all the paths from the source to a destination node which incurs exponential running
time in the worst case. In [9], Ding et al. used a variation of Dijkstra’s algorithm to
solve the TDFP problem. With their TDFP algorithm, using Dijkstra like expansion,
they decouple the path-selection and time-refinement (computing earliest arrival-time
functions for nodes) for a given starting time interval 7. Their algorithm is also shown
to run in exponential time for special cases (see [4]). The focus of both [[18]] and [9] is
to find the fastest path in time-dependent road networks for a given start time-interval
(e.g., between 7:30AM and 8:30AM).

The ALT algorithm [13] was originally proposed to accelerate fastest path computa-
tion in static road networks. With ALT, a set of nodes called landmarks are chosen and
then the shortest distances between all the nodes in the network and all the landmarks
are computed and stored. ALT employs triangle inequality based on distances to the
landmarks to obtain a heuristic function to be used in A* search. The time-dependent
variant of this technique is studied in [6] (unidirectional) and [21] (bidirectional A*
search) where heuristic function is computed w.r.t lower-bound graph. However, the
landmark selection is very difficult (relies on heuristics) and the size of the search space
is severely affected by the choice of landmarks. So far no optimal strategy with respect
to landmark selection and random queries has been found. Specifically, landmark se-
lection is NP-hard [26] and ALT does not guarantee to yield the smallest search spaces

98 U. Demiryurek et al.

with respect to fastest path computations where source and destination nodes are cho-
sen at random. Our experiments with real-world time-dependent travel-times show that
our approach consumes much less storage as compared to ALT based approaches and
yields faster response times (see Section [@). In two different studies, The Contraction
Hierarchies (CH) and SHARC methods (also developed for static networks) were aug-
mented to time-dependent road networks in [1] and [S]], respectively. The main idea of
these techniques is to remove unimportant nodes from the graph without changing the
fastest path distances between the remaining (more important) nodes. However, unlike
the static networks, the importance of a node can change throughout the time under
consideration in time-dependent networks, hence the importance of the nodes are time
varying. Considering the super-polynomial input size (as discussed in Section [l), and
hence the super-polynomial number of important nodes with time-dependent networks,
the main shortcomings of these approaches are impractical preprocessing times and ex-
tensive space consumption. For example, the precomputation time for SHARC in time-
dependent road networks takes more than 11 hours for relatively small road networks
(e.g. LA with 304,162 nodes) [5]. Moreover, due to the significant use of arc flags [5],
SHARC does not work in a dynamic scenario: whenever an edge cost function changes,
arc flags should be recomputed, even though the graph partition need not be updated.
While CH also suffers from slow preprocessing times, the space consumption for CH
is at least 1000 bytes per node for less varied edge-weights where the storage cost in-
creases with real-world time-dependent edge weights. Therefore, it may not be feasible
to apply SHARC and CH to continental size road networks which can consist of more
than 45 million road segments (e.g., North America road network) with possibly large
varied edge-weights.

4 Problem Definition

There are various criteria to define the cost of a path in road networks. In our study
we define the cost of a path as its travel-time. We model the road network as a time-
dependent weighted graph as shown in Figure 2] where time-dependent travel-times are
provided as a function of time which captures the typical congestion pattern for each
segment of the road network. We use piecewise linear functions to represent the time-
dependent travel-times in the network.

Definition 1. Time-dependent Graph. A Time-dependent Graph is defined as G(V, E,
T) where V = {v;} is a set of nodes and E C 'V x V is a set of edges representing
the network segments each connecting two nodes. For every edge e(v;,v;) € E, and
v; # vj, there is a cost function c,, ., (t), where t is the time variable in time domain T.
An edge cost function c,, ., (t) specifies the travel-time from v; to v; starting at time t.

Definition 2. Time-dependent Travel Cost. Let {s = vy, v, ...,vx = d} denotes a
path which contains a sequence of nodes where e(v;,v;y1) € Eandi =1,...,k — 1.
Given a G(V, E,T), a path (s ~ d) from source s to destination d, and a departure-
time at the source ts, the time-dependent travel cost TT (s ~ d, ts) is the time it takes
to travel the path. Since the travel-time of an edge varies depending on the arrival-time
to that edge, the travel-time of a path is computed as follows:

Online Computation of Fastest Path in Time-Dependent Spatial Networks 99

k—1
TT (s~ d,ts) = Z Cui v (i) where ty = to, tiy1 =t + Cry, v,0)(ti), 1 =1, k.
i=1

Definition 3. Lower-bound Graph. Given a G(V, E,T), the corresponding Lower-
bound Graph G(V, E) is a graph with the same topology (i.e, nodes and edges) as
graph G, where the weight of each edge cy, v, is fixed (not time-dependent) and is equal
to the minimum possible weight cm_mj whereV e(v;,v;) € E,t €T cm_i"j < Coy oy (1)-

Vi,V Vi, U

Definition 4. Lower-bound Travel Cost. The lower-bound travel-time LTT (s ~~ d)
of a path is less than the actual travel-time along that path and computed w.r.t G(V, E)

as
k—1

LTT(s~d)=Y ™ =1

i1 s ooy K
i=1

It is important to note that for each source and destination pair (s,d), LTT (s ~ d)
is time-independent constant value and hence ¢ is not included in its definition. Given
the definitions of 77" and LT'T, the following property always holds for any path in
G\V,E,T): LTT(s ~ d) < TT(s ~» d,ts) where t, is an arbitrary departure-time
from s. We will use this property in subsequent sections to establish some properties of
our proposed solution.

Definition 5. Time-dependent Fastest Path (TDFP). Given a G(V,E,T), s, d, and
ts, the time-dependent fastest path TDF P(s, d, ts) is a path with the minimum travel-
time among all paths from s to d for starting time t.

In the rest of this paper, we assume that G(V, E,T) satisfies the First-In-First-Out
(FIFO) property. We also assume that moving objects do not wait at any node. In most
real-world applications, waiting at a node is not realistic as it means that the moving
object must interrupt its travel by getting out of a road (e.g., exit freeway), and finding
a place to park and wait.

5 Time-Dependent Fastest Path Computation

In this section, we explain our bidirectional time-dependent fastest path approach that
we generalize bidirectional A* algorithm proposed for static spatial networks [25] to
time-dependent road networks. Our proposed solution involves two phases. At the pre-
computation phase, we partition the road network into non-overlapping partitions and
precompute lower-bound distance labels within and across the partitions with respect
to G(V, E). Successively, at the online phase, we use the precomputed distance labels
as a heuristic function in our bidirectional time-dependent A* search that performs si-
multaneous searches from source and destination. Below we elaborate on both phases.

5.1 Precomputation Phase

The precomputation phase of our proposed algorithm includes two main steps in which
we partition the road network into non-overlapping partitions and precompute lower-
bound border-to-border, node-to-border, and border-to-node distance labels.

100 U. Demiryurek et al.

5.1.1 Road Network Partitioning

Real-world road networks are built on a well-defined hierarchy. For example, in United
States, highways connect large regions such as states, interstate roads connect cities
within a state, and multi-lane roads connect locations within a city. Almost all of the
road network data providers (e.g., Navteq [22]) include road hierarchy information in
their datasets. In this paper, we partition the graph to non-overlapping partitions by
exploiting the predefined edge class information in road networks. Specifically, we first
use higher level roads (e.g., interstate) to divide the road network into large regions.
Then, we subdivide each large region using the next level roads and so on. We adopt
this technique from [14] and note that our proposed algorithm is independent of the
partitioning method, i.e., it yields correct results with all non-overlapping partitioning
methods.

With our approach, we assume that the class of each edge class(e) is predefined and
we denote the class of a node class(v) by the lowest class number of any incoming
or outgoing edge to/from v. For instance, a node at the intersection of two freeway
segments and an arterial road (i.e., the entry node to the freeway) is labeled with class
of the freeway rather than the class of the arterial road. The input to our hierarchical
partitioning method is the road network and the level of partitioning {. For example,
if we like to partition a particular road network based on the interstates, freeways, and
arterial roads in sequence, we set [= 2 where interstate edges represent the class 0.
The road network partitions can be conceptually visualized as the areas after removal
the nodes with class(v) <1 from G(E, V).

Definition 6. Given a graph G(V, E), the partition of G(V, E) is a set of subgraphs
{51, S2, ..., Sk} where S; = (V;, E;) includes node set V; where V; N V; = 0 and
Ub V=V, i#.

Given a G(FE, V) and level of partitioning I, we first assign to each node an empty set
of partitions. Then, we choose a node v; that is connected to edges other than the ones
used for partitioning (i.e., a node with class(v;) >) and add partition number (e.g.,
S1) to v;’s partition set. For instance, continuing with our example above, a node v; with
class(v;) > 2 represent a particular node that belongs a less important road segment
than an arterial road. Subsequently, we expand a shortest path tree from v; to all it’s
neighbor nodes reachable through the edges of the classes greater than /, and add 57 to
their partition sets. Intuitively, we expand from v; until we reach the roads that are used
for partitioning. At this point we determine all the nodes that belong to S;. Then, we
select another node v; with an empty partition set by adding the next partition number
(e.g., S2) to v;’s partition set and repeat the process. We terminate the process when
all nodes are assigned to at least one partition. With this method we can easily find the
border nodes for each partition, i.e., those nodes which include multiple partitions in
their partition sets. Specifically, a node v, with class(v) < [belongs to all partitions
such that there is an edge e (with class(e) > [) connecting v to v’ where v’ € \S; and
i =1, ..., k, is the border node of the partitions that it connects to. Note that [is a tuning
parameter in our partitioning method. Hence, one can arrange the size of the partitions
by increasing or decreasing [.

Figure [shows the partitioning of San Joaquin (California) network based on the
road classes. As shown, higher level edges are depicted with different (thicker) colors.

Online Computation of Fastest Path in Time-Dependent Spatial Networks 101

Fig. 4. Road network partitioning

Each partition is numbered starting from the north-west corner of the road network. The
border nodes between partitions S; and S4 are shown in the circled area. We remark
that the number of border nodes (which can be potentially large depending on the den-
sity of the network) in the actual partitions have a negligible influence on the storage
complexity. We explain the effect of the border nodes on the storage cost in the next
section.

5.1.2 Distance Label Computation

In this step, for each pair of partitions (.5;,5;) we compute the lower-bound fastest
path cost w.r.t G between each border in S; to each border node in S;. However, we
only store the minimum of all border-to-border fastest path distances. As an example,
consider Figure [5] where the lower-bound fastest path cost between b; and b3 (shown
with straight line) is the minimum among all border-to-border distances (i.e., b;-b4,
ba-by, ba-b3) between S7 and Ss. In addition, for each node v; in a partition S;, we
compute the lower-bound fastest path cost from v; to all border nodes in S; w.r.t. G and
store the minimum among them. We repeat the same process from border nodes in .S;
to v;. For example, border nodes b; and b4 in FigureBlare the nearest border nodes to s
and d, respectively. We will use the precomputed node-to-border, border-to-border, and
border-to-node lower-bound travel-times (referred to as distance labels) to construct
our heuristic function for online time-dependent A* search. We used a similar distance
label precomputation technique to expedite shortest path computation between network
Voronoi polygons in static road networks [20].

We maintain the distance labels by attaching three attributes to each node represent-
ing a) the partition S; that contains the node, b) minimum of the lower-bound distances
from the node to border nodes, and ¢) minimum of the lower-bound distances from
border nodes to the node (this is necessary for directed graphs). We keep border-to-
border distance information in a hash table. Since we only store one distance value for
each partition pair, the storage cost of the border-to-border distance labels is negligible.

102 U. Demiryurek et al.

Fig. 5. Lower-bound distance computation

Another benefit of our proposed lower-bound computation is that the lower-bounds
need to be updated when it is necessary. Specifically, we update the intra and inter dis-
tance labels only when the minimum travel-time of an edge changes, otherwise, the
travel-time updates are discarded. Note that intra distance label computation is local,
i.e., we only update the intra distance labels for the partitions in which the minimum
travel-time of an edge changes.

5.2 Online B-TDFP Computation

As showed in [10]], the time-dependent fastest path problem (in FIFO networks) can
be solved by modifying Dijkstra algorithm. We refer to modified Dijkstra algorithm as
time-dependent Dijkstra (TD-Dijkstra). TD-Dijkstra visits all network nodes reachable
from s in every direction until destination node d is reached. On the other hand, a time-
dependent A* algorithm can significantly reduce the number of nodes that have to be
traversed in TD-Dijkstra algorithm by employing a heuristic function h(v) that directs
the search towards destination. To guarantee optimal results, /(v) must be admissible
and consistent (a.k.a, monotonic). The admissibility implies that 4(v) must be less than
or equal to the actual distance between v and d. With static road networks where the
length of an edge is constant, Euclidian distance between v and d is used as h(v).
However, this simple heuristic function cannot be directly applied to time-dependent
road networks, because, the optimal travel-time between v and d changes based on the
departure-time ¢, from v. Therefore, in time-dependent road networks, we need to use
an estimator that never overestimates the travel-time between v and d for any possible
t,. One simple lower-bound estimator is dey.(v, d)/maz(speed), i.e., the Euclidean
distance between v and d divided by the maximum speed among the edges in the entire
network. Although this estimator is guaranteed to be a lower-bound, it is a very loose
bound, and hence yields insignificant pruning.

With our approach, we obtain a much tighter bound by utilizing the precomputed
distance labels. Assuming that an on-line time-dependent fastest path query requests a
path from source s in partition .S; to destination d in partition S, the fastest path must
pass through from one border node b; in S; and another border node b; in .S;. We know
that the time-dependent fastest path distance passing from b; and b; is greater than or
equal to the precomputed lower-bound border-to-border (e.g., LTT (b, b;)) distance for
S; and S; pair. We also know that a time-dependent fastest path distance from s to b;

Online Computation of Fastest Path in Time-Dependent Spatial Networks 103

is always greater than or equal to the precomputed lower-bound fastest path distance of
s to its nearest border node bs. Analogously, same is true from the border node by (i.e.,
nearest border node) to d in S;. Thus, we can compute a lower-bound estimator of s by
h(s) = LTT(s,bs) + LTT (b;,b¢) + LTT (bg, d).

Lemma 1. Given an intermediate node v; in S; and destination node d in S;, the es-
timator h(v;) is admissible, i.e., a lower-bound of time-dependent fastest path distance
Sfrom v; to d passing from border nodes b; and b; in S; and S;,respectively.

Proof. Assume LTT (b, b;) is the minimum border-to-border distance between .S; and
S;, and bg, b;- are the nearest border nodes to v; and d in G, respectively. By definition
of G(V,E), LTT (v;,b;) < TDFP(v;, b, ty,), LTT (b;,b;) < TDFP(b;,b;,tp,), and
LTT(b;-, d) <TDFP(b;,d, ty,) Then, we have h(v;) = LTT (v, b))+ LTT (b, bs) +
LTT(b;-, d) <TDFP(v;, b, ty,) + TDFP(b;, by, ty,) + TDFP(bj,d, ty,)

We can use our h(v) heuristic with unidirectional time-dependent A* search in road net-
works. The time-dependent A* algorithm is a best-first search algorithm which scans
nodes based on their time-dependent cost label (maintained in a priority queue) to
source similar to [10]. The only difference to [10] is that the label within the prior-
ity queue is not determined only by the time-dependent distance to source but also by a
lower-bound of the distance to d, i.e., h(v) introduced above.

To further speed-up the computation, we propose a bidirectional search that simulta-
neously searches forward from the source and backwards from the destination until the
search frontiers meet. However, bidirectional search is challenging in time-dependent
road networks for two following reasons. First, it is essential to start the backward
search from the arrival-time at the destination ¢, and exact ¢4 cannot be evaluated in ad-
vance at the query time (recall that arrival-time to destination depends on the departure-
time from the source in time-dependent road networks). We address this problem by
running a backward A* search that is based on the reverse lower-bound graph E (the
lower-bound graph with every edge reversed). The main idea with running backward
search in E is to determine the set of nodes that will be explored by the forward A*
search. Second, it is not straightforward to satisfy the consistency (the second optimal-
ity condition of A* search) of h(v) as the forward and reverse searches use different
distance functions. Next, we explain bidirectional time-dependent A* search algorithm
(Algorithm 1) and how we satisfy the consistency.

Given G = (V, E,T), s and d, and departure-time ¢ from s, let () 5 and (), represent
the two priority queues that maintain the labels of nodes to be processed with forward
and backward A* search, respectively. Let F' represent the set of nodes scanned by
the forward search and Ny is the corresponding set of labeled vertices (those in its
priority queue). We denote the label of a node in Ny by dy,. Analogously, we define
B, Ny, and dy, for the backward search. Note that during the bidirectional search F'
and B are disjoint but Ny and IV, may intersect. We simultaneously run the forward
and backward A* searches on G(V, E,T') and E, respectively (Line 4 in Algorithm 1).
We keep all the nodes visited by backward search in a set H (Line 5). When the search
frontiers meet, i.e., as soon as Ny and N, have a node u in common (Line 6), the cost
of the time-dependent fastest path (T'DF P(s,u, t,)) from s to u is determined. At this

104 U. Demiryurek et al.

LTT(u,d)

Fig. 6. Bidirectional search

point, we know that TDF P(u, d, t,,) > LTT (u,d) for the path found by the backward
search. Hence, the time-dependent cost of the paths (found so far) passing from w is
the upper-bound of the time-dependent fastest path from s to d, i.e., TDF P (s, u,ts) +
TDFP(u,d,t,) > TDFP(s,d,ts).

If we stop the searches as soon as a node v is scanned by both forward and back-
ward searches, we cannot guarantee finding the time-dependent fastest path from u to
d within the set of nodes in H. This is due to inconsistent potential function used in
bidirectional search that relies on two independent potential functions for two inner A*
algorithms. Specifically, let k¢ (v) (estimated distance from node v to target) and hy(v)
(estimated distance from node v to source) be the potential functions used in the for-
ward and backward searches, respectively. With the backward search, each original edge
e(i, j) considered as e(j, i) in the reverse graph where h;, used as the potential func-
tion, and hence the reduced cosfl of e(j,) w.r.t. hy is computed by e, (4,1)=c(i, j)-
hi(7)+hs (i) where c(i, j) is the cost in the original graph. Note that hy and h; are
consistent if, for all edges (4, 7), cx, (i,7) in the original graph is equal to c, (j,7) in
the reverse graph. If hy and hy, are not consistent, there is no guarantee that the short-
est path can be found when the search frontiers meet. For instance, consider Figure []
where the forward and backward searches meet at node u. As shown, if v is scanned
before u by the forward search, then TDF P(s,u,ts) > TDFP(s,v,ts). Similarly if
w is scanned before u by the backward search, the LTT (u, d) > LTT(w, d) and hence
TDFP(u,d,t,) > TDFP(w,d,t,). Consequently, it is possible that TDF P(s, u,
ts) + TDFP(u,d,t,) > TDFP(s,v,ts) + TDFP(w,d,t,). To address this chal-
lenge, one needs to find a) a consistent heuristic function and stop the search when
the forward and backward searches meet or b) a new termination condition. In this
study, we develop a new termination condition (the proof of correctness is given be-
low) in which we continue both searches until the (), only contains nodes whose labels
exceed TDFP(s,u,ts) + TDFP(u,d,t,) by adding all visited nodes to H (Line
9-11). Recall that the label (denoted by dy,) of node v in the backward search pri-
ority queue (), is computed by the time-dependent distance from the destination to
v plus the lower-bound distance from v to s, i.e., dp, = TDFP(v,d,t,) + h(v).
Hence, we stop the search when dy, > TDFP(s,u,ts) + TDFP(u,d,t,). As we
explained, TDF P(s, u,ts) + TDFP(u,d,t,) is the length of the fastest path seen so
far (not necessarily the actual fastest path) and is updated during the search when a new

3 A* search is equivalent to Dijkstra’s algorithm on a transformed network in which the cost of
each edge (i, 7) is equal to ¢(i, 7)-h(i)+h(5).

Online Computation of Fastest Path in Time-Dependent Spatial Networks 105

common node v’ found with TDF P (s, v/, ts)+TDFP(v,d, ty) < TDFP(s,u,ts)+
TDFP(u,d,t,). Once both searches stop, H will include all the candidate nodes that
can possibly be part of the time-dependent fastest path to d. Finally, we continue the
forward search considering only the nodes in H until we reach d (Line 12).

Algorithm 1. B-TDFP Algorithm

—
1: /Moput: G, G, s:source, d:destination,t,:departure time

2: //Output: a (s, d, t,) fastest path

3: //FS():forward search, BS():backward search, N¢/Ny: nodes scanned by FS()/BS(),
dpy:1abel of the minimum element in BS queue

: FS(Gr) and BS (E) /Istart searches simultaneously

. Ny — FS(Gr) and N — BS(G)

If NyN Ny #0Dthenu«— NyN N

: M =TDFP(s,u,ts) + TDFP(u,d,t.)

cendIf

9: While dpw > M

10: Nb — BS(Q)

11: End While

12: FS(N)

13: return (s, d, ts)

[IR o NN RN

Lemma 2. Algorithm 1 finds the correct time-dependent fastest path from source to
destination for a given departure-time t.

Proof. We prove Lemma 2 by contradiction. The forward search in Algorithm 1 is the
same as the unidirectional A* algorithm and our heuristic function h(v) is a lower-
bound of time-dependent distance from w to v. Therefore, the forward search is correct.
Now, let P(s, (u),d,ts) represent the path from s to d passing from u where forward
and backward searches meet and w denotes the cost of this path. As we showed w is the
upper-bound of actual time-dependent fastest path from s to d. Let ¢ be the smallest
label of the backward search in priority queue @), when both forward and backward
searches stopped. Recall that we stop searches when ¢ > w. Suppose that Algorithm
1 is not correct and yields a suboptimal path, i.e., the fastest path passes from a node
outside of the corridor generated by the forward and backward searches. Let P be the
fastest path from s to d for departure-time ¢ and cost of this path is «.. Let v be the first
node on Px which is going to be explored by the forward search and not explored by
the backward search and h;(v) is the heuristic function for the backward search. Hence,
we have ¢ < hy(v) + LTT (v,d), « < w < ¢ and hy,(v) + LTT (v,d) < LTT(s,v) +
LTT (v,d) < TDFP(s,v,ts)+TDFP(v,t,t,) = o, which s a contradiction. Hence,
the fastest path will be found in the corridor of the nodes labeled by the backward
search.

6 Experimental Evaluation

6.1 Experimental Setup

We conducted extensive experiments with different spatial networks to evaluate the per-
formance of our proposed bidirectional time-dependent fastest path (B-TDFP)

106 U. Demiryurek et al.

approach. As of our dataset, we used California (CA), Los Angeles (LA) and San
Joaquin County (S.J) road network data (obtained from Navteq [22]) with approxi-
mately 1,965,300, 304,162 and 24,123 nodes, respectively. We conducted our experi-
ments on a server with 2.7 GHz Pentium Core Duo processor with 12GB RAM memory.

6.1.1 Time-Dependent Network Modeling

At our research center, we maintain a very large-scale and high resolution (both spa-
tial and temporal) traffic sensor (i.e., loop detector) dataset collected from entire LA
County highways and arterial streets. This dataset includes both inventory and real-time
data for 6300 traffic sensors covering approximately 3000 miles. The sampling rate of
the streaming data is 1 reading/sensor/min. We have been continuously collecting and
archiving the traffic sensor data for the past two years. We use this real-world dataset
to create time varying edge weights; we spatially and temporally aggregate sensor data
by assigning interpolation points (for each 5 minutes) that depict the travel-times on the
network segments. Based on our observation, all roads are un-congested between 9PM
and 6AM, and hence we assume static edge weights during this interval. In order to
create time-dependent edge weights for the local streets in LA, CA and SJ, we devel-
oped a traffic modeling approach [8]] that synthetically generates the edge travel-time
profiles. Our approach uses spatial (e.g., locality, connectivity) and temporal (e.g., rush
hour, weekday) characteristics to generate travel-time for network edges that does not
have readily available sensor data.

6.2 Results

In this section, we report the experimental results from our fastest path queries in which
we determine the s and d nodes uniformly at random. We also pick our departure-
time randomly and uniformly distributed in time domain 7'. The average results are
derived from 1000 random s-d queries. We only present the results for LA and C'A, the
experimental results for both SJ and LA are very similar.

6.2.1 Comparison with ALT

In this set of experiments we compare our algorithm with time-dependent ALT (TD-
ALT) approaches [6/21] with respect to storage and response time. We run our proposed
algorithm both unidirectionally and bidirectionally (in CA network) and compare with
[6]] and [21], respectively. As we mentioned, selecting good landmarks that lead to good
performance is very difficult and hence several heuristics have been proposed for land-
mark selection. Among these heuristics, we use the best known technique; maxCover
(see [6]) with 64 landmarks. We computed travel-times between each node and the
landmarks with respect to G. Under this setting, to store the precomputed distances,
TD-ALT attaches to each node an array of 64 elements corresponding to the number of
landmarks. Assuming that each array element takes 2 bytes of space, the additional stor-
age requirement of TD-ALT is 63 Megabytes. On the other hand, with our algorithm,
we divide CA network to 60 partitions and store the intra and inter distance labels. The
total storage requirement of our proposed solution is 8.5 Megabytes where we con-
sume, for each node, an array of 2 elements (corresponding to from and to distances

Online Computation of Fastest Path in Time-Dependent Spatial Networks 107

to the closest border node) plus the border-to-border distance labels. Since the exper-
imental results for both unidirectional and bidirectional searches differ insignificantly
and due to space limitations, we only present the results from unidirectional search be-
low. As shown in Figure the response time of our unidirectional time-dependent
A* search (U-TDFP) is approximately three times better than that of TD-ALT for all
times. This is because the search space of TD-ALT is severely affected by the quality of
the landmarks which are selected based on a heuristic. Specifically, TD-ALT may yield
very loose bounds based on the randomly selected s and d, and hence the large search
space. In addition, with each iteration, TD-ALT needs to find the best landmark (among
64 landmarks) which yields largest triangular inequality distance for better pruning; it
seems that the overhead of this operation is not negligible. On the other hand, U-TDFP
yields a more directional search with the help of intra and inter distance labels with no
additional computation.

1600
+UTDSP*
Erao0 & e g
g
£ 1000
3
S 800
g
3
2 600
400)
5 10 15 20 0 50 100 150 200 250 300
Time Distance
(a) ALT vs U-TDFP (b) Speed-up ratio

Fig.7. TD-ALT Comparison and Speed-up Ratio Analysis

6.2.2 Performance of B-TDFP
In this set of experiments, we compare the performance of our proposed approach to
other existing TDFP methods w.r.t to a) preprocessing time, b) storage (byte per node),
c¢) the average number of relaxed edges, and d) average query time. Table 1 shows
the preprocessing time (Pre Processing), storage (Storage), number of scanned nodes
(#Nodes), and response time (Res. Time) of time-dependent Dijkstra (TD-Dijkstra) im-
plemented based on [10], unidirectional (U-TDFP) and bidirectional (B-TDFP)
time-dependent A* search implemented using our proposed heuristic function, time-
dependent Contraction Hierarchies (TD-CH) [1]], and time-dependent SHARC (TD-
SHARC) [5]. To implement U-TDFP and B-TDFP, we divide CA and LA network to
60 (which roughly correspond to counties in CA) and 25 partitions, respectively. Com-
paring TD-Dijkstra with our approach, we observe a very high trade-off between the
query results and precomputation in both LA and CA networks. Our proposed B-TDFP
performs 23 times better than TD-Dijkstra depending on the network while prepro-
cessing and storage overhead is relatively small. As shown, the preprocessing time and
storage complexity is directly proportional to network size.

Comparing the time-dependent variant of SHARC (TD-SHARC) and CH (TD-CH)
with our approach, we observe B-TDFP outperforms TD-SHARC and TD-CH in pre-
processing and response time. We also observe that as the graph gets bigger or more

108 U. Demiryurek et al.

Table 1. Experimental Results

Algorithm PreProcessing Storage #Nodes Res. Time

[h:m] [B/node] [ms]

TD-Dijkstra 0:00 0 1162323 4104.11

CA U-TDFP 1:13 6.82 90575 310.17
B-TDFP 1:13 6.82 67172 182.06
TD-SHARC 19:41 154.10 75104 227.26
TD-CH 3:55 1018.33 70011 209.12
TD-Dijkstra 0:00 0 210384 2590.07

LA U-TDFP 0:27 3.51 11115 197.23
B-TDFP 0:27 3.51 6681 101.22
TD-SHARC 11:12 68.47 9566 168.11
TD-CH 1:58 740.88 7922 140.25

edges are time-dependent, the preprocessing time of TD-SHARC increases drastically.
The preprocessing of TD-SHARC takes very long for both road networks, i.e., up to
20 times more than B-TDFP. The reason for the performance gap is that TD-SHARC’s
contraction routine cannot bypass the majority of the nodes in time-dependent road net-
works as in the static road networks. Recall that the importance of a node can change
throughout the time under consideration in time-dependent road networks. In addition,
TD-SHARC is very sensitive to edge cost function changes, i.e. whenever cost func-
tion of an edge changes, the preprocessing phase needs to be repeated to determine the
by-pass nodes. While TD-CH tend to have better response times than TD-SHARC, the
space consumption of TD-CH is significantly high (approximately 1000 bytes per node
in CA network). For this reason, TD-CH is not feasible for very large road networks
such as North America and Europe. We note that, to improve the response and prepro-
cessing time, several variations of TD-SHARC and TD-CH algorithms are implemented
in the literature. These variations trade-off between the optimality of the solution and
the response time. For example, the response time of Heuristic TD-SHARC [5] is shown
much better than that of original TD-SHARC algorithm. However, the path found by
the Heuristic TD-SHARC is not optimal and the error rate is not bounded. As another
example, the performance of TD-SHARC can be improved by combining with another
technique called Arc-Flags [5]]. Similar performance improvements can be applied to
our proposed approach. For instance, we can terminate the search when the search fron-
tiers meet and report the combination of path found by the forward and backward search
as the result. However, as mentioned in Section we cannot guarantee the optimal
solution in this setting. Moreover, based on our initial observation and implementation,
we can also integrate our algorithm with Arc-Flags. However, the focus of our study is
to develop a technique that yields exact solutions. Hence, for the sake of simplicity and

Online Computation of Fastest Path in Time-Dependent Spatial Networks 109

fair comparison, we only compare the original algorithms that yields exact results and
do not consider integrating different methods.

6.2.3 Quality of Lower-Bounds

As discussed, the performance of time-dependent A* search depends on the lower-
bound distance. In this set of experiments, we analyze the quality of our proposed lower-
bound computed based on the Distance Labels explained in Section[5.1.21 We define the
lower-bound quality by lg = %, where 0 (u,v) and d(u,v) represent the estimated
and actual travel-times between nodes and v, respectively. Table 2l reports Ig based
on three different heuristic function, namely Naive, ALT, and DL (i.e., our heuristic
function computed based on Distance Labels). Similar to other experiments, the values
in Table[2] are obtained by selecting s, d and ¢, uniformly at random between 6AM and
9PM. We compute the naive lower-bound estimator by %, i.e., the Euclidean
distance between v and v is divided by the maximum speed among the edges in the
entire network. We obtain the ALT lower-bounds based on G and the maxCover ([6])
technique with 64 landmarks. As shown, DL provides better heuristic function in both
LA and CA. The reason is that the ALT’s [g relies on the distribution of the landmarks,
and hence depending on the location of s and d it is possible to get very loose bounds.
On the other hand, the lower-bounds computed based on Distance Labels are more
directional. Specifically, with our approach the s and d nodes must reside in one of
the partitions and the (border-to-border) distance between these partitions is always
considered for the lower-bound computation.

Table 2. Lower-bound Quality

Network Naive ALT DL
(%) (%) (%)

CA 21 42 63
LA 33 46 66

6.2.4 Bidirectional vs. Unidirectional Search

In another set of experiments, we study the impact of path length (i.e., distance from
s to d) on the speed-up of bidirectional search. Hence, we measure the performance of
B-TDFP and U-TDFP with respect to distance by varying the path distance (1 to 300
miles) between s and d. Figure shows the speed-up with respect to distance. We
observe that the speed-up is significantly more especially for long distance queries. The
reason is that for short distances the computational overhead incurred by B-TDFP is not
worthwhile as U-TDFP visits less number of nodes anyway.

7 Conclusion and Future Work

In this paper, we proposed a time-dependent fastest path algorithm based on bidirec-
tional A*. Unlike the most path planning studies, we assume the edge weights of the

110 U. Demiryurek et al.

road network are time varying rather than constant. Therefore, our approach yield a
much more realistic scenario, and hence, applicable to the to real-world road networks.
We also compared our approaches with those handful of time-dependent fastest path
studies. Our experiments with real-world road network and traffic data showed that our
proposed approaches outperform the competitors in storage and response time signifi-
cantly. We intend to pursue this study in two different directions. First, we plan to in-
vestigate new data models for effective representation of spatiotemporal road networks.
This is critical in supporting development of efficient and accurate time-dependent al-
gorithms, while minimizing the storage and computation costs. Second, to support rapid
changes of the traffic patterns (that may happen in case of accidents/events, for exam-
ple), we intend to study incremental update algorithms for both of our approaches.

References

1. Batz, G.V,, Delling, D., Sanders, P., Vetter, C.: Time-dependent contraction hierarchies. In:
ALENEX (2009)

2. Cooke, L., Halsey, E.: The shortest route through a network with timedependent internodal
transit times. Journal of Mathematical Analysis and Applications (1966)

3. Dean, B.C.: Algorithms for min-cost paths in time-dependent networks with wait policies.
Networks (2004)

4. Dehne, F., Omran, M.T., Sack, J.-R.: Shortest paths in time-dependent fifo networks using
edge load forecasts. In: IWCTS (2009)

5. Delling, D.: Time-dependent SHARC-routing. In: Halperin, D., Mehlhorn, K. (eds.) Esa
2008. LNCS, vol. 5193, pp. 332-343. Springer, Heidelberg (2008)

6. Delling, D., Wagner, D.: Landmark-based routing in dynamic graphs. In: Demetrescu, C.
(ed.) WEA 2007. LNCS, vol. 4525, pp. 52-65. Springer, Heidelberg (2007)

7. Demiryurek, U., Kashani, F.B., Shahabi, C.: A case for time-dependent shortest path compu-
tation in spatial networks. In: ACM SIGSPATIAL (2010)

8. Demiryurek, U., Pan, B., Kashani, F.B., Shahabi, C.: Towards modeling the traffic data on
road networks. In: SIGSPATTAL-IWCTS (2009)

9. Ding, B., Yu, J.X., Qin, L.: Finding time-dependent shortest paths over large graphs. In:
EDBT (2008)

10. Dreyfus, S.E.: An appraisal of some shortest-path algorithms. Operations Research 17(3)
(1969)

11. Foschini, L., Hershberger, J., Suri, S.: On the complexity of time-dependent shortest paths.
In: SODA (2011)

12. George, B., Kim, S., Shekhar, S.: Spatio-temporal network databases and routing algorithms:
A summary of results. In: Papadias, D., Zhang, D., Kollios, G. (eds.) SSTD 2007. LNCS,
vol. 4605, pp. 460-477. Springer, Heidelberg (2007)

13. Goldberg, A.V., Harellson, C.: Computing the shortest path: A* search meets graph theory.
In: SODA (2005)

14. Gonzalez, H., Han, J., Li, X., Myslinska, M., Sondag, J.P.: Adaptive fastest path computation
on a road network: A traffic mining approach. In: VLDB (2007)

15. Guc, B., Ranganathan, A.: Real-time, scalable route planning using stream-processing in-
frastructure. In: ITS (2010)

16. Halpern, J.: Shortest route with time dependent length of edges and limited delay possibilities
in nodes. Mathematical Methods of Operations Research (1969)

17. Hart, P, Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum
cost paths. IEEE Transactions on Systems Science and Cybernetics (1968)

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.
31.

Online Computation of Fastest Path in Time-Dependent Spatial Networks 111

Kanoulas, E., Du, Y., Xia, T., Zhang, D.: Finding fastest paths on a road network with speed
patterns. In: ICDE (2006)

Kohler, E., Langkau, K., Skutella, M.: Time-expanded graphs for flow-dependent transit
times. In: Proc. 10th Annual European Symposium on Algorithms (2002)

Kolahdouzan, M., Shahabi, C.: Voronoi-based k nearest neighbor search for spatial network
databases. In: VLDB (2004)

Nannicini, G., Delling, D., Liberti, L., Schultes, D.: Bidirectional a* search for time-
dependent fast paths. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 334-346.
Springer, Heidelberg (2008)

NAVTEQ, http://www.navteq. com (accessed in May 2010)

Orda, A., Rom, R.: Shortest-path and minimum-delay algorithms in networks with time-
dependent edge-length. J. ACM (1990)

PeMS, https://pems.eecs.berkeley.edu(accessed in May 2010)

Pohl, I.: Bi-directional search. In: Machine Intelligence. Edinburgh University Press, Edin-
burgh (1971)

Potamias, M., Bonchi, F., Castillo, C., Gionis, A.: Fast shortest path distance estimation in
large networks. In: CIKM (2009)

Samet, H., Sankaranarayanan, J., Alborzi, H.: Scalable network distance browsing in spatial
databases. In: SIGMOD (2008)

Sanders, P., Schultes, D.: Highway hierarchies hasten exact shortest path queries. In: Brodal,
G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 568-579. Springer, Heidelberg
(2005)

Sanders, P., Schultes, D.: Engineering fast route planning algorithms. In: Demetrescu, C.
(ed.) WEA 2007. LNCS, vol. 4525, pp. 23-36. Springer, Heidelberg (2007)

TELEATLAS, http://www.teleatlas.com (accessed in May 2010)

Wagner, D., Willhalm, T.: Geometric speed-up techniques for finding shortest paths in large
sparse graphs. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 776-787.
Springer, Heidelberg (2003)

http://www.navteq.com
https://pems.eecs.berkeley.edu
http://www.teleatlas.com

	Online Computation of Fastest Path in Time-Dependent Spatial Networks
	Introduction
	Towards Time-Dependent Path Planning
	Related Work
	Problem Definition
	Time-Dependent Fastest Path Computation
	Precomputation Phase
	Online B-TDFP Computation

	Experimental Evaluation
	Experimental Setup
	Results

	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

