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Cost of Traffic Congestion 
Traffic congestion is a $121 billion annual drain on the U.S. economy1:

• 5.5 billion lost hours 

• 2.9 billion gallons of wasted fuel 

• Travelers had to allow for 60 minutes to make a trip that takes 20 
minutes in light traffic. 

1 Texas Transportation Institute Urban Mobility Report, 2012 data

Congestion costs $713 per commuter per 
year, in extra fuel and wasted time:

Los Angeles 64 hrs, $1,334
San Francisco 50 hrs, $1,019

  Chicago 51 hrs, $1,568
Washington 74 hrs, $1,495

Location data could save consumers worldwide more than 
$600 billion annually by 2020. 

The biggest single consumer benefit will be from time and fuel 
savings from location-based services — tapping into real-time 
traffic and weather data — that help drivers avoid congestion 

and suggest alternative routes.
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PROBLEM

• Traffic congestion is a $87.2 billion annual drain on the U.S. economy1:
• 4.2 billion lost hours (one work week for every traveler)1

• 2.8 billion gallons of wasted fuel (three weeks worth of gas for every 
traveler)1

GOAL

• To improve the performance of the surface transportation network through:

• Capturing real-time data from infrastructure and vehicles 

• Developing data-driven solutions to improve mobility by leveraging 
optimization opportunities (e.g., path planning for commuter groups)

1 Texas Transportation Institute Urban Mobility Report, 2007 data

Intelligent Transportation
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Loop Detector

Detector Cabinet

• Loop Detectors
• Most commonly used traffic 

sensors  

• The data is collected in 
Detector Cabinet and relayed 
to the service provider

• Provide two data fields:  
volume (count) and 
occupancy (% time a vehicle 
is over the sensor)

Traffic Data Lifecycle
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Loop inductance decreases when a car is on top of it. 
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Traffic Data Lifecycle: Loop Detectors

Slide is courtesy of Prof. Steve Muench
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• Single loops can measure:

– Occupancy (O): % of time loop is occupied (had a car on it) per interval

– Volume (N): vehicles per interval

– Speed = (N*L)/O where L is a constant proportional to the average length 
of a car

Single loop measurements?
Time

Inductance

High

low
Tn Tn+1tn1 tn2 tn3

Traffic Data Lifecycle: Loop Detectors

Slide is courtesy of Prof. Steve Muench
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RIITS (Regional Integration of Intelligent Transportation Systems) 

▪ A data network affiliated with 
Los Angeles County 
Metropolitan Transportation 
Authority (Metro)

▪ Collects and serves data from 
Caltrans, City of Los Angeles 
Department of Transportation 
(LADOT), California Highway 
Patrol (CHP), Long Beach 
Transit (LBT), Foothill Transit 
(FHT) and Metro 

http://www.riits.net/ 

Traffic Data Lifecycle: Data Aggregator

http://www.riits.net/
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Data Type 

Sample 

XML 

File 

Size (in 

KB) 

Cycle 

Duration 

(in 

seconds) Minute (in KB) Hourly (in KB) Daily (in KB) Annual (in KB) 3 Years (in KB) 

bus_mta_inv2.xml 23 86400                   0.96                   0.96                       23.00                        8,395.00                  25,185.00  

bus_mta_rt2.xml 1065 120               532.50          31,950.00              766,800.00             279,882,000.00         839,646,000.00  

cctv_inv.xml 57 86400                   0.04                   2.38                       57.00                      20,805.00                  62,415.00  

cms_inv.xml 52 86400                   0.04                   2.17                       52.00                      18,980.00                  56,940.00  

cms_rt.xml 48 75                 38.40            2,304.00                55,296.00               20,183,040.00           60,549,120.00  

event_d7.xml 11 75                   8.80               528.00                12,672.00                 4,625,280.00           13,875,840.00  

rail_mta_inv.xml 1 86400                   0.00                   0.04                         1.00                           365.00                    1,095.00  

rail_rt.xml 8 60                   8.00               480.00                11,520.00                 4,204,800.00           12,614,400.00  

rms_inv.xml 865 86400                   0.60                 36.04                     865.00                    315,725.00                947,175.00  

rms_rt.xml 1236 75               988.80          59,328.00           1,423,872.00             519,713,280.00      1,559,139,840.00  

signal_inv.xml 2095 86400                   1.45                 87.29                  2,095.00                    764,675.00             2,294,025.00  

signal_rt.xml 2636 45            3,514.67        210,880.00           5,061,120.00          1,847,308,800.00      5,541,926,400.00  

tt_d7_inv.xml 746 86400                   0.52                 31.08                     746.00                    272,290.00                816,870.00  

tt_d7_rt.xml 152 60               152.00            9,120.00              218,880.00               79,891,200.00         239,673,600.00  

vds_art_d7_inv.xml 115 86400                   0.08                   4.79                     115.00                      41,975.00                125,925.00  

vds_art_d7_rt.xml 45 60                 45.00            2,700.00                64,800.00               23,652,000.00           70,956,000.00  

vds_art_ladot_inv.xml 2538 86400                   1.76               105.75                  2,538.00                    926,370.00             2,779,110.00  

vds_art_ladot_rt.xml 969 60               969.00          58,140.00           1,395,360.00             509,306,400.00      1,527,919,200.00  

vds_fr_d7_inv.xml 957 86400                   0.66                 39.88                     957.00                    349,305.00             1,047,915.00  

vds_fr_d7_rt.xml 361 30               722.00          43,320.00           1,039,680.00             379,483,200.00      1,138,449,600.00  

Total KB from XML 

data 13980 864660            6,985.28        419,060.38         10,057,449.00          3,670,968,885.00    11,012,906,655.00  

        

      

Variety (gps, video, loop 

sensor, events)

Velocity

Volume

Traffic Data Lifecycle: Data Aggregator

A BIGDATA Problem: V3

Traffic Data Lifecycle
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Input Traffic Data Data   Processing Storage
Analysis              

&Visualization

Highway (4500+ sensors)

Arterial (4700 + 9500  sensors)

     Bus & Rail (2000+ buses)     

     Event (~400 per day)

Ramp meter

CMS

 

StreamInsight

46 MB/min
11 TB/Year

26 MB/min

Transit Ridership  Data 
4years of ~1M rows  

                    

Inrix Probe  Data

1 year of 400M rows 
Truck (WIM) Data

3 years of  10M rows  

E.g., Traffic Forecasting 
(ICDM’13, KDD 16, SDM’17, 
ICLR’18)

Sens
or 3

Event 
Location

Sens
or 2

Sens
or 1

Sens
or 4

ADMS: 
An Exclusive Contract w LA-Metro
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ADMSv2: The Architecture

• Decomposed into layers
• Isolated
• Independent

• Open-source Frameworks
• Modern
• Set-up anywhere

Chrysovalantis Anastasiou, Jianfa Lin, 
Chaoyang He, Yao-Yi Chiang, Cyrus 
Shahabi:
ADMSv2: A Modern Architecture for 
Transportation Data Management 
and Analysis. ARIC@SIGSPATIAL 
2019: 25-28
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2011
ADMS RFP 

(Awarded to USC)

2011-2015
ADMS Developed

(Research/Prototype by USC)

2015-2016
ADMS Extension
(Awarded to USC)

2016-2019
ADMS Production

(Awarded to 
Parsons/USC  Tech 
Transfer of ADMS)

ADMS Longevity

2019-2024
ADMS 
Operation & 
Maintenance
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Where does the traffic data currently come from?
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Outline

• Distance Computation

• Motivation

• Related Work

• Time-dependent  A* Search 

• Experimental Evaluation
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Outline

• Distance Computation

• Motivation

• Related Work

• Time-dependent  A* Search 

• Experimental Evaluation
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Distance Computation

Spatial Network

Time-Dependent Spatial   
            Network

Euclidean Space

Euclidean Space (1995-2003)Spatial Network (2003-2010)

Edge weights are constant

Time-Dependent Spatial  Network        
(2010-)

Edge weights change with time

A

C

B
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Source s and Destination d

Time-dependent Fastest Path (TDFP)

TDFP (s, d, t_s) with respect to s, d  and query time t_s finds 
minimum travel time path among all paths between s and d 

Problem Definition

Challenge: Too big of a graph to find optimal path in real-time
Typical Approach, Pre-computation, doesn’t work

d 

• Given a time-dependent spatial network 
where edge weights are function of time 
 

    
s 
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Challenges
• Is Pre-computation feasible? 

– Compute and store all distance values     
 between all pairs of nodes 

n4

t

w12(t), w34(t)

w23(t)

15

25

8
25

5

w24(t)

10

15

15

t

w13(t)

10

tt

n2

n3

n1

n2

n1
n4

n3

S d

fp1=f24(f12(t)) 
fp2=f34(f23(f12(t)))
fp3=f34(f13(t))

– The shortest path is not unique in TD-RN              
 and changes with the departure time.       
 (Recall:SP is unique in static road networks).

– The lower-envelope shows the path selection for each 
time interval

– Lower-envelope  can have super-polynomial 
number of paths            [Dean’04, Foschini’11]

fpi : total travel-time to destination
10 20

17

28

35

fp3
fp1

fp2

t (departure time)

fpi (cost)

15

20

7
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Outline

• Distance Computation

• Motivation

• Related Work

• Time-dependent  A* Search 

• Experimental Evaluation
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Related Work
Spatial Database

Shortest Path

TD-Road NetworkStatic Road Network

• Dijkstra [Numerische Mathematik 1959]

•  A* [Hart, Nilsson & Raphael [Trans SSC 1968] 
Precomputation:

• Geometric speed-up techniques for finding SP, [Wagner et al.,ESA'03]

• Engineering fast route planning algorithms, [Sanders et al., WEA’07]

• Hierarchical routing in RN, [Geisberger et al., WEA’08, Sanders ESA’06] 

•SILC: Scalable network distance browsing  [Samet et al., SIGMOD’08] 

• Distance oracles for spatial networks [Sankaranarayan et al., TKDE’10]

•TEDI: Efficient Shortest Path Query Answering on Graphs [Wei, SIGMOD’11]

• Tiled routing  (Valhalla) – No research paper (https://valhalla.readthedocs.io/en/latest/mjolnir/why_tiles/)

GraphHopper & Valhalla & pgRouting (all w/ bi-directional)

GraphHopper & Valhalla & pgRouting (all w/ bi-directional)

GraphHopper (w/ bi-directional)

Valhalla
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Related Work
Spatial Database

Shortest Path

• Cooke & Halsey [JMAA’66]

• Dreyfus [OR’69] (Dijkstra Variant)

• Orda and Rom, [JACM’90] (Bellman F.)

• Time-dependent SHARC [ Delling et al., ESA’09]

• Time-dependent Contraction Hierarchies [Batz et al. ALENEX’08]

• Time-dependent ALT [Delling & Wagner, WEA’07] 

• Distributed Time-dependent CH  [Kieritz et al., SEA'10]

• Core Routing on Dynamic TD RN [Delling et. al, INFORMS’11]

Precomputation:

TD-Road NetworkStatic Road Network

Inefficient: high storage cost and                                   

long precomputation time

Valhalla (unidirectional only)

https://valhalla.readthedocs.io/en/latest/thor/simple_traffic/
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Outline

• Distance Computation

• Motivation

• Related Work

• Time-dependent  A* Search 

• Experimental Evaluation
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Preliminaries: Static Network
• Dijkstra vs. A*

d

s

A* Algorithm 

Optimality Condition: h(vi) should not overestimate 

the actual distance between vi and d.

s

h(vi) <= (vi,d) vi

d

vj

Dijkstra: since (S,vj) < (S,vi), expand vj first
A*: since (s,vi)+h(vi) < (s, vj)+h(vj), expand vi first

d 

s 

Problem: 48% of network nodes are scanned
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Preliminaries: Time-Dependent Network

s d

increasing cost

s

vj

• The time-dependent shortest path problem can be solved by 

modifying Dijkstra Algorithm [Dreyfus’69]

– Greedy Algorithm: Starting from s, the network nodes reachable from s in 
every direction are visited in order of their arrival-time
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Time-dependent A* Search

• Challenge: Finding heuristic function h(vi,d) <= D(vi,d,t)  in TD Networks  

• The distance (travel-time) between any node vi and d changes in Time-
dependent Road Networks 

• h(vi,d)  also needs to be time-dependent

s

h(vi) <=(vi,d) vi

d

vj
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Time-dependent A* Search
(Naïve Approach)

•  Naïve Heuristic Function:   

– Guaranteed to be a lower-bound as the distance between v and d is never overestimated

– Problem:  It is a very loose bound, hence yields insignificant performance improvement

)max(

),(

speed

dvD iEUC Euclidean distance between v and d divided by the 
maximum speed among the edges 

Chabini & Shan [Trans ITS’02]
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L1

vi d

L2

dist(vi,d) ≥ dist(L1,d)- dist(L1,vi)

dist(vi,d) ≥ dist(L2,vi)- dist(L2,d)

h(vi,d) = max{(dist(L1,d)- dist(L1,vi)), (dist(L2,vi)- dist(L2,d))}

Time-dependent A* Search
• ALT- A* with Landmark and Triangular Inequality: Originally proposed to 

accelerate fastest path computation in static road networks [WEA’09] 

• Landmark selection is difficult and relies on assumptions

• The size of the search space is severely affected by the location of 
landmarks [Potamias’09] 

• So far no optimal strategy (NP-Hard) with respect to landmark selection 
and random queries has been found [Potamias’09] 

• Space inefficient:  need to store precomputed distances from each node 
to each landmark 



28

Time-dependent A* Search

• Goal:
– Find a h(vi) that will never overestimate the time-dependent travel-

time between vi  and d. This is necessary for Exact results 

– h(vi)  should be as close as possible to actual distances for Efficient 
processing of fastest path computation 

• Approach:
– Step 1: Partition the road network into non-overlapping partitions 

(Offline)

– Step 2: Precompute h(vi) using distances in and between the non-
overlapping partitions (Offline)
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Time-dependent A* Search
(Our Approach)

• Step 1: Partition the road network using network hierarchies 
– Partition the road network to highways (highest level) 

Highway Edges
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S1 S2
S3

S4
S5

S6
S7

S8
S9

S10

S11

Time-dependent A* Search
• Step 1: Partition the road network using network hierarchies 

– Partition the road network using highest level roads (i.e., highways)

– Partition each partition using lover level road network (i.e., arterials)

– Determine  border nodes

Highway Edges

Arterial Edges

Border Nodes

Our algorithm yields correct results with all non-overlapping partitioning algorithms
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Time-dependent A* Search

• Step 2: Compute intra and inter distance labels
– Intra: fastest path in Lower-bound  Graph G  (where edge weights are travel-time, 

i.e., fastest speed) from each node vi  to border nodes and border nodes to vi 

– Inter : fastest path in Lower-bound  Graph G  between border nodes

vi
d 

bi

bj

bk

bl

Si Sj

• Only store the minimum of node-to-border, border-to-border, and 
border-to-node travel times

)),(),,(min(arg),( jiiiii bvLTTbvLTTbvLTT =

)),(),,(),,(),,(min(arg),( ljkjlikiki bbLTTbbLTTbbLTTbbLTTbbLTT =
)),(),,(min(arg),( dbLTTdbLTTdbLTT lkl =
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Time-dependent A* Search
• Lemma: h(vi,d)  based on intra and inter distance labels 

is lower-bound of TDFP(vi,d,t):

• Proof: h(vi,d) <= TDFP(vi,d,tvi)

vi
d 

bj

bl

bt

bk

Si Sj

),,,(),( viiiii tbvTDFPbvLTT  ),,,(),( bititi tbbTDFPbbLTT 

),,(),( bkkk tdbTDFPdbLTT 

),,(),(),(),(),( viiktiiii tdvTDFPdbLTTbbLTTbvLTTdvh ++=
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Time-dependent A* Search

Node Partition Node-to-
Border

Border-to-
Node

n1 S1 b1,5 b1,7

n2 S1 b2,6 b3,4

…. …. …. ….

n41 S9 b17,3 b15,6

nn Sk bu,,x bv,y

Border Border Distance Partition

b1 b3 14 S1,S4 

b1 b41 18 S1,S3 

b1 b15 12 S4,S1

…. …. ….

bn bk …..

Node-to-Border (Intra) Border-to-Border (Inter)

• Low Storage Overhead
– Only partition, node-to-border and border-to-node information is added to 
each node vi

– Border-to-border information is a small fraction of the all network
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Time-dependent A* Search
• Fast h(vi,d) computation 

– h(vi,d)  is computed by simple table look-ups (nanoseconds)

b19b8

b7

b4

b2

b1
b14

b13

b12

b10

b19

b23

b30

b29

b33

b32

b17

S1

S4

n7  

n16  

h(n7,d) = 6

Node Partition Node-to-
Border

Border-to-
Node

n6 S1 b23,5 b23,7

n7 S1 b4,6 b9,4

…. …. …. ….

n16 S4 b17,3 b33,6

nn Sk bu,,x bv,y

Border Border Distance Partition

b5 b3 14 S1,S3 

b9 b12 18 S1,S4 

b1 b15 12 S4,S1

…. …. ….

bn bk …..

h(n7,d) = 6+18+5h(n7,d) = 6+18

b9

Node Partition Node-to-
Border

Border-to-
Node

n6 S1 b23,5 b23,7

n7 S1 b4,6 b9,4

…. …. …. ….

n16 S4 b17,3 b33,5

nn Sk bu,,x bv,y

• Efficient  updates 
– Distance labels are only updated if lower-
bound distances changed
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Time-dependent A* Search
• Can we further improve the performance of unidirectional TD 

A* search?

  Bidirectional Time-dependent A* Search 

s d 
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Outline

• Distance Computation

• Motivation

• Related Work

• Time-dependent  A* Search 

• Experimental Evaluation
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Experimental Evaluation
• Road Network Dataset                                                                 

(obtained from Navteq)
- Los Angeles (LA) Network with 304,162 nodes 
- California (CA)  Network with 1,965,300 nodes    

• Time-dependent Network Data                                                     
(obtained from ADMS)

- LA Metro, Price School of Public  Policy                                          
and IMSC 

- 6500 Sensors on freeways and arterials in LA 
- 1 sensor/reading per minute 
- Collecting and archiving past 2 years 

• Experimental Setup:

• A server with 2.7 GHz Pent. Duo Core Proc.                           
and 12GB RAM

• Source, destination and departure time ts are                     
determined uniformly at random

• Average results computed from 1000 random s-d queries 

0
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Experimental Evaluation

• Comparison with TD-ALT
– TD-ALT:  Determine 64 landmarks based on maxCover  (best known landmark 

selection algorithm) 

– TDFP: Divide CA network to 64 partitions 

 

Response Time: 

– TD-ALT  very loose bounds based on 

the randomly selected s and d, and 

hence the large search space. 

Storage: 
– TD-ALT attaches each node an array 

of 64 elements. Total Storage = 63 MB 

for CA

– TDFP  attaches each node an array of 2 
elements  (intra distance labels) and b-to-b. 
Total Storage=8.5 MB for CADerived from 1000 random s-d queries
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Time-Dependent KNN (TD-KNN)

Ugur Demiryurek, Farnoush Banaei-Kashani, and Cyrus 
Shahabi, Efficient K-Nearest Neighbor Search in Time-

Dependent Spatial Networks, 21st International Conference 
on Database and Expert Systems Applications (DEXA10), 

Bilbao, Spain, August 2010
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Lower-bound travel-time (LTT): 
of an edge is traversing that edge with 
maximum possible speed

Lower-bound 
cost

Upper-bound
cost

t

cost

Upper-bound travel-time (UTT): 
of an edge is traversing that edge with 
minimum possible speed

P2

P1
P2

P3P4

P5

P6

Can we partition the road network based 
on data objects using LTT and UTT?  

Indexing Time-Dependent Spatial Network
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P2

P1 P2

P3P4

P5

P6

UTT

Grow SP trees from each site 
simultaneously using 

     UTT for one site and 
     LTT for the other sites

 

P2

P1
P2

P3P4

P5

P6

❑  Tight Cells (TC) 

Repeat the process for all sites                 
and find Tight Cells (TC) 

Indexing Time-Dependent Spatial Network
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Indexing Time-Dependent Spatial 

Network

Tigth Cell

p2

p3

p1

Any query point inside the tight cell of a data object p is guaranteed to have 
p as its NN.
Proof: DUTT(q,p1) < DLTT(q,p2) If the upper-bound travel time between the query object q and a 
data object p (e.g., p1) is less than any of the lower-bound travel time from q to any other data 
object, then that p is the nearest neighbor of q.

Border Point b2: 
DUTT(b2,p1) = DLTT(b2,p3)

LTT

LTTUTT

Border Point  b1: 

DUTT(b1,p1) = DLTT(b1,p2)
Lower-Bound SP distance (from p2) is equal to 
Upper-Bound SP Distance (from p1)

q
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❑Loose Cells (LC)

❑ Loose Cells cover the entire network. 

❑ Any query point q outside of the LC of p is guaranteed 
not to have p as its NN

❑ If outside tight cell but inside loose cell, find the 

overlapping loose cells generators and then Dreyfus 

(or TD-A*) to decide which of the p’s is closer 

❑ Direct Neighbors  e.g., p2= {p1,p6,p3}

P2

P1 P2

P3P4

P5

P6

LTT

Grow SP trees from each site 
simultaneously using 

LTT for one site and 
UTT for the other sites

 

P2

P1
P2

P3P4

P5

P6

Indexing Time-Dependent Spatial Network
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• TC and LC Index

P2

P1
P2

P3P4

P5

P6Index TCs and LCs with a spatial index 
(e.g., R-tree, Quad-tree)

P2

P1
P2

P3P4

P5

P6

Tight Cells

Loose Cells

Indexing Time-Dependent Spatial Network
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Indexing Time-Dependent Spatial Network

Query Processing

❑NN 
    Given the location of q, 

depth-first search from the 
TC Index (or LC Index) root 

to the node that contains q. 

❑kNN
     The second NN must be 

among the direct neighbors 
of the first NN. Check  the 
neighbors of the NN

P2

P1
P2

P3P4

P5

P6

q

(Section 4.1 for details)
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Index Maintenance 

❑Index Maintenance

❑Edge Weight Update 

Update the index structure only when min or max costs

change. 

❑  Data Object Update 

Local update (i.e., only the neighbor cells) when a data-object

is added or removed from the system. 

(Section 4.2 for details)
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 Indexing Time-Dependent Spatial Network

• Pros

–  Provides exact results 

–  Localize the NNs and minimize the need for time-dependent SP 
calculation 

– Scalable and efficient for large set of query and data objects, and large 
networks

• Cons
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Experimental Results

k vs Response Time k vs Network Node Access

Naïve Approach= INE with Dreyfus’s Dijkstra
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More

Future: Traffic Forecasting

Applications

Conclusion & Acknowledgement
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More

Future: Traffic Forecasting

Applications

Conclusion & Acknowledgement
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Where does the weight come from?

fpi : total travel-time to destination
10 20

17

28

35

fp3
fp1

fp2

t (departure time)

fpi (cost)

15

20

7

n4

t

w12(t), w34(t)

w23(t)

15

25

8
25

5

w24(t)

10

15

15

t

w13(t)

10

tt

n2

n3

n1



52



53

Research: Traffic Forecasting (Learn & Be Curious)

Single sensor
Time series analysis 
ICDM’2012

Multi sensor
Latent Space  -- SIGKDD’2016

Single sensor
                                   Causality 
                                   ICDM’2013

Multi sensor Deep Learning SDM’2017, ICLR’18

U
Graph matrix: Gnxn Latent properties: Unxk and Bkxk

UTB
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More

Future: Traffic Forecasting

Applications

Conclusion & Acknowledgement
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B2C App: ClearPath

Main Differentiator: Predictive Path Planning
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7:10AM

The Problem – Existing Solutions 

Best Route based on current conditions

Predictive vs. Real-Time Path-Planning
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7:15AM

The Problem – Existing Solutions 

Evolution of traffic over time

Predictive vs. Real-Time Path-Planning
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7:20AM

The Problem – Existing Solutions 

Hindsight: slower route

Hindsight: faster route

Predictive vs. Real-Time Path-Planning
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Google Option #1

8:00 AM
Thursday
Source: W 

Washington 
Blvd & 

Beethoven St
Destination: 

USC
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Google Option #2

8:00 AM
Thursday
Source: W 

Washington 
Blvd & 

Beethoven St
Destination: 

USC
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Google Option #3

8:00 AM
Thursday
Source: W 

Washington 
Blvd & 

Beethoven St
Destination: 

USC
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ClearPath

8:00 AM
Thursday
Source: W 

Washington 
Blvd & 

Beethoven St
Destination: 

USC
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Glendale → USC

6:30 AM
ClearPath:22min

Google:21min, 42min w traffic

7:15 AM
ClearPath:26min

Google:21min, 42min w traffic

8:30 AM
ClearPath:31min

Google:21min, 42min w traffic

Comparisons (Saved Time)
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6:00 AM

Anaheim → USC

7:15 AM

6:45 AM

8:15 AM

Comparisons (Path Alternatives)

10:00 AM
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• IdeasEmpowered 2012 (USC competition)

• Spinoff in 2013

• Licensed technology from USC in Dec. 
2014

• Raised $1.2M  funding from group of 
investors  
– 10 Employees  

– Built on state-of-the art infrastructure – Spark, 
Cassandra 

– B2C business model (didn’t work! Cost of User 
Acquisition)

• New App in 2015: TALLYgo  

ClearPath

Main Differentiator: Predictive Path Planning

Tech-Transfer -- 
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http://www.voanews.com/content/traffic-technology-clearpath/1616682.html 

http://www.voanews.com/content/traffic-technology-clearpath/1616682.html
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TallyGo Exit (Disagree & Commit)

US Patent No. 9,286,793
Traffic prediction using real-
world transportation data 
March 15, 2016

US Patent No. 8,660,789 
Hierarchical & exact fastest 
path computation in time-
dependent spatial networks
February 2014

US Patent No. 8,566,030 
Efficient K-nearest neighbor 
search in time-dependent 
spatial networks 
October 2013

• New business B2B model (API)
• LAFD Deployment

• Acquired in March 2019
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More

Future: Traffic Forecasting

Applications

Conclusion & Acknowledgement
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Conclusion

Research

• Accurate traffic prediction 

• Fastest-Path computation in time-dependent networks 

System 
Development

• TransDec 

• ADMS

Tech-Transfer

• 3 Patents

• Startup
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Where did the student go?

• Time-dependent Route Planning  + ADMS & Foundry Development

• Traffic Forecasting
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For your reference …
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ADMSv2: The Architecture
• Micro-services design

• Independent
• Isolated
• Scalable

• Crawls / Consumes data from 
external data sources

• Pushes data to internal streams
• Maps to internal data model
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ADMSv2: The Architecture
• Specialized data stores

• Big Data (Hadoop HDFS)
• Spatial-temporal (PostgreSQL)
• Caching (Redis)

• Optimize spatial queries with 
indexes

• Reduce shuffling during 
distributed processing with 
spatial partitioning
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ADMSv2: The Architecture
• Distributed processing engines

• Batch (Hive, Impala, Spark)
• Online/Streaming (Spark)

• Machine Learning Frameworks
• PyTorch
• Tensorflow

• High performance for queries 
that involve large amounts of 
data

• Easier transformation of training 
data for ML
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ADMSv2: The Architecture
• Dashboards for data 

dissemination
• Web APIs
• SQL Interface for on-demand 

complex data processing
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• Did Expo Line increase transit patronage?

• Did Expo Line impact traffic performance?

• Quasi-experimental design: Before/after 

    and with/without

Policy- ADMS (Deliver Results)
• Collaboration between IMSC and Sol Price School of Public Policy
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Data Driven Journalism

http://www.nbclosangeles.com/news/local/USC-Freeway-LA-
Traffic-Study_Los-Angeles-416848663.html

Crosstown Foundry Newsletter

https://urldefense.proofpoint.com/v2/url?u=http-3A__www.nbclosangeles.com_news_local_USC-2DFreeway-2DLA-2DTraffic-2DStudy-5FLos-2DAngeles-2D416848663.html&d=DwMFaQ&c=clK7kQUTWtAVEOVIgvi0NU5BOUHhpN0H8p7CSfnc_gI&r=7UB027DJSNxIGnmpsIs-hw&m=ncKr-LH6f3kEINY8F7NqmiwCuAoLQue3bBnT7L0QLmE&s=oMyMYoVajRZixlS3E3-ADS0NclGwNs1sX_qI-5I5fvc&e=
https://urldefense.proofpoint.com/v2/url?u=http-3A__www.nbclosangeles.com_news_local_USC-2DFreeway-2DLA-2DTraffic-2DStudy-5FLos-2DAngeles-2D416848663.html&d=DwMFaQ&c=clK7kQUTWtAVEOVIgvi0NU5BOUHhpN0H8p7CSfnc_gI&r=7UB027DJSNxIGnmpsIs-hw&m=ncKr-LH6f3kEINY8F7NqmiwCuAoLQue3bBnT7L0QLmE&s=oMyMYoVajRZixlS3E3-ADS0NclGwNs1sX_qI-5I5fvc&e=
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Crosstown Foundry Newsletter

3/21/2025

• Markdown Template

– Edit static and dynamic 
newsletter content 

• Mixins (dynamic content)

– Grammar:

NAME:AGGREGATION:FILTERS

– JavaScript modules 
encoding data or data 
visualizations queried from 
the Crosstown Databases

– Localized to specific spatial 
and temporal extent

• HTML Converter & Linter

– Validates mixins

– Renders the markdown in 
HTML
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