

GeoSocial Networks

Cyrus Shahabi, Ph.D. Professor of Computer Science, Electrical Engineering & Spatial Sciences Chair, Department of Computer Science Director, Integrated Media Systems Center (IMSC) Viterbi School of Engineering University of Southern California Los Angeles, CA 900890781 <u>shahabi@usc.edu</u>

OUTLINE

GeoSocial Queries [VLDB'13]

Inferring Social from Geo [SIGMOD'13]

GeoSocial Recommendation [SIGMOD'15]

Future [SIGSPATIAL'15]

OUTLINE

GeoSocial Queries [VLDB'13]

Inferring Social from Geo [SIGMOD'13]

GeoSocial Recommendation [SIGMOD'15]

Future [SIGSPATIAL'15]

Geo-Social Networks (GeoSNs)

School of Engineering Integrated Media Systems Center foursquare

Radar

Industry & Academia

Data Management

Application/Paper	Storage Scheme		
Social			
+	Adjacency lists in a Distributed Memory Hash Table		
+ MARCHAR	Adjacency lists in a Document-oriented database		
[Y. Doytsher et al., WWWg2012]	Adjacency lists in Neo4j		
[W. Liu et al., DASFAA 2012]	Adjacency matrix		
[Y. Doytsher et al., LSBN 2010]	Edge lists in a RDBMS		
Spatial			
R*-Tree			
	Grids & Geohashes		
Contraction of the second seco	Grid		
[A. Amir et al., PMC 2007]	Quad-Tree		
[W. Liu et al., DASFAA 2012]	R*-Tree		

Framework

Architecture

- SM and GM can be administrated by different entities.
 - Implement GeoSN queries without owning geo-social data.
- Independent functionality of social and geographical structures.
- Easy integration of new, more efficient data structures without modifications.
- Novel GeoSN query types = either a different combination of existing primitives or new ones

Framework

primitive Operations

- Any primitive must be treated as an *atomic* operation.
 - No states.
 - NextNearestUser = multiple calls of NearestUsers keep data locally.
 - Find more!
- Efficiency depends on the underlying storage scheme.
 - AreFriends Adjacency matrix
 - GetFriends Adjacency Lists
 - GetUserLocation Hash Table
 - RangeUsers & NearestUsers Spatial Indices
- They are supported by commercial GeoSNs' APIs.

Query processing range friends

Friends of user *u* within range *r* of *q*

k nearest friends of user *u* to location *q*.

Dense social network

Sparse check-ins # primitives

Sparse check-ins # primitives

Output: *k* nearest groups of *m* users to *q*, such that the users in every group are connected through a common friend (star).

Nearest star group

Example (k = 1, m = 3)

Observation:

The **best** group of a user contains himself and his m - 1 closest friends to q.

NSG is not an NP-Hard problem!

NSG query processing

Basic Notation

 b_s : the current lower aggregate distance achieved by the already examined users (*seen*). b_{un} : the lower aggregate distance that can be achieved by non-retrieved users (*unseen*).

Skeleton for NSG algorithms (Branch and Bound - BnB)

Input: Location *q*, positive integers *m*, *k* **Output:** Result set *R*

- 1. Initialize R, b_s , b_{un}
- 2. **While** *b*_{*un*} < *b*_{*s*}
- 3. Get the next nearest user to *q*
- 4. Construct his best group
- 5. Update result R and b_s , b_{un}
- 6. Refine R
- 7. Return R

Eager	Lazy	Eager*
Simple b _{un}	Simple <i>b_{un}</i>	Aggressive b _{un}
\checkmark	\checkmark	
V	V	
Find the group	Construct the graph	Find the group
\checkmark	\checkmark	
V		\checkmark

Experiments

- Storage Schemes
 - Disk-based + Cache
 - Social:

Adjacency List: user → sorted list of friends' ids. (document per user)

Linux, C++

- Geographical:
 - user → coordinates (document per user)
 - Index: Geohashes & Grids
- Cache: Linux's caching mechanism
- Memory-based
 - Social:
 - (Hash Table) Adjacency List: user \rightarrow sorted list of friends' ids.
 - Geographical:
 - (Hash Table) user → coordinates
 - Index: Grid (CPM)
- Machine Architecture
 - Centralized: All modules at a single server.
 - Distributed: Separate server for each module (100 Mbps Ethernet)

Experiments

- Real Dataset (Foursquare & Twitter)
 - <u>Check-ins</u>:
 - 12,652 users
 - *same* day (May 30th, 2012)
 - in New York City (1,112 km²).
 - <u>Social Graph</u>:
 - 12,652 + 2M (non checked-in friends) users
 - Avg. # of friends: 437.
- Synthetic Dataset (1M, 2M, 3M, 4M, 5M)
 - <u>Check-ins</u>
 - "The distribution of the distance between two friends follows a power law."
 - BFS assign locations: distance is randomly derived by the distribution in:
 - Area: 7,853 km²
 - <u>Social Graph</u>: Barabási-Albert preference model
 - Power-law degree distribution.
 - Small-world phenomenon.
 - Avg. # of friends: 100.

[Cho et al., SIGKDD '11]

Experiments

Experiments NEAREST STAR Group (NSG)

- In the most of the cases NSG^*_{eager} is the best.
- Performance scales well with the dataset size.

OUTLINE

GeoSocial Queries [VLDB'13]

Inferring Social from Geo [SIGMOD'13]

GeoSocial Recommendation [SIGMOD'15]

Future [SIGSPATIAL'15]

Location-Enriched Datasets

• Popularity of Location-Based Services

Twitter: 10M+ geo-tagged tweets/day mashable.com Foursquare: 5M check-ins/day venturebeat.com/2015/08/09/

New York City

Tokyo

Geo-Tagged Tweets on Map by Twitter mashable.com

School of Engineering Integrated Media Systems Center

19

Social Relationship Inference from Location Data

- Reachability [VLDB'12]
 - *u* is reachable to *v* in time period *T*
 - if there is a contact path
- Social Strength [SIGMOD'13]
 - u and v are socially connected
 - how often they meet and where
- Spatial Influence [ICDE'16]
 - *u* influences *v*
 - if v follows u

Applications

Social Network

- Marketing
- Friendship suggestions
- Social and cultural studies
- Geo-social Network
 - Criminology
 - identify the new or unknown members of a criminal gang or a terrorist cell
 - Epidemiology
 - spread of diseases through human contacts
 - Policy

School of Engineering

Integrated Media Systems Center

• induce local influence in electing a tribal representative

Inferring friendship network structure by using mobile phone data (PNAS'09) N. Eagle, A. Pentland, D. Lazer

Study traces of 94 subjects using mobile phones

- > Subjects also reported their data: proximity and friendships
- Analyzes proximity and friendships (inferred from recorded data) vs. ones that were self-reported by users
- > Conc-1: Two data sources is overlapping but distinct
- Conc-2: Accurately infer 95% of friendships based on the observational data alone, where friend dyads demonstrate distinctive temporal and spatial patterns in their physical proximity and calling patterns.

Inferring social ties from geographic coincidences (in PNAS'10) David J. Crandall, Lars Backstromb, Dan Cosleyc, Siddharth Surib, Daniel Huttenlocher, and Jon Kleinberg

Probabilistic Model

- Infer the probability of two people being friends given their co-occurrences in space and time
- > Does not consider the frequency of co-visit
- Simplifies the social network: one connection for each person

Bridging the Gap between Physical Location and **Online Social Network (Ubicomp '10)**

J. Cranshaw, E. Toch, J. Hong, A. Kittur, N. Sadeh

- Introduces a novel set of location based features for analyzing the social context of a geographical region
- **Location Entropy**: analyzes the context of the social interactions at that location: crowdedness and diversity
- **Regularity (Schedule_Entropy)**: High value reflects irregular movements, which produce high chance of making new friends
- Establishes a model of friendship in an online social network based on contextual features of co-locations

Problem Definition

Social strength is a quantitative measure that tells how socially close two people are.

Input: Users:
$$U = (u_1, u_2, ..., u_M)$$
 Locations : $L = (l_1, l_2, ..., l_N)$

Spatiotemporal records < user_id, location, time >: < u, l, t >

Output: a weighted social graph where the weights of the edges define social strengths.

Challenges

- 1. What features of co-occurrences matter?
 - Richness?
 - Frequency?
 - Coincidences?
- 2. Location
 - Popularity?
 - Semantics?
- 3. Quantify friendships
 - Social Strength in between [0,1]

Baseline Solution - Richness

Counting the number of unique locations

Co-occurrence VectorsRichness $C_{12} = (10, 1, 0, 0, 9)$ 3 $C_{23} = (2, 3, 2, 2, 3)$ 5 $C_{13} = (10, 0, 0, 0, 10)$ 2

* Ignore multiple co-occurrences @ same places

Baseline Solution - Frequency

Counting the number of co-occurrences

Co-occurrence vectors	Frequency
$C_{13}=(10, 1, 0, 0, 9)$	20
C ₂₃ =(2, 3, 2, 2, 3)	13
C ₃₁ = (10, 0, 0, 0, 10)	20

- ✓ Captures local frequency
- Cannot capture the diversity of co-occurrences

Shannon Entropy $H_{ij}^{s} = -\sum_{l} P_{ij}^{l} \log P_{ij}^{l}$

- If we select a random location, how predictable is whether i and j co-occurred there?
- More diverse places they co-occurred \rightarrow Low predictability \rightarrow High entropy

Co-occurrence vectors	$oldsymbol{H}^{s}_{ij}$
C_{12} = (10, 1, 0, 0, 9)	0.86
C ₂₃ = (2, 3, 2, 2, 3)	1.59
C13= (10, 0, 0, 0, 10)	0.69

- ✓ The more locations, the higher entropy.
- ✓ The more diverse, the higher entropy.
- * No control on diversity vs. frequency, e.g., may put too much weight on outliers (coincidences)

Rényi Entropy

We want to control the impact of diversity vs. frequency

$$H_{ij}^{R} = \left(-\log \sum_{l} \left(P_{ij}^{l}\right)^{q}\right) / (q-1)$$
Order of diversity

- q > 1 Renyi entropy more favorably considers high local frequencies.
- (less diversity) Captures the diversity of co-occurrences.
 q 1 in opposite, it gives more weight to low local frequencies. Limits impact of coincidences (outliers).
- q = StilReonsiderson lis carider inequality into pionita exister and becomesider: Shannon entropy where it is unbiased.
- q = 0 the entropy is *insensitive* to local frequencies \Leftrightarrow giving pure number of unique locations – *richness*.

Frequency = 12 Diversity = 3

Location Entropy (LE)

$$H_l = -\sum_{u, P_{u,l} \neq 0} P_{u,l} \log P_{u,l}$$

• LE indicates the popularity of a location Cranshaw, J., et al., (2010).

Bridging the gap between physical locations and online social networks. UBICOMP, 119-128.

- The more popular, the higher entropy, and vice versa
- LE captures how diverse the visitors of a *location* are
 - E.g., your home is not diverse as only 2-4 users visited there; Eifel tower is the opposite
- Pick a random visit v at location l; high entropy means:
 - less predictable who made v
 - The location has more diverse set of visitors

The Entropy Based Model (EBM)

• Renyi Entropy

$$H_{ij}^{R} = \left(-\log\sum_{l} \left(P_{ij}^{l}\right)^{q}\right) / (q-1)$$

(How often *i* and *j* meet in how diverse of locations)

• Location Entropy

$$H_l = -\sum_{u, P_{u,l} \neq 0} P_{u,l} \log P_{u,l}$$

(How popular a location is)

Weighted Frequency

$$F_{ij} = \sum_{l} c_{ij,l} \times \exp(-H_l)$$

(More weights to meetings in unpopular locations)

• Social Strength

$$s_{ij} = \alpha . \exp(H_{ij}^R) + \beta . \sum c_{ij}^l \times \exp(-H^l) + \gamma$$

Social Strength (EBM model)

$$s_{ij} = \alpha . \exp(H_{ij}^R) + \beta . \sum c_{ij}^l \times \exp(-H^l) + \gamma$$

where parameter α , β and γ can be learned from training data.

Have addressed all the challenges mentioned earlier.

- Eliminate the impact of coincidences.
- ✓ Take into account the impact of locations.
- ✓ Data Sparseness.

OUTLINE

GeoSocial Queries [VLDB'13]

Inferring Social from Geo [SIGMOD'13]

GeoSocial Recommendation [SIGMOD'15]

Future [SIGSPATIAL'15]

Related Work

• Graph Partitioning

– Greedy (UML_{gr}).

- Attribute-based [J. Sun et al., SIGKDD '07]
- Connectivity-based [J. Shi et al., TPAMI '00], [M. E. Newman et al., Physical Review '04]
- Attribute & Connectivity-based

[Y. van Gennip et al. SIAM JAP '13]

- Uniform Metric Labeling: Same objective function as RMGP, but studied only in theory. Solutions:
 - Linear Programming (UML_{lp}), and

[J. Kleinberg et al., JACM '02]

[E. C. Bracht et al., JEA '05]

GAME THEORETIC APPROACH

$$c_{v}(s_{v}, \overline{s_{v}}) = \alpha \cdot c(v, s_{v}) + (1 - \alpha) \cdot \sum_{(e = (v, f) \in E) \land (s_{v} \neq s_{f})} W_{e}$$

The game mimics the behavior of individual real-world users 🙂

THEORETICAL RESULTS

- 1. Our game is an *exact potential game* -> always converges.
- Potential function:

$$\Phi(S) = \alpha \cdot \sum_{v \in V} c(v, s_v) + (1 - \alpha) \cdot \frac{1}{2} \sum_{(e = (v, f) \in E) \land (s_v \neq s_f)} w_e$$

• When a user v moves from s_v to s'_v then:

$$C_{v}(s_{v},\overline{s_{v}}) - C_{v}(s_{v}',\overline{s_{v}}) = \Phi(s_{v},\overline{s_{v}}) - \Phi(s_{v}',\overline{s_{v}})$$

[D. Monderer et al., Games and economic behavior, 1996]

2. Price of anarchy is upper-bounded:

$$\frac{\cos t \text{ of worst equilibrium}}{global \text{ optimum}} \le 1 + \frac{(1 - \alpha)}{\alpha} \cdot \frac{\deg_{avg} \cdot w_{avg}}{2 \cdot c_{avg}^*}$$

 deg_{avd} average degree

OUTLINE

GeoSocial Queries [VLDB'13]

Inferring Social from Geo [SIGMOD'13]

GeoSocial Recommendation [SIGMOD'15]

Future [SIGSPATIAL'15]

Two Sides of the Coin

