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Introduction — Spatiotemporal Data

e Spatiotemporal Data: Where + When
* Unique Characteristics

— Massive amounts of high-frequency data from numerous locations
— Rich underlying patterns across both space and time
 Why it matters?

— Critical for decision making in many domains, e.g., urban planning

USC Viterbi | 2

School of Engineering Univers i‘[}' of Southern California




Introduction — Spatiotemporal Forecasting

e Spatiotemporal Forecasting: Predict events or conditions in space & time by
analyzing spatiotemporal data

 Examples
— POI Visit Forecasting: Predicting the # of visits to specific POls at different times
— Seizure Detection: Predicting the occurrence of seizures in specific brain regions during
particular time intervals.
— Traffic Forecasting: Predicting traffic flow on roads during various times of day
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You’ve already learned about Spatial data...

...but what is the Temporal dimension?
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Time Series

Time series
A sequence of observations collected over time.

x; = (Xi1, Xiz, o, Xi7) € RT

Multivariate Time series

A collection of two or more time series observed over
time, with each variable being dependent on its own past
values as well as the past values of the other series.

X = (xl, X7, ...,xN) € RNXT
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Time Series Forecasting

: : : Xi-wit | v X
Time Series Forecasting Wit y tit+H
™\ A~
Given a window of W > 1 of past observations: VAN N’
Xe-we = [Xe—w s Xeoal,
Predict H > 1 future observations: R ANAAA Y N\
— M/\_./ .
Xty = [Xtr ---rXt+H—1] e time
t— W t t+H

Thus, the goal is to learn a model F with parameters 6 that maps past observations to
future values:

F(Xt—W:tr 9) = Xt.t+H
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Sequence Modeling

To model sequences, we need to:

 Handle variable-length sequences

« Track long-term dependencies _[ RNN
« Maintain information about order

« Share parameters across the sequence I

Popular solution:
* Recurrent Neural Networks (RNNs)
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Recurrent Neural Networks

A\

0 80

One to One Many to One Many to Many

“Vanilla” Neural Network E.g., Sentiment Classification E.g., Music Generation
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A Recurrent Neural Network (RNN)

 Apply a recurrence relation at every time step to V¢  output vector
process a sequence. |
cell state old state
he |= |fw (((he—a|opxe]) | R
: recurrent cell t
A function current
parameterized input I
by W

Xt input vector

Note: The same function and set of parameters are
used at every time step.
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RNN — Computational Graph Across Time

Represent as computational graph unrolled over time

Ve fio }”f 92 ff:
&0 -0-05-08—an
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RNN — Computational Graph Across Time

 Re-use the same weight matrices at every time step

USC \fltel' bl | 11

School of Eng ng University of Southern California




RNN — Computational Graph Across Time

« Compute the loss L; by comparing y; and y; (y; is ground truth)
E.g., L= — )’

- Forward pass

L, L, L, L,
t t t t
Ve Yo Y1 2 Ve
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RNN — Computational Graph Across Time

Total Loss: L = Y7, L,

—> Forward pass

L, L I i

t t t t
Yt Yo 1 y2 Yt
! Why 1 Why I Why I Why 1
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RNN — Backpropagation Through Time

* For backpropagation, we need to compute the gradients w.r.t. W, Wpp, Wy,

—> Forward pass

<+—— Backward pass Lo Ly Ly L¢
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RNN — Backpropagation Through Time

ho il L

X0 X1 X2 L Xt

Computing the gradient involves many multiplications (and repeated f')

When wy;, changes (in a small amount), how much would L change?

T
oL 1 (v, Ve)
For exampl == ==
or exa pe’ awhh T Wy h; = tanh(W ., x; + Wpphe—1)

t=1

T I_
_ 1 Al(ye, yi) 0g(he, Why) dh; dh; _ f (x¢, he—1, Wip) _ Of (x¢, he—1, W) Oh_y
3¢ dh, OWnp OWpp OWpp dhe_y OWpp
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RNNs — Gradient Flow Issues

Ui
Wxn thT thI

X0 X1

X2

wxh T

Xt

Computing the gradient involves many multiplications (and repeated f')

4

-

Case 1: Many values are > 1
Exploding gradients

Trick : Gradient clipping to
scale big gradients

\

-

Case 2: Many values are< 1
Vanishing gradients

Trick 1: Activation functions
Trick 2: Network architecture

\

J

-
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Remedy to the Gradient Flow Issues

« Use a more complex recurrent unit with gates to control what information is
passed through

@ )

gated cell
LSTM, GRU, etc.

A /

 Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks
rely on gated cells to track information throughout many time steps.

USCVlterbl | 17

School of Eng ng University of Southern California




Gated Recurrent Unit (GRU)

GRU is an RNN variant with gating mechanisms to control information flow,

helping to prevent vanishing gradients.

GRU cell hy

ze = o(W[he—1, x¢] + by)
re = o(Wp[he—1, x¢] + by)
Et = tanh(Wy[r © hi—q, x¢] + bp)
he =2¢ O heeq +(1 —2,) * hy
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GRU — Update Gate

zy = o(W,|hy—1,x:] +b,)

« Concatenate previous hidden state and
current input

« Update gate controls what parts of hidden
state are updated (used as z;) vs. preserved
(used as (1 — z;))
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GRU — Reset Gate

ry = a(Wplhe—q, x¢] + by)

« Reset gate controls what parts of previous
hidden state are used to compute new content
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GRU — New Hidden State Content

ﬁt = tanh(W, |r © h_{,x:] + by,)

* 1, selects useful parts of previous hidden state

« User, ® h,_qand current input to compute new
hidden content
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GRU — Output Hidden State

hy =z, O hey +(1 —z,) * Et

« Update gate simultaneously controls what is
kept from previous hidden state, and what is
updated to new hidden state content
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...Let’s get back into the spatiotemporal tasks
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Spatiotemporal Application: Traffic Forecasting Task

= )
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GIVEN: traffic measurements (e.g.,
avg speed of passing cars) over 12
timesteps of some road segments.

GOAL: Predict traffic measurements
for the next 12 timesteps.

Traffic Prediction

(
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RNNs for Traffic Forecasting Task

AP ; ) SRRt Mt
) /V“”"’“’\/-"‘-\/"‘“ LSTM, GRU, etc. /W\/-M—V‘-""
Traffic Observations Traffic Predictions

« Straightforward Approach: Pass the sequences to an RNN-based model to forecast
future values.
 What’s wrong with this approach?

« Missed inductive bias: This ignores spatial dependencies, treating each location
Independently instead of leveraging the connected road network structure.
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To accurately model spatiotemporal tasks, we need an approach that
leverages the inductive bias of both spatial and temporal patterns inherent
in data, such as in road networks.
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G = (V,E)

Adjacency Matrix

Adjacency List
VXV
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Modeling Real World Problems as Graphs

@ a User-item Interaction Graph
‘* ’ Domain Knowledge Graph

‘ Social Relation Graph
B—( L—Q ¢ f\ f O‘:’ ___._._.—-cncked—-—-—'——.vrm
- }‘/@ _____ i o
g
¥

(b“"'*;,-’.__;-"\‘\" L S "?" ’\.::- u
Road Network f ﬂ—!‘ &

_________
9

| & :
(Velitkovi¢, 2021) @ - 8 Y |
7 :" ‘I',' s (‘,“‘\' '/,' ’ u‘;:_lmfs ate: - \,\_ff_,@

. gm 9 AL
SDWAN-]"‘

wan0 SDWAI;-Z Social Networks Recommendation Systems
’ o (Wang, 2021)

Computer Network Topology
(Lin, 2021)
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Graph Neural Networks

Node classification

Z; — f(hi)

Graph classification

G o =7 (@iGV hi)

| TG S fomy G Vo) ] Sl Py T (T T . (o

Latents

(X,A) (H,A)

Link prediction
z;; = f(hs, hy, e;;)

Using GNNs to Solve Machine Learning Problems
(Velickovic¢, 2021)
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Graph Neural Networks (cont’d)

Inputs _ Latents
Message Passing Layers
(X, A) (H, A)
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Message Passing in GNNs

* Message Passing updates and aggregations:

D = UPDATE® (h(?, AGGREGATE® ({(h{°,v v € N(w)}))
; ! ?

Message Passing in GNNs at a Glance
* Number of message-passing layers is a hyper-parameter
* Too many layers — over-smoothing
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Message Passing in GNNs

To process the spatial dimension, we rely on the message-passing (MP) framework

it — yp! (h“, AGGR {MSGl(hi’l, h't, eﬂ)});

JEN (1)

h4‘l
| = l
et Msi!
: : {oo b '

ll _ hl +1
‘ﬂ \ el ;” ‘ MSGBH
O h?[ M:S'G O
&S ®
Where: Message Aggregate Update

. MsG!( -)isthe message function, e.g., implemented by an MLP.
« AGGR{ - } isthe permutation invariant aggregation function.

. UP!(-)is the update function, e.g., implemented by an MLP.

Aggregation is performed over N/ (i), i.e., the set of neighbors of node i.
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GNN-based Time-Series Forecasting
General Framework

Time-Series Time-Series
Data Forecasts
s Wl] X Graph G(V,E) Y T olih
Tommaiiin, | S— Construction — e—l GNN Block — <[
J |

sg BIOCk s - mz A MAMAAAMMAAAAAA,
L VUMUUMUU UV, o J I /
' o LUAMMMNAMMASAAMMAANNMN
 (e———— , mn 0=

Additional Features
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DCRNN for Traffic Forecasting
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DCRNN for Traffic Forecasting

* Forecasting Problem:

X T L x . g) M e x4

What are some interesting observations from the traffic

. road1 road 2
observations in this figure? shetle—0-— k.=
O_O(;! San Diego Fwy

. road 3 e i

eV S~ W

350

340

\E/SO

gzo

@ 10(Zroa 2
0 road 3

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Time
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DCRNN for Traffic Forecasting

* Forecasting Problem:

X T L x . g) M e x4

What are some interesting observations from the traffic
observations in this figure?

1. Complex spatial dependencies: Traffic

~60 - : W
patterns show non-Euclidean dependencies 2 50

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Time

USC Viterbi
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DCRNN for Traffic Forecasting

* Forecasting Problem:

X T L x . g) M e x4

What are some interesting observations from the traffic
road 1 road 2

observations in this figure? T o—0 o
O_OC! San Diego Fwy
2. Non-li | dynamics: Rush s
. n-linear mpor namics: —v o
0 ear tempora ynamics us . Ay W
hours and traffic incidents causes non- 2
stationarity £
&
10 14 15 16 17 18 19 20 21

me
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DCRNN for Traffic Forecasting

* Forecasting Problem:

X T L x . g) M e x4

What are some interesting observations from the traffic

. . . . San Die olwroad 11\ rrvoad 2 4—
observations in this figure? === O
: : <D San Diego Fwy
3. Difficul fl f ' Traffi s
. Ifi ng-term for ing: Ui e g e
culty of long-te orecasting: Traffic o PR W
measurements fluctuate heavily during a 250
240
long window €40
820
@ 10[ —rosds
road 3
6 7 8 9 i0 11 12 13 14 15 16 17 18 19 20 21
\ Time ’

|
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DCRNN for Traffic Forecasting — Overall Framework

Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting

Goal: Vehicle traffic forecasting O ecumentioer | Recoremtiaver | Reowremtiayer . Recurentlayer
. . . . Input Graph ’ .-:' | '..-:’ | -...': | -..,': - Predictions
Graph Construction Block: Building a static graph of sen- 7 o
A§ ¥ .- " . RelU e <o *tt [Rell
traffic sensors based on their road-network distances o ;
AR |
GNN Block: Applying Graph Diffusion Convolution T_"l ;
. . . | | - e T X
with a seqg-to-seq architecture on the previous graph | '
Encoder Copy States Decoder
utilizing the following techniques: DCRNN Overall Architecture

Diffusional Convolution: To capture complex spatial dependencies
Recurrent Neural Networks: To capture non-linear temporal dynamics

Encoder-Decoder Architecture: To capture better long-term dependencies
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DCRNN — Graph Construction

Graph Construction: Based on the road-network distance between traffic sensors

* Transportation network as graph

* V = Vertices (sensors) 13
* E=Edges (roads) W

* A =Weighted adjacency matrix
(A function of the road network distance) ‘
11
dist (v-, v»)z
Aij = exp (— netazl . ) if distnet(vi,vj) < K °
distnet(vi, vj): road network distance from v; to v, 0 22

K: threshold to ensure sparsity, ¢% variance of all pairwise road network distances
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DCRNN — GNN Block

Diffusion Convolution

T

Out—degree In-degree

"

9k1(001A) +6,2(D7*AN) ) X,,,

||Mx

« 0 € RX¥*2 gre the parameters to train

« A is the adjacency matrix (previous page)

- X € R¥*P s the input with N as the # of nodes, P as the feature dimension of each node
 D,: Out-degree matrix for outgoing flow / D;: In-degree matrix for incoming flow
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DCRNN — GNN Block

Diffusion Convolution

« Take K = 3 for example
« Note — Change of notation: W now represents the adjacency matrix (previously denoted as A in earlier slides).

K-1
Z Ok 1 (D51W)kxz,p o 6001 X.p[+ 61,1 (Do 'W)' X, + 6, (D5 ' W)?X.,,
k=0
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DCRNN — GNN Block

Diffusion Convolution

« Take K = 3 for example
« Note — Change of notation: W now represents the adjacency matrix (previously denoted as A in earlier slides).

K-1

Z Ok.1 (DO—lw)kx:,p = 0p1X.p + 91,1(Do_lw)1xz,p 8z HI,Z(DO_lW)ZX:,p
k=0

Ry Ry R3 RyRs5 -

If we mainly consider
nearest downstream
neighbor of target

a road, what is the
level of influence any
| other segments have
- on it?
X
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DCRNN — GNN Block

Diffusion Convolution

« Take K = 3 for example

Note — Change of notation: W now represents the adjacency matrix (previously denoted as A in earlier slides).
K-1

> 6 (DG W)X,y = 601X..p + 011 (D5 W)X, +6,2(D5 W)X, ,
k=0

Ry Rz Ry RaRs oo Ry Ra Ry RaRs. e

R target X

USC Viterbi
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Encoder-Decoder Framework of DCRNN

Current time

X, Xs Xe

i T

DCGRU —— DCGRU —— DCGRU -+ DCGRU —— DCGRU > DCGRU

T T [ T T T

<GO>
Xl X2 X3 X4 X5
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Encoder-Decoder Framework of DCRNN

 In DCRNN, the standard matrix multiplication in GRU is replaced with a diffusion
convolution operation to capture spatial dependencies in the graph.

GRU Cell DCRNN Cell
U = oWy [he—q, x¢]) u, = o(wWy.clhe—1, x¢])
re = oWplhe_q, x¢]) e = 0(Wrig|he—1, X¢])
c¢ = tanh(wWc[ry* he_q, X¢]) c; = tanh(Weog[1i* hi—q, x¢])
he = (1 —up) *heoq +u,* ¢ he =1 —u;) *he—q +u, *c;
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DCRNN End-to-End Framework

Input Graph
Sequence

U ReLU <Go> < o4
ReLU 55

Encoder Decoder
| I
'DCRNN Layer DCRNN Layer | DCRNN Layer DCRNN Layer
X1 +1 Xt X1 XtaT

A A ) A
e — < VN r{;‘_‘ " < N
o L o N oA L f
A A% SN KA Predicted Graph
"N SN SN AN
= ~ M = Sequence

A
Py L
. 1\}/; S \\"\,/z S ’
}«'\\‘\_{ }«'\“\{ \
v W v LN i
Yy y
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BysGNN for Traffic Forecasting
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Busyness Graph Neural Network — Motivation

« Limitations of Static Models (e.g., DCRNN): Fixed graphs miss the changing
nature of traffic and context-based correlations (e.g., road type).

« Need for Dynamic Adaptation: Effective forecasting requires capturing both
static and dynamic relationships between sensors.

« BysGNN'’s Goal: Create a model that dynamically learns these relationships to
improve traffic prediction accuracy.
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BysGNN — Definitions

Definition 1: Multi-Context Correlations
Latent relationships among traffic sensors that are influenced by various contextual factors, including:
— Spatial correlations: closeness of geographical sensor locations.
— Temporal dependencies: the changes in visit patterns of individual sensor observations over time
(intra-series) and the dependencies between traffic patterns of different sensors (inter-series).
— Semantic similarities: Similarity of sensor attributes, such as their road types (e.g.,
highway/arterial).
— Taxonomic correlations: Similarities in traffic patterns of different groups of sensors, e.g.,

similarities between high-level traffic observed in two different neighborhoods.
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BysGNN — Definitions

Definition 2: Busyness Graph
— A graph G = (V,A) where V is a set of |V| = N nodes, and each node corresponds to a specific

traffic sensor or a group of traffic sensors (e.g., all sensors in West Hollywood).
—  We denote 4 € RY*N as the adjacency matrix in which a;; indicates the amount of influence that

node v; has on the forecasts of v;.
— Adjacency matrix A is dynamically updated based on the Multi-Context Correlations and captures

the most recent knowledge about interaction between traffic sensors.
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BysGNN — Traffic Forecasting Problem

Traffic Forecasting Problem:

Given X = (x4, ..., x,,) € RV*T as the sequence of traffic measurements for the past T hours to N
sensors, and U = (w4, ..., uy) € RV as the set of J attributes (e.g., road type, number of lanes,
etc.) of each traffic sensor, generate Busyness Graph G to find Y = (yy, ..., yy) € RV the
future traffic measurements for the next H time steps for each sensor.
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USC Viterbi

Busyness Graph Neural Network (BysGNN) Framework

Graph
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BysGNN Framework — Aggregated Data Generator

e e e

To adapt this framework for traffic forecasting,

Pol, visits *[ aggregated series are generated by aggregating

AL S ) W\MNMA/V\/\Amvt

POI; visits |  AAAAMAMAAMAN

sensors from each geographical neighborhood

POI, visits | LAAAAAAAAAAAAA

o o — — — — — — — — —— — —— —— —— — —— —— —— — — — —— — — — —— — — — — ——— — — —

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
POI5 visits | JyyyYUUUWUWUNWUUL I ( )
Original Timeseries : | Y ga. ! o ! i
/4 | | : X' | IntraSeries | ( : Node Features | * V.|
| | M i I
I Xagg | | | Aggregated I_>: Correlation :_>I Generation : I
! | Data | Layer |
: | } oo ) | Layer | |
Category, visits wo‘ l | : : Generator | « | :
€ | | |
Category Category, visits '021 | | | Se==—== y :
Pattern I I (T T ) |
Aggregator Global visits 01 ‘ ! I x | | S |
(Total visits) Coom i : _>| Multi-Context Correlation Layer ,_.|
Aggregated | | | ! |
Timeseries | | o 5 l
\\\ / \ /

e

Graph Construction Block
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BysGNN Framework — Intra-Series Correlation Layer

@ ————

,/ \\\
:’ g |
| p - - |
: ' GRU + Self-Attention J —_— i
N =@ 0 " DO D D A S SR S S S S S S S S S S S S S S ey
I I { \
| . T T |
| GRU + Self-Attention | —— | ( N = ‘ =
| | J I_| L | : | I X Ir Intra-Series : Cc I Node Feat : * 174 :
: GRU . POI-level Visi ' I A ted I—>| Correlation |—>I 658 Fed -ures |
+ Self-Attention J — evel Visits | | | Asgregated | |  Generation
: L . ] Data | | Layer | | I I
I Embeddings | : : _______ ) | Layer | |
: | GRU + Self-Attention | — I | | | Lo Generator | o I :
| | |
' . | [ 5 I
i | GRU + Self-Attention | — L J i : Ca——— i Y :
N "t deteetent | | I <
| r \ | * I S |
L i — |

E _GRU + Self-Attention | ]J—I—I— Category-level i | _bl Multi-Context Correlation Layer ’_H
o | Visits Embeddings! | ' |
|| GRU +Self-Attention | — | | | | s smee mgsi | | ) |
o /e
! . R | Global Visits | \_ y;
| | GRU +Self-Attention | — | | | | . S S B
i e— Embedding | .
| . | Graph Construction Block
| Temporal Visits !

- |
\ Embeddings i
N //
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BysGNN Framework — Node Features Generation Layer

-~

! \
| |
' I
| o9 = |
i @ = °? =S
U o 2 23 s | |

- - Q ] @ 2 e e s s s s e T T T S S S S S S I S T S
(CrmES N & = : 2 R — !
' o | - ikt
i = 35 o . E | : X’ Ir |ntra-Ser:ies : C : Node Features : * |74 :
I : : I Aggregated |_’: CorLreIatlon :_’I Generation : |
I POI/Category PO|/Category | L Data | e | layer | |
|
! Attributes Textual Description | N anerstor | e ! |
| | I
! ~——— ! | N )
i o b « 1Yo | (e \ |
| ( C U \. |EaNEEEI R | x .S |
i i (r ] H i I B EEE" I i : _>i Multi-Context Correlation Layer I’_>i
| == - s | e ) |
I l Concatenate - : B ERE . \ J
| I (= b = = D N | e e e e e e e e —————
| | —l | °
| L (R ! R Graph Construction Block
| N E S (T | | | |
| i | ) I
I - |
i | Temporal Visits Semantic | S— |
| \  Embeddings Embeddings |  Busyness Graph |
\ TTTTTmmmmmmmmmmmmmmmmmmmIen i Node Features |
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BysGNN Framework — Node Features Generation Layer

Sample Generated Textual Description for a traffic

High-Traffic Zones.

sensor:
This arterial road on Main St., Los Angeles, CA, has 3 lanes | ,------ \ EEEEEES R \:
: : : X Intra-Ser:ies | C { Node Features : * Vo
with a max speed limit of 45 mph. Peak traffic occurs | | Aseeeed = C°r[:y'§§'°“):—’{ Generaton | |
| | Generator ! R l ayer | l
weekdays from 7:00 - 9:00 AM and 4:00 - 6:00 PM. It primarily | | - | S ' |
| N—————— ’ I
serves commuter traffic, classified under Urban Roads and | ( - :
|
| |
|
|
\

M o Sor Sor Sr SEr SEr SEF SEF SEP SN SET ST SN WET SN SN ST SN SES ST SN WSS SN SN ST WSS WSS SN SN OGNS SN WSS SN Sme Sme Sme S wme st

Graph Construction Block
Sample Generated Textual Description for a Category: P

This neighborhood is a commercial district, experiencing high
traffic volumes due to commuter and shopping traffic. Primary

access routes include Broadway and Main St.
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BysGNN Framework — Multi-Context Correlation Layer

i e \
LT e R LT
| . | | 9 I{

i Semantic I Cosine i : : Agg;;i:ted: :\ COT:ylzt:on ,: v : Ger::;::ion i :
i Embeddmgs Similarity i : : Generator : _______ |\ ________ | :
‘ | | | |
} Semantics ! | R  —— ,
‘ 1—a)Sg+asS S | | =
| Similarity Matrix —_— Q(( )SE p) O r | ! i :( | | T I
i R 1 i : _>: Multi-Context Correlation Layer |~:
I | |
| Wi Threshold - : ) | '\ N — 5 ]
 PairWee Adjacency T
w Euclidean . . . ! .
S (input) [T Thresholding | Graph Construction Block
! istance I I
| Spatial i
i c Similarity Matrix |
| |
| ' St i

|
3 Temporal @ || i
| |
| Visits = !
I . I
| Embeddings | | Attention |
}.\ =_E8 Temporal ,i
\ Attention Matrix
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BysGNN Framework — Multi-Context Correlation Layer (cont’d)
Gating Mechanism:

\

_____________________ I
|{ \I X' Ir Intra-Series : C { Node Features : * 74 :
| Correlation

Aggregated —>| orrela | —} |

: ggDaia : | Layer ,I : Ge'::r::w" : |
| Generator === I Y | :
| \
|

—

Helps to preserve strong long-term relationships and penalize noisy

relationships between distant or semantically dissimilar nodes

e

Adjacency Thresholding:

e e —

Filters out the previous noisy relationships. Graph Construction Block

BysGNN uses a case amplification function to differentiate

Case Amplification Function Demonstration

1.0 Normalized values

between small and large values in adjacency matrix. This

—— Amplified values (p=5)

0.8+

reduces the impact of of small values more significantly than

the larger values. This is done as follows: |

0.4

S: Original Adjacency Matrix S",m Sij, if (max(s )) >

S: Thresholded Adjacency Matrix 0, otherwise
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BysGNN — Busyness Graph and GNN Block

—— s — —— —— — — —— —— — —— —— — — —— — — — —— — — —— —— — —— — —— —— — — — — —

£
N\
| '/' \ . { ; \l I/‘ ~
| I X | Intra-Series I C | Node Feat
: | Aggregated :—p: Correlation | sl | gef‘e::til;:‘es _________ .
: : Generator : CE— | Graph |
| e T Convolution :
—————————————————————————————— S Network (GCN) +
| | |
* | | [IILI i Q
_>: Multi-Context Correlation Layer =_>I . . o e Eoieiait S ./I
|
|

S S S S S S R ——

—— ——————

GNN Block

R R IR R R I N ———————————

Graph Construction
Block
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Traffic Forecasting Evaluation

Task: Forecast the # of visits to each POI for the next 6 hours from the past 24 hours of visitation data

Evaluation Metrics
MAE: Average of the difference between the ground truth and

the predicted values

N
1
MAE = 2"y - ]

j=1

MAPE: the percentage equivalent of MAE

N
100% .~ 9
MAPE = —- E 12—

j=1

RMSE: Square root of the average of the squared difference

between the target value and the value predicted
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Experiments Results — Large Data Regime

Forecasting Results for High # of POIs Data Regime

Dataset Houston Los Angeles New York
Evaluation Evaluation Metricl MAE MAPE RMSE | MAE MAPE RMSE|MAE MAPE RMSE
Naive Seasonal | 4.746  0.66/ 18.166 | 2.034 _ 0.752 _ 10.005 | 3.681 _ 0.699 _ 9.216
« BySGNN significantly outperforms Historical Average | 8.860 0.783 26.911 |4.388  0.786  11.729 | 6.555 0.770 22.018
ConvGRU 6.415 2.539 20.179 | 3.781 _ 3.139 _ 10.905 | 4.605 1.851 17.028
DCRNN ConvLSTM 8.076 _4.270 231274362 4397  11.879|5.448  2.697 _18.959
DCRNN 5.683 1.090 18.941 | 3.380  2.693  9.879 | 4.139  1.605 15.504]
. . AST-GCN B.380  S.977  23.0 |4.0604  4.120 12601 | o324 20570 20.171]
e ..demonstrating that dynamically StemGNN /.390_0.735__14.604| 2485 __0.671___6.951 | 3.261 _0.652 _8.07)
. . . ‘ i BysGNN 4.095 0.658 12.904|2.377  0.676 _ 6.091 |3.113 0.598 7.351]
capturing relationships yields better TReTError 0% -0.00% 110X 4.50%  F0.10%  -T2.370% 4530 -8.28% -3.05%
. . Dataset Chicago San Antonio

results than relying on a fixed, Evaluation Metric| MAE MAPE RMSE |MAE MAPE RMSE

. Naive Seasonal 3.237 0.754  9.216 | 3.85 0.689 10.573

predefined structure. Historical Average | 4.624 0.791 14.011 |6.494  0.78  15.776

ConvGRU 418 2675 10.753 |4.622  2.838  10.218

ConvLSTM 5019 3.853 119725745 5202 11.608]

DCRNN 3.756 2.327 0.857 |4.167 2260  9.513

ASTGON, | 5.343  3.654 1282116086 4517  12.731

| StenGNN 2776072/ 08357 | 33971 0686 3023

BysGNN 2.750 0.718 8.218 |3.278 _ 0.629 _ 8.418] )

RelError -0.93% -0.82% -10.82%1|-2.75%  -8.30%  -5.65%

USCVitel‘bi Forecasting POI Visits | 62

School of Engineering University of Southern California




References

[1] Chiang, Yao-Yi Introduction to Spatial Artificial Intelligence. Available from https://yaoyichi.github.io/spatial-ai.html.

[2] Y.Li, R.Yu, C.Shahabi, and Y. Liu, “Diffusion convolutional recurrent neural network: Data-driven traffic forecasting,” ICLR, 2017.

[3] Hajisafi, A., Lin, H., Shaham, S., Hu, H., Siampou, M. D., Chiang, Y. Y., & Shahabi, C. (2023, November). Learning dynamic graphs
from all contextual information for accurate point-of-interest visit forecasting. In Proceedings of the 31st ACM International
Conference on Advances in Geographic Information Systems (pp. 1-12).

[4] Alippi, C., Zambon, D., Cini, A.,, & Marisca, |I. (2023, September 22). Graph Deep Learning for Spatiotemporal Time Series
Forecasting, Reconstruction, and Analysis. Presented at ECML/PKDD, Turin. Graph Machine Learning Group (gmlg.ch), The Swiss
Al Lab IDSIA, Universita della Svizzera italiana.

[5] Mallick, T., Balaprakash, P., Rask, E., & Macfarlane, J. (2020). Graph-partitioning-based diffusion convolutional recurrent neural
network for large-scale traffic forecasting. Transportation Research Record, 2674(9), 473-488.

USC\/itel‘bi References | 63

School of Engineering Un i\:"L'.I‘.Z\Zi‘L’__\_-" of Southern California



https://yaoyichi.github.io/spatial-ai.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Time Series 
	Slide 6: Time Series Forecasting 
	Slide 7: Sequence Modeling
	Slide 8: Recurrent Neural Networks
	Slide 9: A Recurrent Neural Network (RNN)
	Slide 10: RNN – Computational Graph Across Time
	Slide 11: RNN – Computational Graph Across Time
	Slide 12: RNN – Computational Graph Across Time
	Slide 13: RNN – Computational Graph Across Time
	Slide 14: RNN – Backpropagation Through Time
	Slide 15: RNN – Backpropagation Through Time
	Slide 16: RNNs – Gradient Flow Issues
	Slide 17: Remedy to the Gradient Flow Issues
	Slide 18: Gated Recurrent Unit (GRU)
	Slide 19: GRU – Update Gate
	Slide 20: GRU – Reset Gate
	Slide 21: GRU – New Hidden State Content
	Slide 22: GRU – Output Hidden State
	Slide 23
	Slide 24: Spatiotemporal Application: Traffic Forecasting Task
	Slide 25: RNNs for Traffic Forecasting Task
	Slide 26
	Slide 27: Graphs
	Slide 28: Modeling Real World Problems as Graphs
	Slide 29: Graph Neural Networks
	Slide 30: Graph Neural Networks (cont’d)
	Slide 31: Message Passing in GNNs
	Slide 32: Message Passing in GNNs
	Slide 33: GNN-based Time-Series Forecasting  General Framework
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39: DCRNN for Traffic Forecasting – Overall Framework
	Slide 40: DCRNN – Graph Construction
	Slide 41: DCRNN – GNN Block
	Slide 42: DCRNN – GNN Block
	Slide 43: DCRNN – GNN Block
	Slide 44: DCRNN – GNN Block
	Slide 45: Encoder-Decoder Framework of DCRNN
	Slide 46: Encoder-Decoder Framework of DCRNN
	Slide 47: DCRNN End-to-End Framework
	Slide 48
	Slide 49: Busyness Graph Neural Network – Motivation
	Slide 50: BysGNN – Definitions
	Slide 51: BysGNN – Definitions
	Slide 52: BysGNN – Traffic Forecasting Problem
	Slide 53: Busyness Graph Neural Network (BysGNN) Framework
	Slide 54: BysGNN Framework – Aggregated Data Generator
	Slide 55: BysGNN Framework – Intra-Series Correlation Layer
	Slide 56: BysGNN Framework – Node Features Generation Layer
	Slide 57: BysGNN Framework – Node Features Generation Layer
	Slide 58: BysGNN Framework – Multi-Context Correlation Layer
	Slide 59: BysGNN Framework – Multi-Context Correlation Layer (cont’d)
	Slide 60: BysGNN – Busyness Graph and GNN Block
	Slide 61: Traffic Forecasting Evaluation
	Slide 62: Experiments Results – Large Data Regime
	Slide 63

