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Introduction – Spatiotemporal Data
• Spatiotemporal Data: Where + When

• Unique Characteristics
– Massive amounts of high-frequency data from numerous locations

– Rich underlying patterns across both space and time

• Why it matters? 
– Critical for decision making in many domains, e.g., urban planning
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Introduction – Spatiotemporal Forecasting
• Spatiotemporal Forecasting: Predict events or conditions in space & time by 

analyzing spatiotemporal data

• Examples
– POI Visit Forecasting: Predicting the # of visits to specific POIs at different times

– Seizure Detection: Predicting the occurrence of seizures in specific brain regions during 
particular time intervals.

– Traffic Forecasting: Predicting traffic flow on roads during various times of day



4|

You’ve already learned about Spatial data…

…but what is the Temporal dimension?
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Time Series 

Time series

A sequence of observations collected over time.

𝑥𝑖 = 𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑇 ∈ ℝ𝑇

Multivariate Time series

A collection of two or more time series observed over 

time, with each variable being dependent on its own past 

values as well as the past values of the other series.

𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑁 ∈ ℝ𝑁×𝑇
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Time Series Forecasting 

Time Series Forecasting

Given a window of 𝑾 ≥ 𝟏 of past observations:

𝑋𝑡−𝑊:𝑡 = 𝑋𝑡−𝑊, … , 𝑋𝑡−1 ,

Predict 𝑯 ≥ 𝟏 future observations:

𝑋𝑡:𝑡+𝐻 = [𝑋𝑡 , … , 𝑋𝑡+𝐻−1]

Thus, the goal is to learn a model 𝑭 with parameters 𝜽 that maps past observations to 

future values:

𝑭(𝑿𝒕−𝑾:𝒕, 𝜽) = 𝑿𝒕:𝒕+𝑯
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Sequence Modeling

To model sequences, we need to:

• Handle variable-length sequences

• Track long-term dependencies

• Maintain information about order

• Share parameters across the sequence 

Popular solution:

• Recurrent Neural Networks (RNNs)
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Recurrent Neural Networks

One to One

“Vanilla” Neural Network

Many to One

E.g., Sentiment Classification

Many to Many

E.g., Music Generation
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A Recurrent Neural Network (RNN)

• Apply a recurrence relation at every time step to 

process a sequence: 

ℎ𝑡  =  𝑓𝑊  ℎ𝑡−1 , 𝑥𝑡 

cell state

A function 

parameterized 

by W

old state

current 

input

Note: The same function and set of parameters are 

used at every time step.
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RNN – Computational Graph Across Time

• Represent as computational graph unrolled over time
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RNN – Computational Graph Across Time

• Re-use the same weight matrices at every time step 
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RNN – Computational Graph Across Time

• Compute the loss 𝐿𝑡 by comparing ෝ𝑦𝑡 and 𝑦𝑡 (𝑦𝑡 is ground truth)

• E.g., 𝐿𝑡 = ෝ𝑦𝑡 − 𝑦𝑡
2
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RNN – Computational Graph Across Time

• Total Loss: 𝐿 = σ𝑡=1
𝑇 𝐿𝑡
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RNN – Backpropagation Through Time

• For backpropagation, we need to compute the gradients w.r.t. 𝑾𝒉𝒚, 𝑾𝒉𝒉, 𝑾𝒙𝒉 
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RNN – Backpropagation Through Time

• When 𝑤ℎℎ changes (in a small amount), how much would 𝐿 change?

Computing the gradient involves many multiplications (and repeated 𝑓′)

For example,
𝜕𝐿

𝜕𝑤ℎℎ
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RNNs – Gradient Flow Issues

Computing the gradient involves many multiplications (and repeated 𝑓′)
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Remedy to the Gradient Flow Issues

• Use a more complex recurrent unit with gates to control what information is 

passed through

• Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks 

rely on gated cells to track information throughout many time steps.
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Gated Recurrent Unit (GRU)

• GRU is an RNN variant with gating mechanisms to control information flow, 

helping to prevent vanishing gradients.
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GRU – Update Gate

• Concatenate previous hidden state and 

current input

• Update gate controls what parts of hidden 

state are updated (used as 𝑧𝑡) vs. preserved 

(used as (1 − 𝑧𝑡))
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GRU – Reset Gate

• Reset gate controls what parts of previous 

hidden state are used to compute new content
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GRU – New Hidden State Content

• 𝑟𝑡 selects useful parts of previous hidden state

• Use 𝑟𝑡 ⊙ ℎ𝑡−1and current input to compute new 

hidden content
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GRU – Output Hidden State

• Update gate simultaneously controls what is 

kept from previous hidden state, and what is 

updated to new hidden state content
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…Let’s get back into the spatiotemporal tasks
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Spatiotemporal Application: Traffic Forecasting Task

T-12

T-6

T-1

GIVEN: traffic measurements (e.g., 
avg speed of passing cars) over 12 
timesteps of some road segments.

GOAL: Predict traffic measurements 
for the next 12 timesteps.

Traffic Prediction

T0

T5

T11
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RNNs for Traffic Forecasting Task

Traffic PredictionsTraffic Observations

• Straightforward Approach: Pass the sequences to an RNN-based model to forecast 

future values.

• What’s wrong with this approach?

• Missed inductive bias: This ignores spatial dependencies, treating each location 

independently instead of leveraging the connected road network structure.
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To accurately model spatiotemporal tasks, we need an approach that 
leverages the inductive bias of both spatial and temporal patterns inherent 

in data, such as in road networks.
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Graphs

1

2

3

4

x1 x2 x3 …

y1 y2 y3 …

Graph

G = (V,E)

V1 V2 V3 V4

V1 0 1 1 0

V2 1 0 1 1

V3 1 1 0 0

V4 0 1 0 0

Adjacency Matrix

V × V

V1

V2

V3

V4

V2 V3

V1 V3 V4

V1 V2

V2

Adjacency List
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Modeling Real World Problems as Graphs

Road Network

(Veličković, 2021)

Computer Network Topology

(Lin, 2021)

Social Networks Recommendation Systems

(Wang, 2021)
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Graph Neural Networks

Using GNNs to Solve Machine Learning Problems

(Veličković, 2021)
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Graph Neural Networks (cont’d)

Message Passing Layers

1

2

3

4

x1 x2 x3 …

x1 x2 x3 … x1 x2 x3 …

x1 x2 x3 …

1

2

3

4

x1 x2 x3 …

x1 x2 x3 … x1 x2 x3 …

x1 x2 x3 …

Inputs

(X, A)

Latents

(H, A)
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Message Passing in GNNs
• Message Passing updates and aggregations:

Message Passing in GNNs at a Glance

• Number of message-passing layers is a hyper-parameter

• Too many layers → over-smoothing
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Message Passing in GNNs
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GNN-based Time-Series Forecasting 
General Framework

Graph 
Construction 

Block
GNN Block

𝑿

Time-Series 
Data

𝑼

Additional Features

𝑮(𝑽, 𝑬) 𝒀

Time-Series 
Forecasts
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DCRNN for Traffic Forecasting
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DCRNN for Traffic Forecasting
• Forecasting Problem:

What are some interesting observations from the traffic 

observations in this figure?
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DCRNN for Traffic Forecasting
• Forecasting Problem:

What are some interesting observations from the traffic 

observations in this figure?

1. Complex spatial dependencies: Traffic 

patterns show non-Euclidean dependencies
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DCRNN for Traffic Forecasting
• Forecasting Problem:

What are some interesting observations from the traffic 

observations in this figure?

2. Non-linear temporal dynamics: Rush 

hours and traffic incidents causes non-

stationarity



38|

DCRNN for Traffic Forecasting
• Forecasting Problem:

What are some interesting observations from the traffic 

observations in this figure?

3. Difficulty of long-term forecasting: Traffic 

measurements fluctuate heavily during a 

long window
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DCRNN for Traffic Forecasting – Overall Framework

Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting

Goal: Vehicle traffic forecasting

DCRNN Overall Architecture

Graph Construction Block: Building a static graph of 

traffic sensors based on their road-network distances

GNN Block: Applying Graph Diffusion Convolution 

with a seq-to-seq architecture on the previous graph 

utilizing the following techniques:

Diffusional Convolution: To capture complex spatial dependencies

Recurrent Neural Networks: To capture non-linear temporal dynamics

Encoder-Decoder Architecture: To capture better long-term dependencies
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DCRNN – Graph Construction

Graph Construction: Based on the road-network distance between traffic sensors
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DCRNN – GNN Block
Diffusion Convolution

• 𝜽 ∈ ℝ𝑲×𝟐 are the parameters to train

• 𝑨 is the adjacency matrix (previous page)

• 𝑿 ∈ ℝ𝑵×𝑷 is the input with 𝑵 as the # of nodes, 𝑷 as the feature dimension of each node

• 𝑫𝑶: Out-degree matrix for outgoing flow / 𝑫𝑰: In-degree matrix for incoming flow
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DCRNN – GNN Block
Diffusion Convolution

• Take 𝑲 = 𝟑 for example

• Note – Change of notation: 𝑾 now represents the adjacency matrix (previously denoted as A in earlier slides).
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DCRNN – GNN Block
Diffusion Convolution

• Take 𝑲 = 𝟑 for example

• Note – Change of notation: 𝑾 now represents the adjacency matrix (previously denoted as A in earlier slides).
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DCRNN – GNN Block
Diffusion Convolution

• Take 𝑲 = 𝟑 for example

• Note – Change of notation: 𝑾 now represents the adjacency matrix (previously denoted as A in earlier slides).
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Encoder-Decoder Framework of DCRNN
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Encoder-Decoder Framework of DCRNN

GRU Cell DCRNN Cell

• In DCRNN, the standard matrix multiplication in GRU is replaced with a diffusion 

convolution operation to capture spatial dependencies in the graph.
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DCRNN End-to-End Framework
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BysGNN for Traffic Forecasting
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Busyness Graph Neural Network – Motivation

• Limitations of Static Models (e.g., DCRNN): Fixed graphs miss the changing 

nature of traffic and context-based correlations (e.g., road type).

• Need for Dynamic Adaptation: Effective forecasting requires capturing both 

static and dynamic relationships between sensors.

• BysGNN’s Goal: Create a model that dynamically learns these relationships to 

improve traffic prediction accuracy.
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BysGNN – Definitions

Definition 1: Multi-Context Correlations

Latent relationships among traffic sensors that are influenced by various contextual factors, including:

– Spatial correlations: closeness of geographical sensor locations.

– Temporal dependencies: the changes in visit patterns of individual sensor observations over time 

(intra-series) and the dependencies between traffic patterns of different sensors (inter-series).

– Semantic similarities: Similarity of sensor attributes, such as their road types (e.g., 

highway/arterial).

– Taxonomic correlations: Similarities in traffic patterns of different groups of sensors, e.g., 

similarities between high-level traffic observed in two different neighborhoods.
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BysGNN – Definitions

Definition 2: Busyness Graph

– A graph 𝑮 = (𝑽, 𝑨) where 𝑽 is a set of 𝑉 = 𝑁 nodes, and each node corresponds to a specific 

traffic sensor or a group of traffic sensors (e.g., all sensors in West Hollywood). 

–  We denote 𝐴 ∈ ℝ𝑁×𝑁 as the adjacency matrix in which 𝑎𝑖𝑗 indicates the amount of influence that 

node 𝑣𝑖 has on the forecasts of 𝑣𝑗.

– Adjacency matrix 𝐴 is dynamically updated based on the Multi-Context Correlations and captures 

the most recent knowledge about interaction between traffic sensors.



52|

BysGNN – Traffic Forecasting Problem

Traffic Forecasting Problem: 

Given 𝑿 = 𝒙𝟏, … , 𝒙𝒏 ∈ ℝ𝑵×𝑻 as the sequence of traffic measurements for the past 𝑻 hours to 𝑵 

sensors, and 𝑼 = 𝒖𝟏, … , 𝒖𝑵 ∈ ℝ𝑵×𝑱 as the set of 𝑱 attributes (e.g., road type, number of lanes, 

etc.) of each traffic sensor, generate Busyness Graph 𝐺 to find 𝑌 = 𝑦1, … , 𝑦𝑁 ∈ ℝ𝑁×𝐻,  the 

future traffic measurements for the next 𝐻 time steps for each sensor.
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Busyness Graph Neural Network (BysGNN) Framework
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BysGNN Framework – Aggregated Data Generator

Graph Construction Block

To adapt this framework for traffic forecasting, 

aggregated series are generated by aggregating 

sensors from each geographical neighborhood
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BysGNN Framework – Intra-Series Correlation Layer

Graph Construction Block
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BysGNN Framework – Node Features Generation Layer

Graph Construction Block
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BysGNN Framework – Node Features Generation Layer

Sample Generated Textual Description for a traffic 

sensor: 

This arterial road on Main St., Los Angeles, CA, has 3 lanes 

with a max speed limit of 45 mph. Peak traffic occurs 

weekdays from 7:00 - 9:00 AM and 4:00 - 6:00 PM. It primarily 

serves commuter traffic, classified under Urban Roads and 

High-Traffic Zones.

Sample Generated Textual Description for a Category: 

This neighborhood is a commercial district, experiencing high 

traffic volumes due to commuter and shopping traffic. Primary 

access routes include Broadway and Main St.

           
     

         

             
           

     

              
          

     

                             

Graph Construction Block
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BysGNN Framework – Multi-Context Correlation Layer

Graph Construction Block
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BysGNN Framework – Multi-Context Correlation Layer (cont’d)

Gating Mechanism:

Helps to preserve strong long-term relationships and penalize noisy 

relationships between distant or semantically dissimilar nodes

Adjacency Thresholding: 

Filters out the previous noisy relationships.

BysGNN uses a case amplification function to differentiate 

between small and large values in adjacency matrix. This 

reduces the impact of of small values more significantly than 

the larger values. This is done as follows:

𝑺: Original Adjacency Matrix

෡𝑺: Thresholded Adjacency Matrix

           
     

         

             
           

     

              
          

     

                             

Graph Construction Block
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BysGNN – Busyness Graph and GNN Block

Graph Construction 
Block

Busyness Graph

Graph 
Convolution 

Network (GCN) + 
Forecast

GNN Block
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Traffic Forecasting Evaluation
Task: Forecast the # of visits to each POI for the next 6 hours from the past 24 hours of visitation data



62|

Experiments Results – Large Data Regime

Forecasting POI Visits

Forecasting Results for High # of POIs Data Regime 

Evaluation

• BySGNN significantly outperforms 

DCRNN

• …demonstrating that dynamically 

capturing relationships yields better 

results than relying on a fixed, 

predefined structure.
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