

1

Online Computation of Fastest Path in Time-Dependent Spatial Networks

Instructor: Cyrus Shahabi

Cost of Traffic Congestion

Traffic congestion is a **\$121 billion annual drain** on the U.S. economy¹:

- 5.5 billion lost hours
- 2.9 billion gallons of wasted fuel
- Travelers had to allow for 60 minutes to make a trip that takes 20 minutes in light traffic.

¹ Texas Transportation Institute Urban Mobility Report, 2012 data

OME PAGE TODAY'S PAPER VIDEO MOST POPULAR TIMES TOPICS

Location data could save consumers worldwide more than \$600 billion annually by 2020.

The biggest single consumer benefit will be from time and fuel savings from location-based services — tapping into real-time traffic and weather data — that help drivers avoid congestion and suggest alternative routes.

Intelligent Transportation

PROBLEM

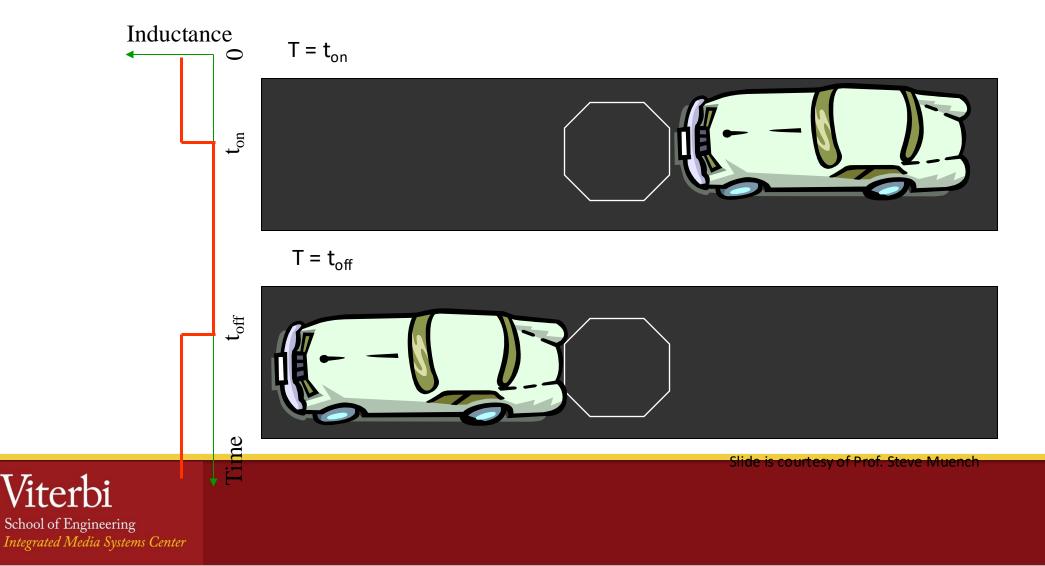
- Traffic congestion is a **\$87.2 billion annual drain** on the U.S. economy¹:
 - 4.2 billion lost hours (one work week for every traveler)¹
 - 2.8 billion gallons of wasted fuel (three weeks worth of gas for every traveler)¹ ¹ Texas Transportation Institute Urban Mobility Report, 2007 data

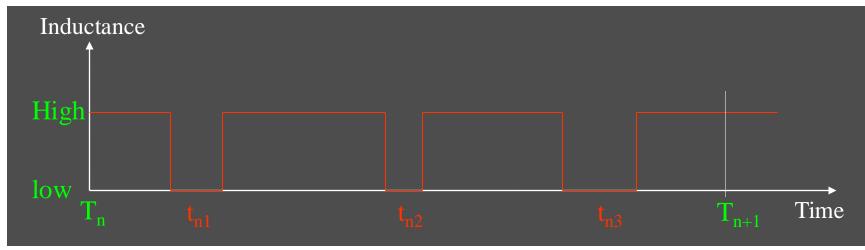
GOAL

- To improve the performance of the surface transportation network through:
 - Capturing real-time data from infrastructure and vehicles
 - Developing data-driven solutions to improve mobility by leveraging optimization opportunities (e.g., path planning for commuter groups)

Traffic Data Lifecycle

- Most commonly used traffic sensors
- The data is collected in Detector Cabinet and relayed to the service provider
- Provide two data fields: volume (count) and occupancy (% time a vehicle is over the sensor)


Detector Cabinet


Traffic Data Lifecycle: Loop Detectors

Loop inductance decreases when a car is on top of it.

Traffic Data Lifecycle: Loop Detectors

- Single loops can measure:
 - Occupancy (O): % of time loop is occupied (had a car on it) per interval
 - Volume (*N*): vehicles per interval
 - Speed = (N*L)/O where L is a constant proportional to the average length of a car

Traffic Data Lifecycle: Data Aggregator

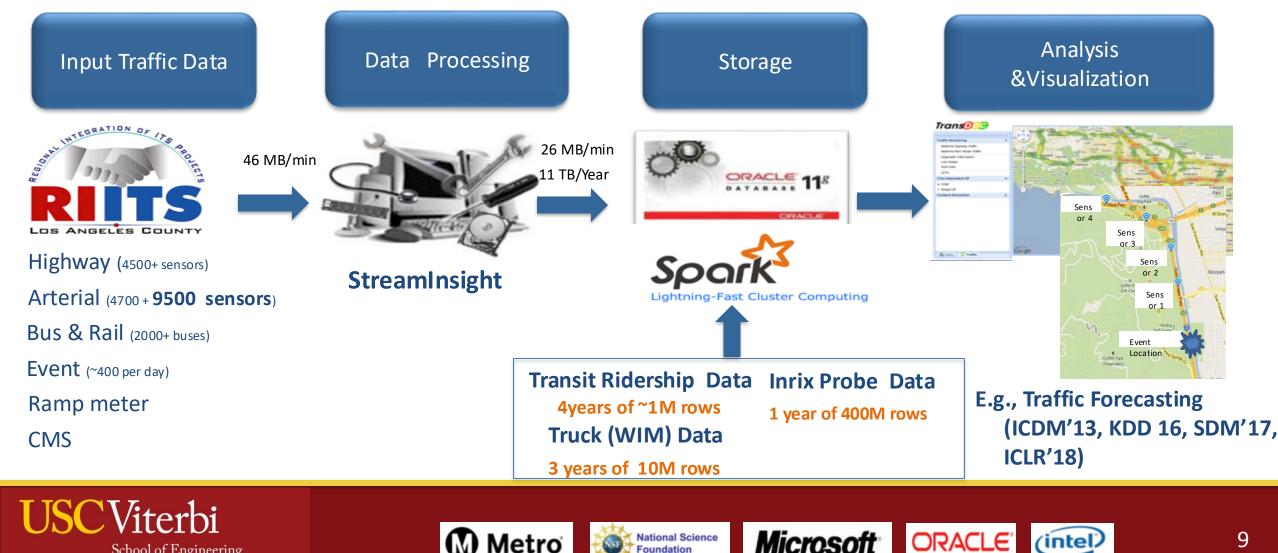
RIITS (Regional Integration of Intelligent Transportation Systems)

- A data network affiliated with Los Angeles County Metropolitan Transportation Authority (Metro)
- Collects and serves data from Caltrans, City of Los Angeles
 Department of Transportation (LADOT), California Highway
 Patrol (CHP), Long Beach
 Transit (LBT), Foothill Transit
 (FHT) and Metro

http://www.riits.net/

Traffic Data Lifecycle

A BIGDATA Problem: V³


School Integra

	Vario	tv (and v	ideo, loop			LOS ANGELES COUNTY		
Data Type		ensor, eve		Hourly (in KB)	Daily (in KB)	Annual (in KB)	3 Years (in KB)	
bus_mta_inv2.xml			0.70	0.96	23.00	8,395.00	25,185.00	
bus_mta_rt2.xml	1065	120	532.50	31,950.00	766,800.00	279,882,000.00	839,646,000.00	
cctv_inv.xml	57	86400	0.04	2.38	57.00	20,805.00	62,415.00	
cms_inv.xml	52	86400	0.04	2.17	52.00	18,980.00	56,940.00	
cms_rt.xml	48	75	38.40	2,304.00	55,296.00	20,183,040.00	60,549,120.00	
event_d7.xml	11	75	8.80	528.00	12,672.00	4,625,280.00	13,875,840.00	
rail_mta_inv.xml	1	86400	0.00	0.04	1.00	365.00	1,095.00	
rail_rt.xml	8	60	8.00	480.00	11,520.00	4,204,800.00	12,614,400.00	
rms_inv.xml	865	86400	0.60	36.04	865.00	315,725.00	947,175.00	
rms_rt.xml	1236	75	988.80	59,328.00	1,423,872.00	519,713,280.00	1,559,139,840.00	
signal_inv.xml	2095	86400	1.45	87.29	2,095.00	764,675.00	2,294,025.00	
signal_rt.xml	2636	45	3,514.67	210,880.00	5,061,120.00	1,847,308,800.00	5,541,926,400.00	
tt_d7_inv.xml	746	86400	0.52	31.08	746.00	272,290.00	816,870.00	
tt_d7_rt.xml	152	60	152.00	9,120.00	218,880.00	79,891,200.00	239,673,600.00	
vds_art_d7_inv.xml	115	86400	0.08	4.79	115.00	41,97:		
vds_art_d7_rt.xml	45	60	45.00	2,700.00	64,800.00	23,652,000	Velocity	
vds_art_ladot_inv.xml	2538	86400	1.76	105.75	2,538.00	926,370.00	2,779,110.00	
vds_art_ladot_rt.xml	969	60	969.00	58,140.00	1,395,360.00	509,306,400.00	1,527,919,200.00	
vds_fr_d7_inv.xml	957	86400	0.66	39.88	957.00	349,305.00	1,047,915.00	
vds_fr_d7_rt.xml	361	30	722.00	43,320.00	1,039,680.00	379,483,200.00	1,138,449,600.00	
Total KB from XML data	13980	864660	6,985.28	41	Volume	0,885.00	11,012,906,655.00	

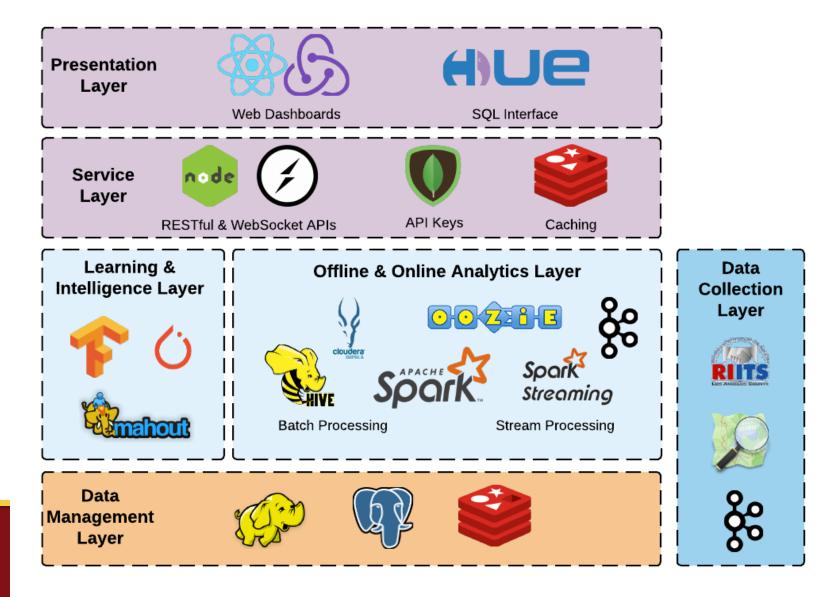
ADMS: M An Exclusive Contract w LA-Metro

School of Engineering Integrated Media Systems Center

National Science Foundation

9

ADMSv2: The Architecture



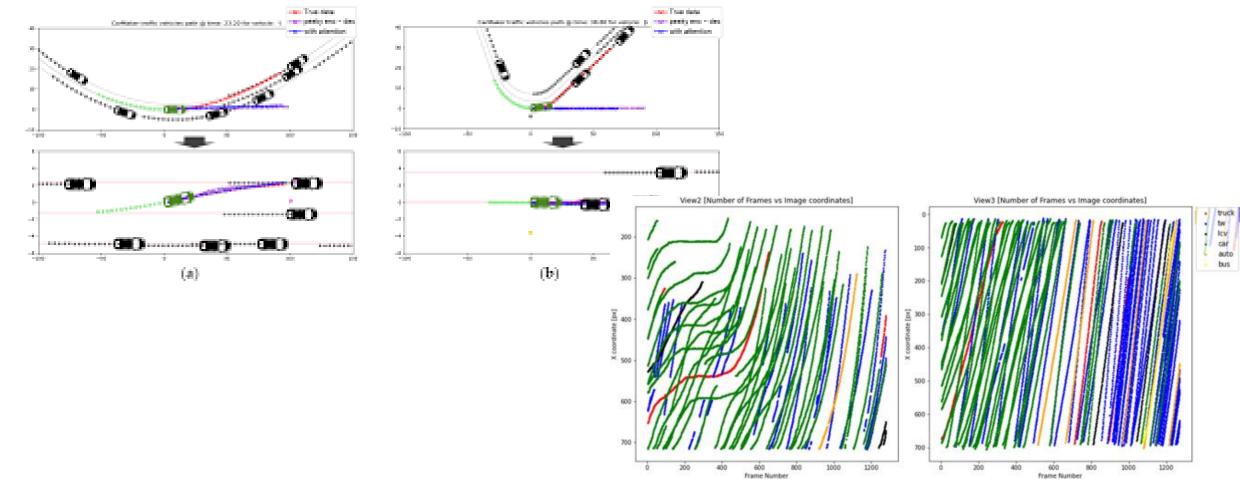
- Decomposed into layers
 - Isolated
 - Independent
- Open-source Frameworks
 - Modern
 - Set-up anywhere

Chrysovalantis Anastasiou, Jianfa Lin, Chaoyang He, Yao-Yi Chiang, Cyrus Shahabi:

ADMSv2: A Modern Architecture for Transportation Data Management and Analysis. ARIC@SIGSPATIAL 2019: 25-28

USC Viterbi School of Engineering Integrated Media Systems Center

ADMS Longevity


2011 ADMS RFP (Awarded to USC	2011-2015 ADMS Developed (Research/Prototype by USC)	2015-2016 ADMS Extension (Awarded to USC)	2016-2019 ADMS Production (Awarded to Parsons/USC Tech Transfer of ADMS)	
<page-header></page-header>	REVISED ROGRAMMING APRIL 14, 2010 Data Store Query Engine Interface VAGEMENT Image: Store Ad-hop Queries Image: Store Statistical Queries VOMETRANS DUTHERN Image: Store Statistical Queries Image: Store Statistical Queries Visco: Information Image: Store Statistical Queries Image: Store Statistical Queries Visco: Information Image: Store Statistical Queries Image: Store Statistical Queries Visco: Information Image: Store Statistical Queries Image: Store Statistical Queries Visco: Information Image: Store Statistical Queries Image: Store Statistical Queries Visco: Information Image: Store Statistical Queries Image: Store Statistical Queries Visco: Information Image: Store Statistical Queries Image: Store Statistical Queries Visco: Information Image: Store Statistical Queries Image: Store Statistical Queries Visco: Information Image: Store Statistical Queries Image: Store Statistical Queries Visco: Information Image: Store Statistical Queries <	<text><section-header><text><text></text></text></section-header></text>	Istragelis County Metropolitan Transportation Authority Regional Integration of Intelligent Transportation Systems (RIITS) Modernization RFP No. PS21002 ISSUED: 10.21.15	2019-2024 ADMS Operation & Maintenance

CViterbi

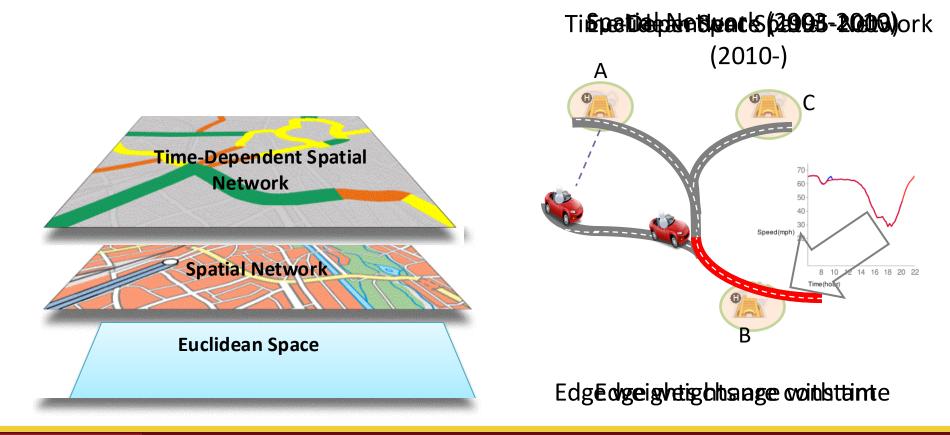
School of Engineering Integrated Media Systems Center

Where does the traffic data currently come from?

Outline

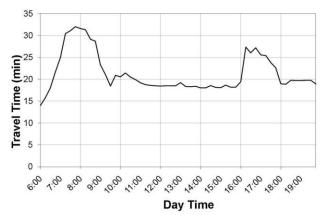
- Distance Computation
- Motivation
- Related Work
- Time-dependent A* Search
- Experimental Evaluation

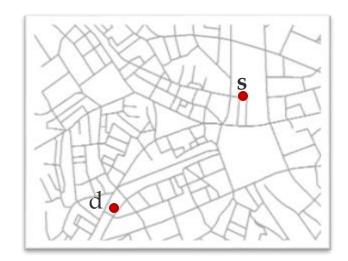
Outline



- Distance Computation
- Motivation
- Related Work
- Time-dependent A* Search
- Experimental Evaluation

Distance Computation





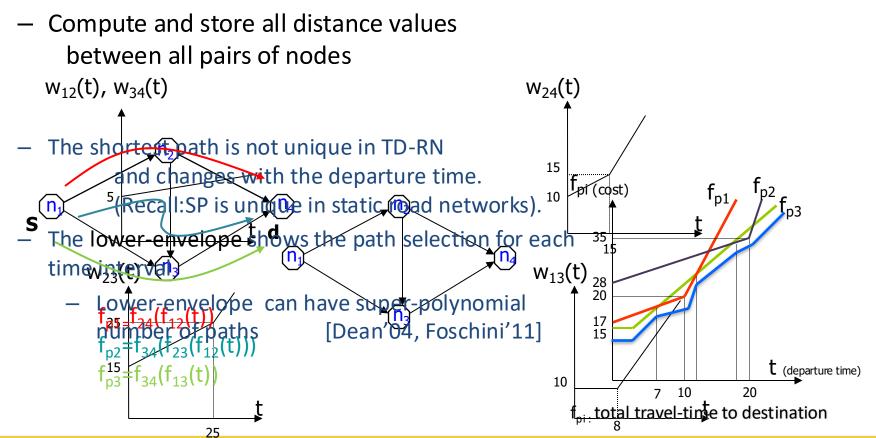
Problem Definition

• Given a time-dependent spatial network where edge weights are function of time

Source **s** and Destination **d**

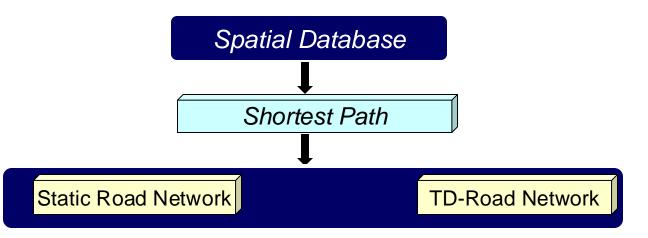
Time-dependent Fastest Path (TDFP)

TDFP (s, d, t_s) with respect to s, d and query time t_s finds *minimum travel time path* among all paths between s and d


Challenge: Too big of a graph to find optimal path in real-time Typical Approach, Pre-computation, doesn't work

Challenges

• Is Pre-computation feasible?


Outline

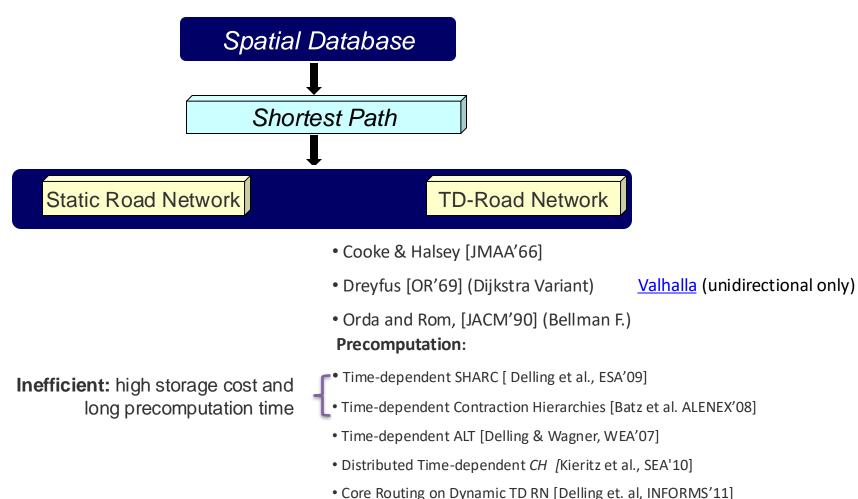
- Distance Computation
- Motivation
- Related Work
- Time-dependent A* Search
- Experimental Evaluation

Related Work

• Dijkstra [Numerische Mathematik 1959]

GraphHopper & Valhalla & pgRouting (all w/ bi-directional)

GraphHopper (w/bi-directional)

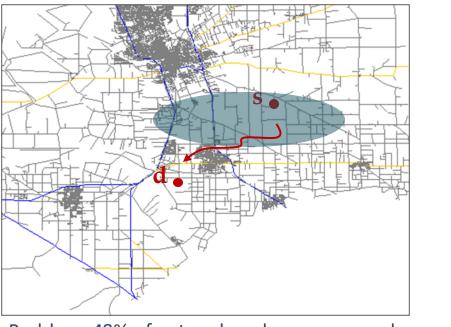

- A* [Hart, Nilsson & Raphael [Trans SSC 1968] GraphHopper & Valhalla & pgRouting (all w/ bi-directional)
 Precomputation:
- Geometric speed-up techniques for finding SP, [Wagner et al., ESA'03]
- Engineering fast route planning algorithms, [Sanders et al., WEA'07]
- Hierarchical routing in RN, [Geisberger et al., WEA'08, Sanders ESA'06]
- •SILC: Scalable network distance browsing [Samet et al., SIGMOD'08]
- Distance oracles for spatial networks [Sankaranarayan et al., TKDE'10]
- •TEDI: Efficient Shortest Path Query Answering on Graphs [Wei, SIGMOD'11]
- Tiled routing (Valhalla) No research paper (https://valhalla.readthedocs.io/en/latest/mjolnir/why_tiles/) Valhalla

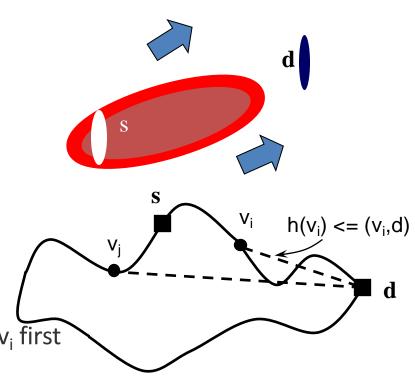
School of Engineering Integrated Media Systems Center

Related Work

School of Engineering Integrated Media Systems Center

Outline


- Distance Computation
- Motivation
- Related Work
- Time-dependent A* Search
- Experimental Evaluation

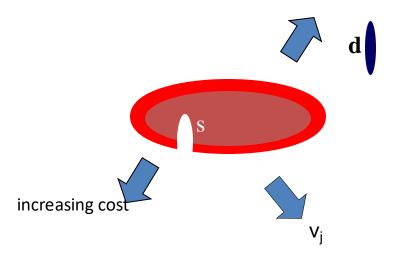

Preliminaries: Static Network

• Dijkstra vs. A*

Problem: 48% of network nodes are scanned

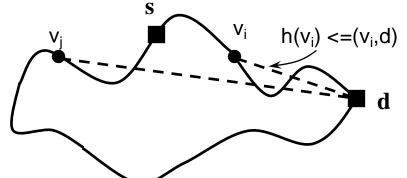
Dijkstra: since $(S,v_j) < (S,v_i)$, expand v_j first A*: since $(s,v_i)+h(v_i) < (s, v_j)+h(v_j)$, expand v_i first **Optimality Condition:** $h(v_i)$ should not overestimate the actual distance between v_i and d.

A* Algorithm



School of Engineering Integrated Media Systems Center

Preliminaries: Time-Dependent Network


- The time-dependent shortest path problem can be solved by modifying Dijkstra Algorithm [Dreyfus'69]
 - Greedy Algorithm: Starting from s, the network nodes reachable from s in every direction are visited in order of their *arrival-time*

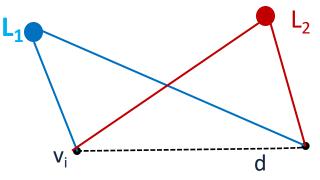
• **Challenge**: Finding heuristic function $h(v_i, d) \le D(v_i, d, t)$ in TD Networks

- The distance (travel-time) between any node v_i and d changes in Timedependent Road Networks
- $h(v_i,d)$ also needs to be time-dependent

Time-dependent A* Search (Naïve Approach)

• Naïve Heuristic Function:

 $\frac{D_{EUC}(v_i,d)}{\max(speed)}$

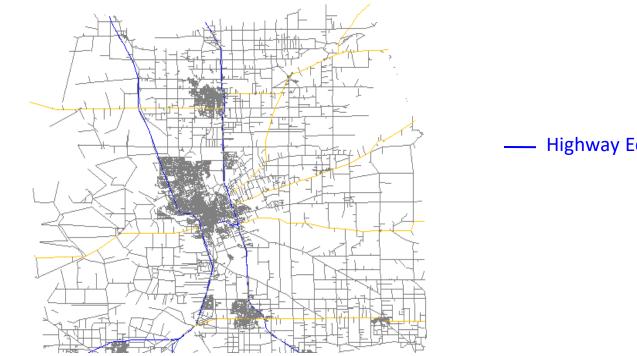

Euclidean distance between \boldsymbol{v} and \boldsymbol{d} divided by the maximum speed among the edges

- Guaranteed to be a lower-bound as the distance between \boldsymbol{v} and \boldsymbol{d} is never overestimated
- Problem: It is a very loose bound, hence yields insignificant performance improvement

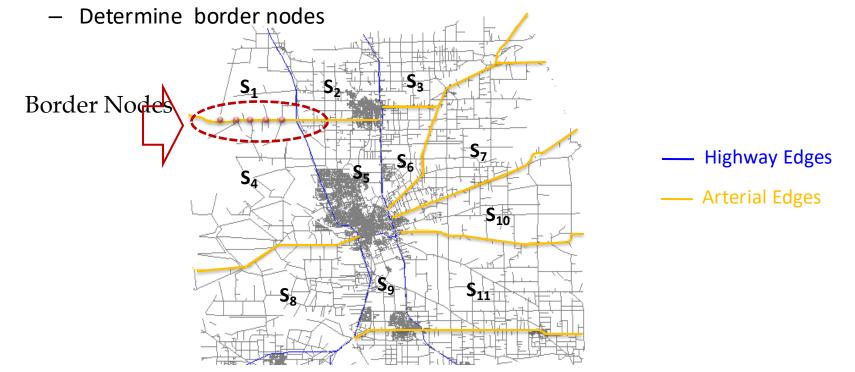
Chabini & Shan [Trans ITS'02]

• ALT- A* with Landmark and Triangular Inequality: Originally proposed to accelerate fastest path computation in static road networks [WEA'09]

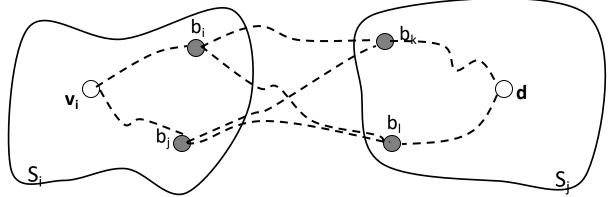
- Landnotist(vs,el)ection(lis, d)ifficu(lt_an)d relies on assumptions
- The size of the search space (s₂severely affected by the location of landma(Mks) [Pottam(as 0)], d)- dist(L₁, v_i)), (dist(L₂, v_i)- dist(L₂, d))}
- So far no optimal strategy (NP-Hard) with respect to landmark selection and random queries has been found [Potamias'09]
- Space inefficient: need to store precomputed distances from each node to each landmark


- Goal:
 - Find a $h(v_i)$ that will never overestimate the time-dependent traveltime between v_i and d. This is necessary for Exact results
 - $-h(v_i)$ should be as close as possible to actual distances for Efficient processing of fastest path computation
- Approach:
 - Step 1: Partition the road network into non-overlapping partitions (Offline)
 - Step 2: Precompute h(v_i) using distances in and between the nonoverlapping partitions (Offline)

Time-dependent A* Search (Our Approach)

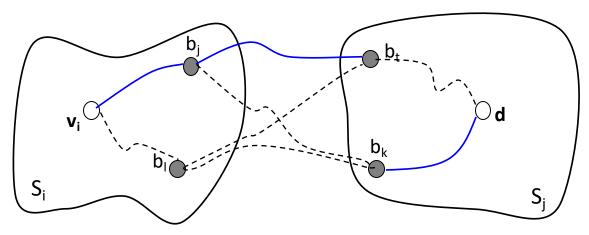

- **Step 1: Partition** the road network using network hierarchies •
 - Partition the road network to highways (highest level) —

- Step 1: Partition the road network using network hierarchies
 - Partition the road network using highest level roads (i.e., highways)
 - Partition each partition using lover level road network (i.e., arterials)



Our algorithm yields correct results with all non-overlapping partitioning algorithms

- Step 2: Compute intra and inter distance labels
 - Intra: fastest path in Lower-bound Graph <u>G</u> (where edge weights are travel-time, i.e., fastest speed) from each node v_i to border nodes and border nodes to v_i
 - Inter : fastest path in Lower-bound Graph G between border nodes


• Only store the minimum of node-to-border, border-to-border, and border-to-node travel times

 $LTT(v_i, b_i) = \arg\min(LTT(v_i, b_i), LTT(v_i, b_j))$ $LTT(b_i, d) = \arg\min(LTT(b_k, d), LTT(b_l, d))$ $LTT(b_i, b_k) = \arg\min(LTT(b_i, b_k), LTT(b_i, b_l), LTT(b_j, b_k), LTT(b_j, b_l))$

 Lemma: h(v_i,d) based on intra and inter distance labels is lower-bound of TDFP(v_i,d,t):

• **Proof:** $h(v_i, d) \leq TDFP(v_i, d, t_{v_i})$

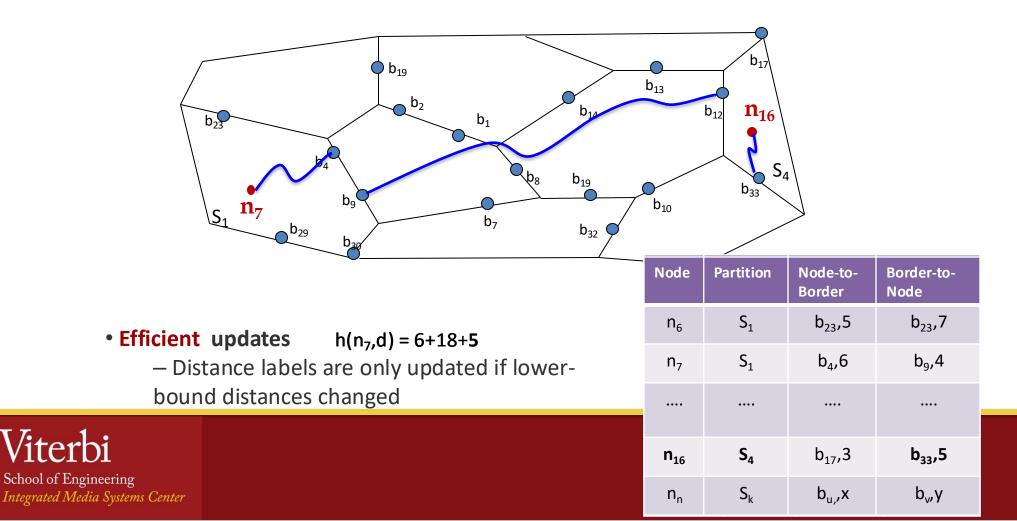
 $LTT(v_i, b_i) \leq TDFP(v_i, b_i, t_{vi}), LTT(b_i, b_t) \leq TDFP(b_i, b_t, t_{bi}),$ $LTT(b_k, d) \leq TDFP(b_k, d, t_{bk})$

 $h(v_i, d) = LTT(v_i, b_i) + LTT(b_i, b_i) + LTT(b_k, d) \le TDFP(v_i, d, t_{v_i})$

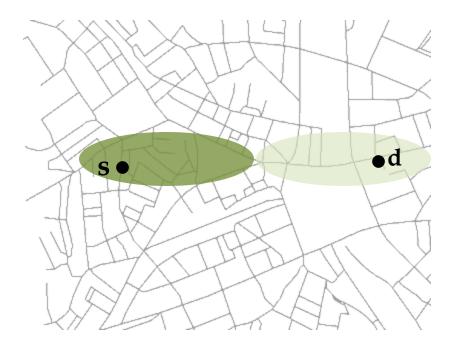
Low Storage Overhead

- Only partition, node-to-border and border-to-node information is added to each node $v_{\rm i}$

- Border-to-border information is a small fraction of the all network


lode	Partition	Node-to- Border	Border-to- Node	Border	Border	Distance	Ρ
n ₁	S ₁	b ₁ ,5	b ₁ ,7	b ₁	b ₃	14	
n ₂	S ₁	b ₂ ,6	b ₃ ,4	b ₁	b ₄₁	18	
				b ₁	b ₁₅	12	
n ₄₁	S ₉	b ₁₇ ,3	b ₁₅ ,6				
n _n	S _k	b _u ,,x	b _ν ,γ	b _n	b _k		
Node-to-Border (Intra)			Bor	der-to-Bo	order (Inter	.)	

• Fast h(v_i,d) computation


- h(v_i,d) is computed by simple table look-ups (nanoseconds)

34

 Can we further improve the performance of unidirectional TD A* search?

Bidirectional Time-dependent A* Search

Outline

- Distance Computation
- Motivation
- Related Work
- Time-dependent A* Search
- Experimental Evaluation

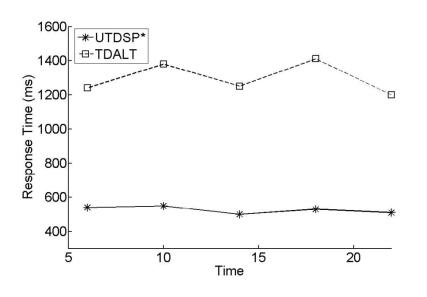
Experimental Evaluation

- Road Network Dataset (obtained from Navteq)
 - Los Angeles (LA) Network with 304,162 nodes
 - California (CA) Network with 1,965,300 nodes
- Time-dependent Network Data (obtained from ADMS)
 - LA Metro, Price School of Public Policy and IMSC
 - 6500 Sensors on freeways and arterials in LA
 - 1 sensor/reading per minute
 - Collecting and archiving past 2 years
- Experimental Setup:

School of Engineering

Integrated Media Systems Center

- A server with 2.7 GHz Pent. Duo Core Proc. and 12GB RAM
- Source, destination and departure time t_s are determined uniformly at random
- Average results computed from 1000 random s-d queries



Experimental Evaluation

• Comparison with TD-ALT

- TD-ALT: Determine 64 landmarks based on maxCover (best known landmark selection algorithm)
- TDFP: Divide CA network to 64 partitions

Derived from 1000 random s-d queries

Response Time:

- TD-ALT very loose bounds based on the randomly selected *s* and *d*, and hence the large search space.

Storage:

 TD-ALT attaches each node an array of 64 elements. Total Storage = 63 MB for CA

TDFP attaches each node an array of 2 elements (intra distance labels) and b-to-b.
Total Storage=8.5 MB for CA

38

More

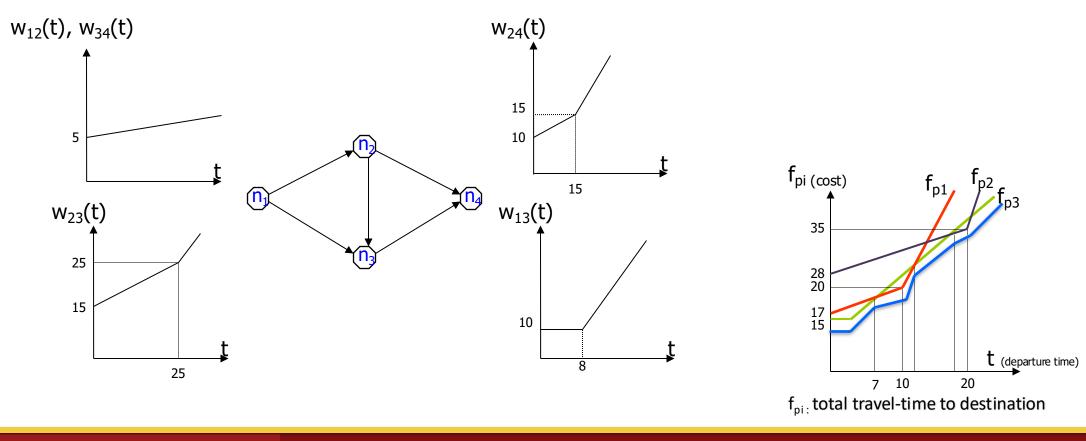
Future: Traffic Forecasting

Applications

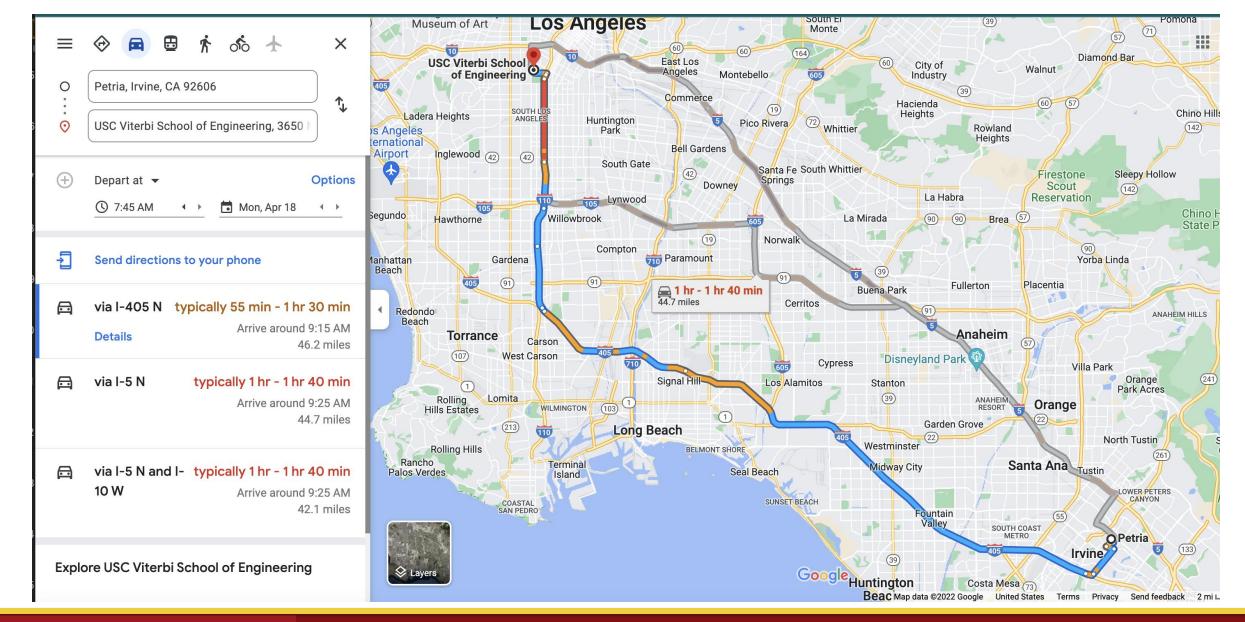
Conclusion & Acknowledgement

More

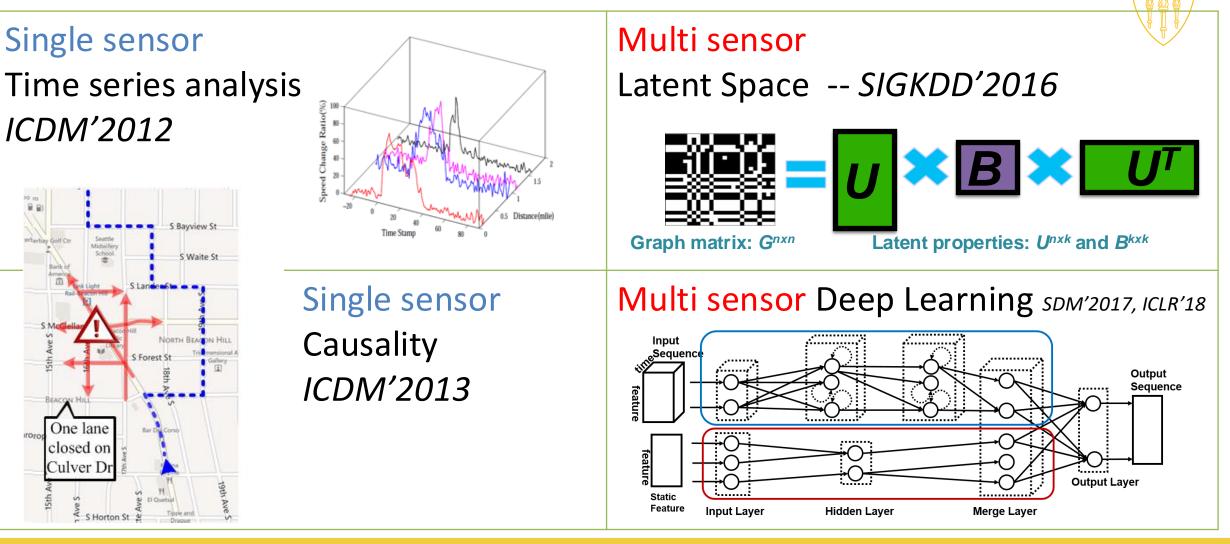
Future: Traffic Forecasting


Applications

Conclusion & Acknowledgement



Where does the weight come from?

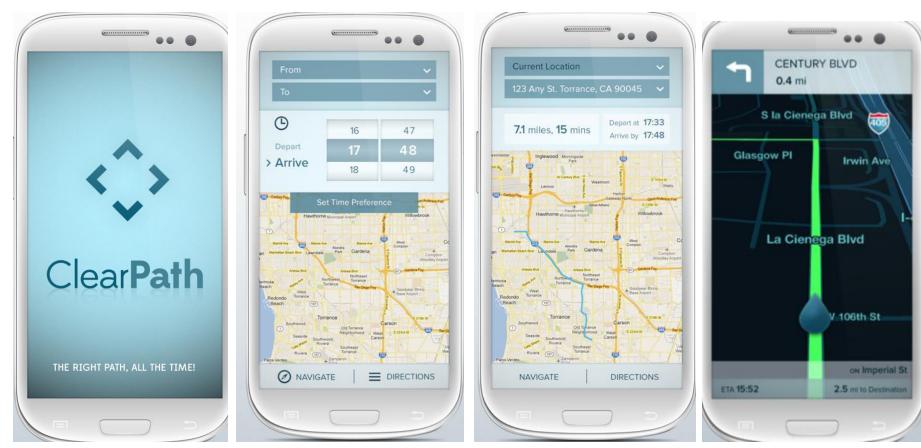


Research: Traffic Forecasting (Learn & Be Curious)

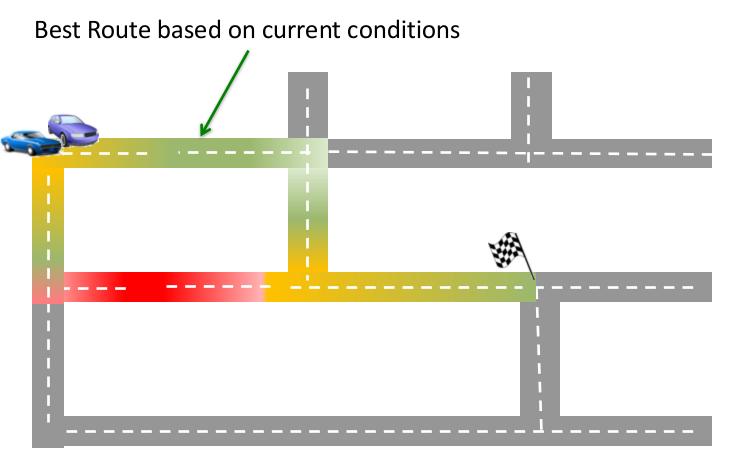
More

Future: Traffic Forecasting

Applications

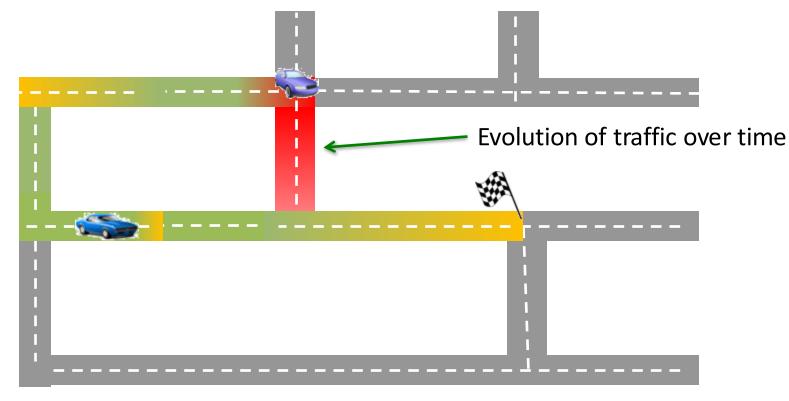

Conclusion & Acknowledgement

B2C App: ClearPath



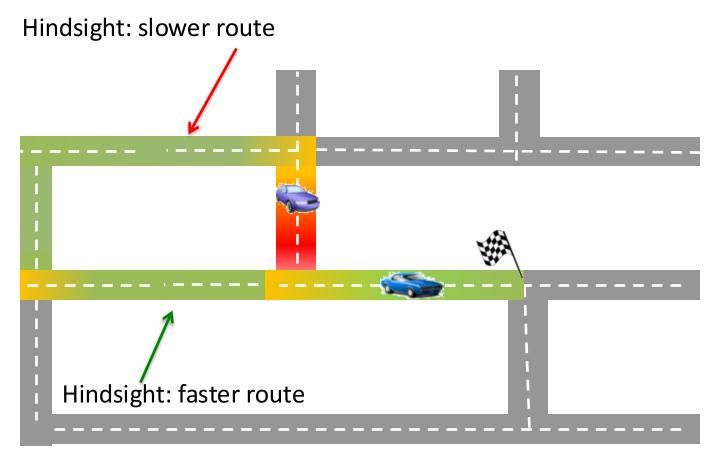
Main Differentiator: Predictive Path Planning

Predictive vs. Real-Time Path-Planning



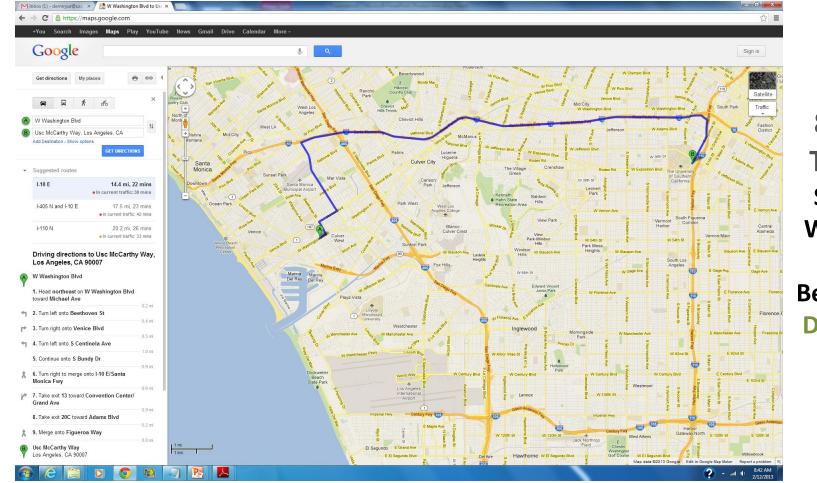
7:10AM

Predictive vs. Real-Time Path-Planning



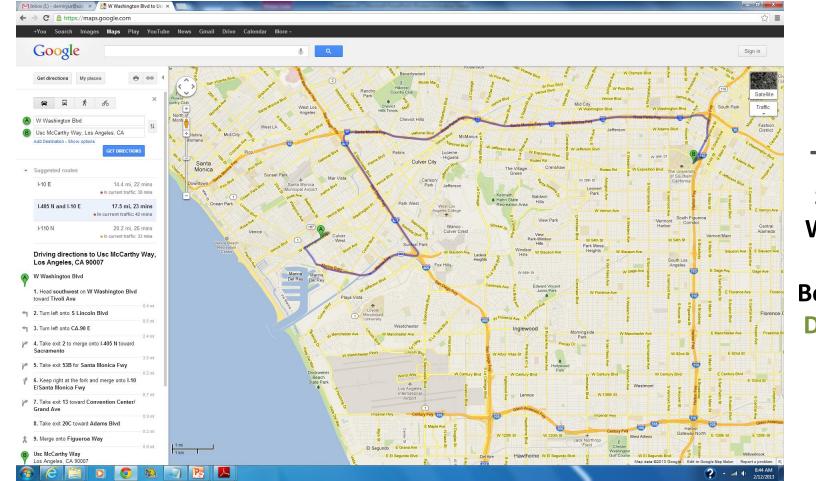
7:15AM

Predictive vs. Real-Time Path-Planning



7:20AM

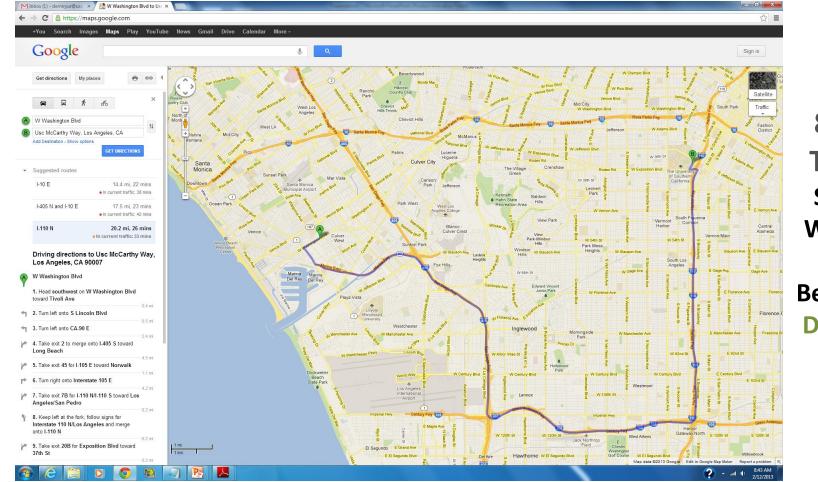
Google Option #1



8:00 AM Thursday Source: W Washington Blvd & Beethoven St Destination: USC

USCViterbi

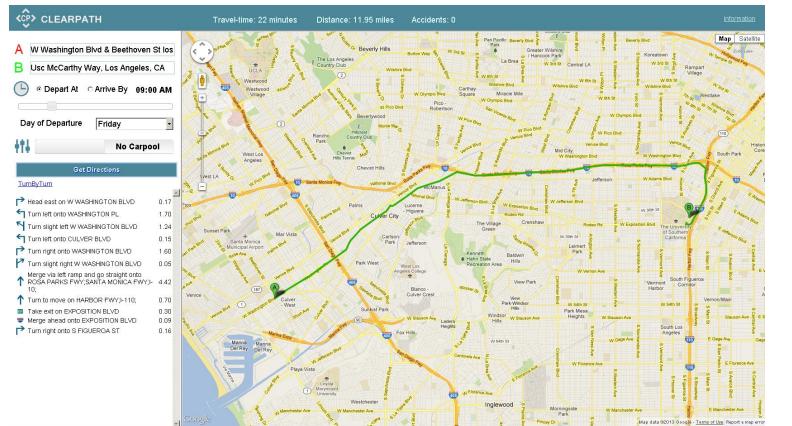
Google Option #2



8:00 AM Thursday Source: W Washington Blvd & Beethoven St Destination: USC

USCViterbi

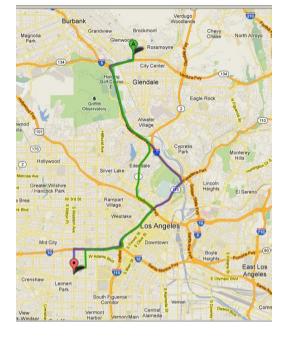
Google Option #3

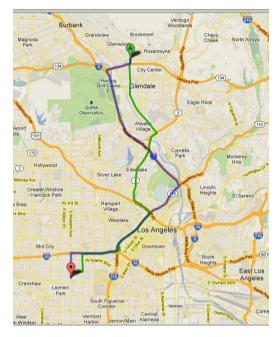


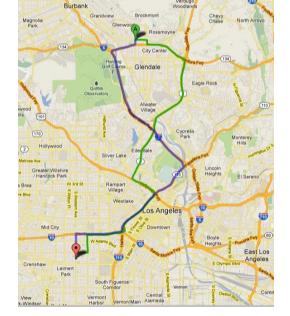
8:00 AM Thursday Source: W Washington Blvd & Beethoven St Destination: USC

USCViterbi

ClearPath


8:00 AM Thursday Source: W Washington Blvd & Beethoven St Destination: USC





Comparisons (Saved Time)

$\mathsf{Glendale} \rightarrow \mathsf{USC}$

6:30 AM ClearPath:22min Google:21min, 42min w traffic

7:15 AM ClearPath:26min Google:21min, 42min w traffic

8:30 AM ClearPath:31min Google:21min, 42min w traffic

Integrated Media Systems Center

Comparisons (Path Alternatives)

Anaheim \rightarrow USC

El Monte

a Puente

La Habra

na Park

Westminster

Midway City

Fullerton

South San Walnu

Placentia

Anaheim

Casa Bonita Santa Ana

South San Walnu

Orange

Santa Ana

Heights

Fullerton

Westminster

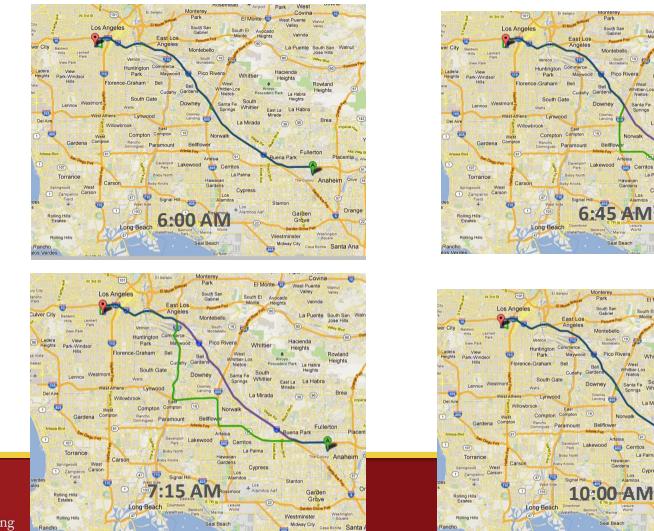
Rowland

South El Avocade

Whittier

La Palma

El Monte


South El

Whittier

Santa Fe

La Palma

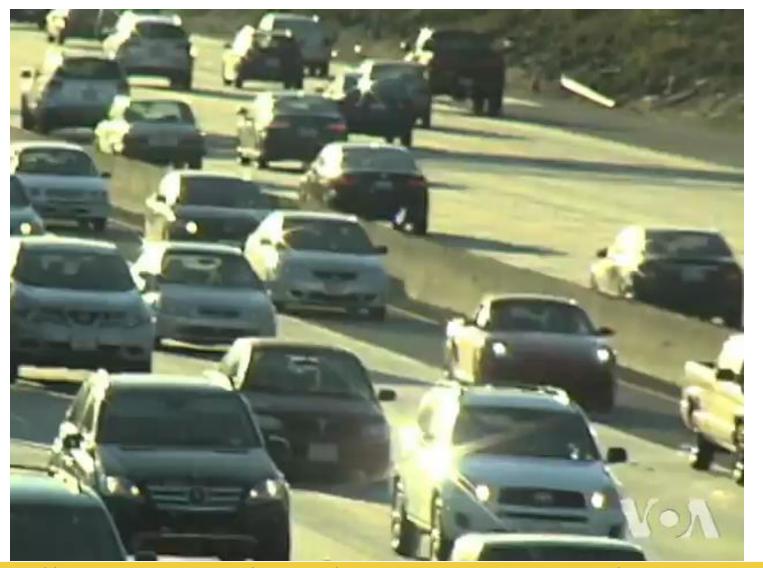
Santa F

Tech-Transfer -- Clear Path

- IdeasEmpowered 2012 (USC competition)
- Spinoff in 2013
- Licensed technology from USC in Dec. 2014
- Raised \$1.2M funding from group of investors
 - 10 Employees
 - Built on state-of-the art infrastructure Spark, Cassandra
 - B2C business model (didn't work! Cost of User Acquisition)
- New App in 2015: TALLYgo

USC Viterbi

School of Engineering Integrated Media Systems Center



Main Differentiator: Predictive Path Planning

LA Auto Show 2013: Connected Car Expo unveils apps that bark, predict, navigate 55

ttp://www.voanews.com/content/traffic-technology-clearpath/1616682.htm

TallyGo Exit (Disagree & Commit)

- New business B2B model (API)
 - LAFD Deployment
- Acquired in March 2019

United States Patent and Trademark Office An Agency of the Department of Commerce

US Patent No. 9,286,793 Traffic prediction using realworld transportation data *March 15, 2016*

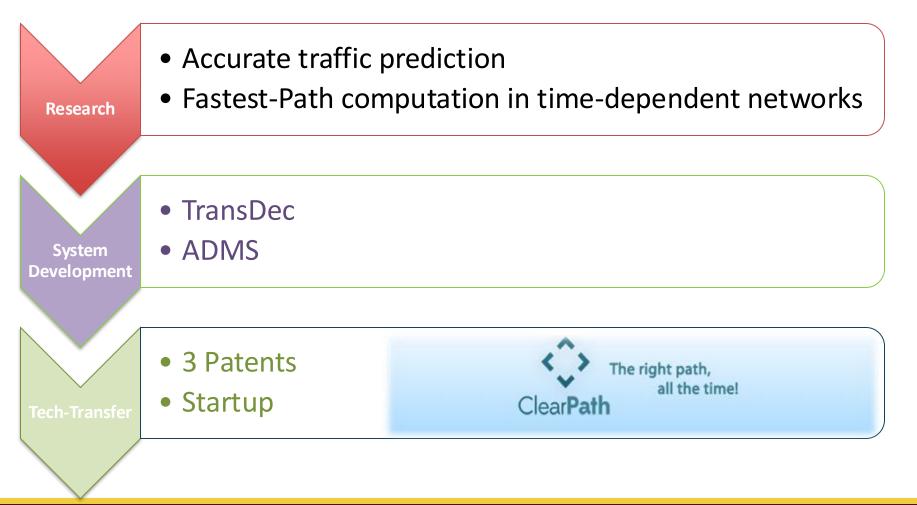
US Patent No. 8,660,789 Hierarchical & exact fastest path computation in timedependent spatial networks *February 2014*

US Patent No. 8,566,030 Efficient K-nearest neighbor search in time-dependent spatial networks October 2013

More

Future: Traffic Forecasting

Applications


Conclusion & Acknowledgement

Integrated Media Systems Center

Conclusion

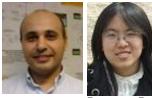
Acknowledgement

60

Traffic Congestion:

Kali K. Fogel LA-Metro Prof. Giuliano (School of Policy)

Kenneth Coleman Motorist Services Program Manager at LA-Metro



TransDec:

Ugur Demiryurek Barak Fishbain Keivan Hamedaniraja

Penny Pan Kashani

A. Ranganathan, IBM

Chetan Gupta, HP Labs

ClearPath:

Hamid Heidary,

Chris O'Connell, Phil Spivey, VP Bus Dev **Board Member**

School of Engineering Integrated Media Systems Center

Colin Gu Afsin Akdogan

Mohammad Ali, MS

CEO

Where did the student go?

Time-dependent Route Planning + ADMS & Foundry Development

Ugur Demiryurek • 1st Research Scientist at Apple Los Angeles, CA

Mohammad Kolahdouzan • 1st in Engineering Manager at Google Altadena, CA

George Constantinou • 1st Software Engineer, AWS Lambda at Amazon Seattle, WA

Dingxiong Deng • 1st Research Scientist at Facebook San Francisco Bay Area

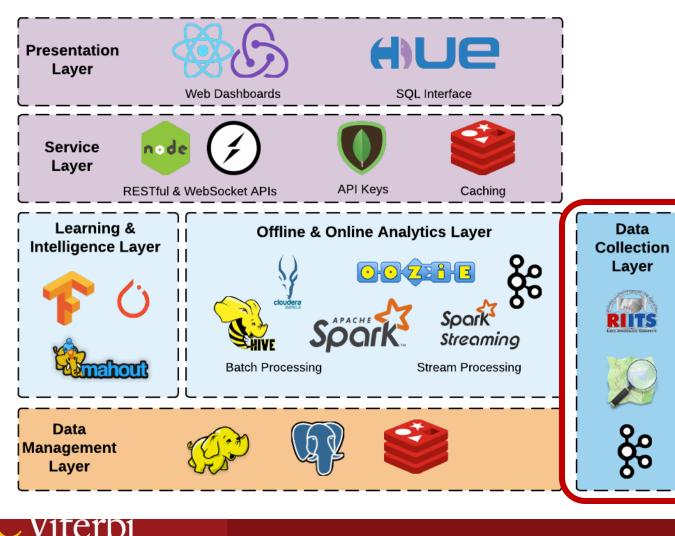
YaGuang Li • 1st Senior Research Engineer at Google Brain

Mountain View, CA

Bei (Penny) Pan • 1st Senior Machine Learning Engineer at Facebook

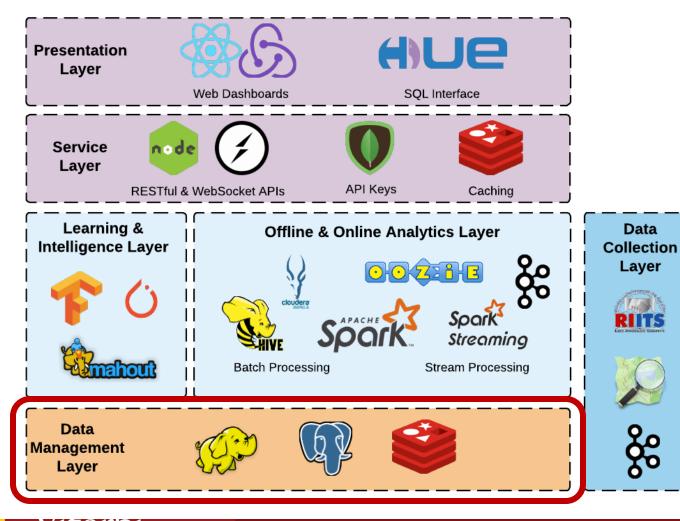
Rose Yu · 2nd

Assistant Professor at University of California, San Diego - Jacob... San Diego, CA



For your reference ...

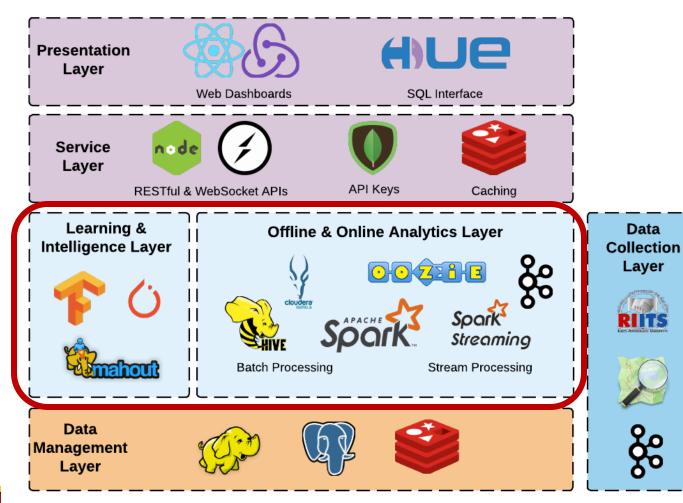
62



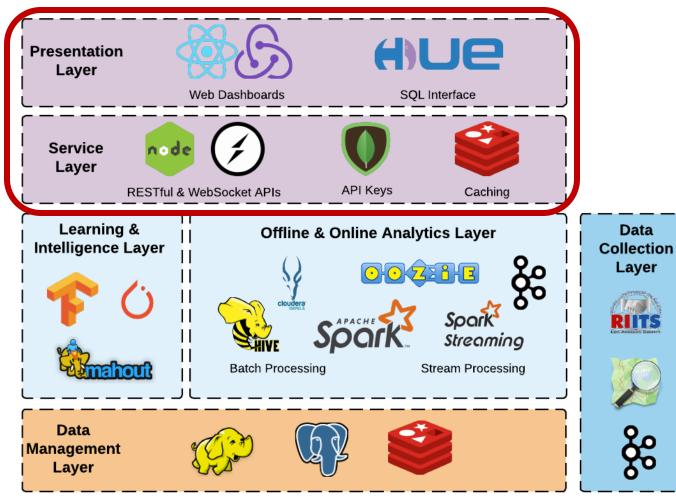
School of Engineering

Integrated Media Systems Center

- Micro-services design
 - Independent
 - Isolated
 - Scalable
- Crawls / Consumes data from external data sources
- Pushes data to internal streams
 - Maps to internal data model



- Specialized data stores
 - Big Data (Hadoop HDFS)
 - Spatial-temporal (PostgreSQL)
 - Caching (Redis)
- Optimize spatial queries with indexes
- Reduce shuffling during distributed processing with spatial partitioning


School of Engineering

- Distributed processing engines
 - Batch (Hive, Impala, Spark)
 - Online/Streaming (Spark)
- Machine Learning Frameworks
 - PyTorch
 - Tensorflow
- High performance for queries that involve large amounts of data
- Easier transformation of training data for ML

- Dashboards for data dissemination
- Web APIs
- SQL Interface for on-demand complex data processing

terdi

Policy- ADMS (Deliver Results)

Collaboration between IMSC and Sol Price School of Public Policy

- Did Expo Line increase transit patronage?
- Did Expo Line impact traffic performance?
- Quasi-experimental design: Before/after and with/without

Los Angeles Times

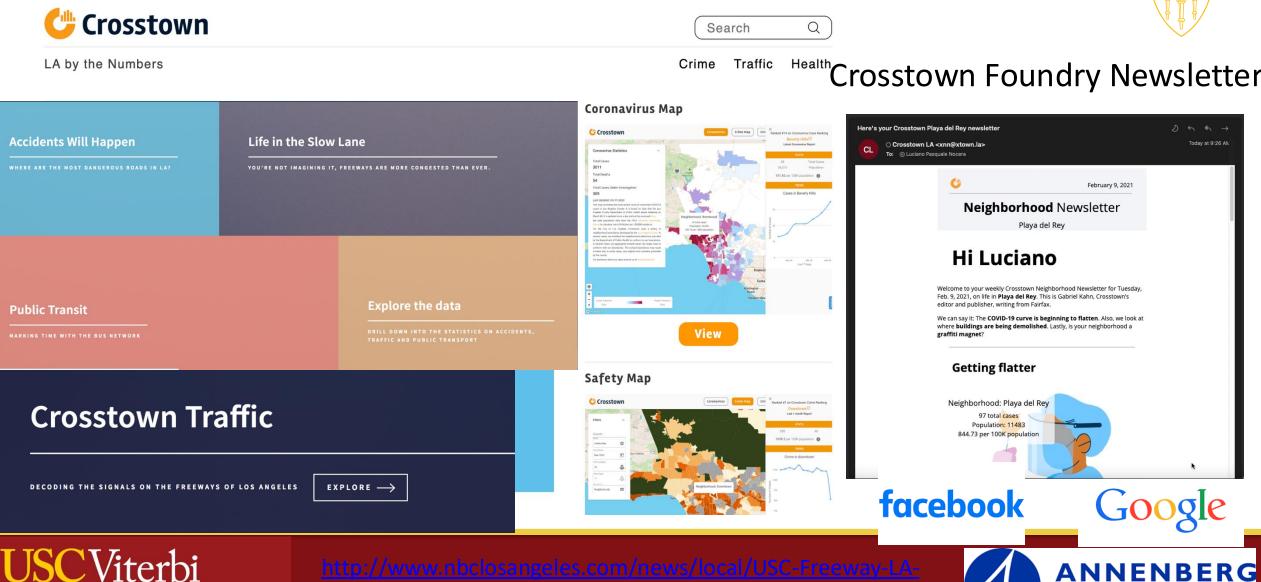
L.A. Expo Line hasn't reduced corpromised, a study finds

USC researchers found that the 8.6-mile Expo Line did accomplish a worthy goal: boosting transit ridership in a dense, car-choked corridor. (Irfan Khan / Los Angeles Times)

By Dan Weikel and Alice Walton · Contact Reporters

NOVEMBER 17, 2015, 4:00 AM

ontrary to predictions used to promote the first phase of the Expo light rail line between downtown and Los Angeles' Westside, a new study has found that the \$930-million project has done little to relieve traffic congestion in the area.



Integrated Media Systems Center

Data Driven Journalism

FOUNDATION

Crosstown Foundry Newsletter

- Markdown Template
- Edit <u>static</u> and <u>dynamic</u> newsletter content
- Mixins (dynamic content)
- Grammar:

NAME:AGGREGATION:FILTERS

- JavaScript modules encoding data or data visualizations queried from the Crosstown Databases
- Localized to specific spatial and temporal extent
- HTML Converter & Linter
- Validates mixins
- Renders the markdown in HTML

0 (C C XnnFoundry X +	
~	→ C △ ● foundry.xtown.la/newsEdit/24333914-2784-4a40-b74a-583452a3a568	x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C	👬 News 🚓 Mixins 🖨 Prints	
	News	
	Newsletter March 2, 2021 Name Covid, vaccines, arrests, plumbing	
	Description	
	### Happy March, 'READER' This is Lauren Whaley, writing from East Hollywood. Here is your weekly Crosstown Neighborhood Newsletter for CURRENT_WEEK, on life in the INEIGHBORHOOD' /b>. This week, we look at infections , vaccinations , and plumbing permits. <i>>Do you have 15 minutes for a Zoom call to give us feedback about our</i>	Happy March, READER This is Lauren Whaley, writing from East Hollywood. Here is your weekly Crosstown Neighborhood Newsletter for CURRENT_WEEK , on life in NEIGHBORHOOD . This week, we look at infections , vaccinations , arrests and plumbing permits.
	ews/letter? We'll thank you with a 55 Starbucks gift card. <a href="https://calendly.com/laurenmwhaley/lauren-whaley-meeting-room?
month=2021-03" rel="noopener noreferrer" target="_blank">Sign up here .	Do you have 15 minutes for a Zoom call to give us feedback about our newsletter? We'll thank you with a \$5 Starbucks gift card. Sign up here.
	#### 'NEIGHBORHOOD' infections	NEIGHBORHOOD infections Feb. 22 - 28: COVID_INFECTIONS::20210221,20210228 new COVID-19 infections
	Feb. 22 - 28: COVID_INFECTIONS::20210221,20210228 new COVID-19 infections Change: Change: COVID_INFECTIONS_CHANGE::20210214,20210221,20210221,20210228 /b> from the previous week	Change: COVID_INFECTIONS_CHANGE::20210214,20210221,20210221,20210228 from the previous week COVID_INFECTIONS_BAR:WEEKLY:20210117,20210228
	COVID_INFECTIONS_BAR:WEEKLY:20210117,20210228	See how your neighborhood compares with others in our countywide COVID-19 map.
	<i>See how your neighborhood compares with others in our countywide <a <br="" href="https://products.xtown.la/coronavirus" target="_blank">rel="noopener noreferrer">COVID-19 map.</i>	More on our COVID-19 data here. Countywide infections
	<i><small>More on our COVID-19 data here. </small></i>	Feb. 22 - 28: COVID_INFECTIONS_ALL::20210221,20210228 new COVID-19 infections in Los Angeles County
	#### Countywide infections	Change: COVID_INFECTIONS_ALL_CHANGE::20210214,20210221,20210221,20210228 from the previous week
	Feb. 22 - 28: COVID_INFECTIONS_ALL::20210221,20210228 new COVID-19: infections in Los Angeles County	Vaccinations In Los Angeles County, there were 281,647 new doses administered between Feb. 19 - 25 (most recently available
	Change: 'COVID_INFECTIONS_ALL_CHANGE::20210214,20210221,20210221,20210228' t/b> from the previous week	data), a 14.9% decrease from the 333,951 new doses administered Feb. 12-18.
	### Vaccinations	Total doses administered in L.A. County as of Feb. 25: 1,958,547 Total doses administered in NEIGHBORHOOD as of Feb. 25: COVID_VACCINATIONS::20210221,20210228
	In Los Angeles County, there were 281,647 new doses administered between Feb. 19 - 25 (most recently available data), a 14.9% decrease from the 333,951 new doses administered Feb. 12-18.</a 	Read our weekly COVID-19 story here.
	Total doses administered in LA. County as of Feb. 25: 1,958,547	Arrests down, but not racial disparities
	Total doses administered in <b: :="" b="" neighborhood=""> as of Feb. 25: COVID_VACCINATIONS::20210221,20210228 :/b></b:>	ARRESTS_ALL_COMPARE_TREND:MONTHLY:20190101,20201231 Citywide, the LAPD arrested 37% fewer people in 2020 compared with 2019.