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The Rise of Machine Learning (ML)
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ML and Big Data
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ML and Big Spatial Data

Knowledge Base

Digital
Health

Crowdsourcing Search Engines

“Thinking Spatial” ... Can we adapt ML internals
to properly use spatial data?




Knowledge Base Construction
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Knowledge Base Construction
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DeepDive: Introduction

Extracting structured data from unstructured data.
O Structured data: SQL tables, Knowledgebases, association rules ...
O Unstructured data: text, image, PDFs, tables, ....

Infrastructure for probabilistic machine
learning and data mining algorithms.

Think of features not algorithms.

Declarative inference rules:

person_ smokes (p) =>
person has cancer (p) :-
person(p, ).




DeepDive

: Smoke Example

person (
person_id bigint,
name text
) .
person_has cancer? (
person_id bigint
) .
person_smokes? (
person_id bigint
) .
friends (
person_id bigint,
friend id bigint
) .
@weight (0.5)

person_smokes =>

person_has_cancer@ 5= person@ ).

@weight (0.4)
person_ smokes (pl) =>

person_s i=
person(pl, ), person(p2, —
friends(pl, p2).

person _has cancer and
person_smokes need to be

Inferred.

Implication relation
depends on Boolean logic
(AND, OR)

O What if the implication relation

has spatial semantics, e.g.
meet, neighbor, north of?

Variables are linked to each
other through ID matching
(Hash join).

d  What if the variables should be

matched based on their overlap
areas (Spatial Join)?



DeepDive with Spatial Data ...

Ebola infection rates in Liberia

Data

Gharpolu

County | | | S
Montserradg 1 [0.6
Margibi ? 10.6
Bong 2 10.6
Gbarpolu ? (0.6

Infections

Wl

Sanitation

Pl: County X has high Ebola infection rate
P2: Counties X&Y have same sanitation level
Inference
Rules

Rule: P1&P2 =» Y has high infection rate
dD DeepDive
Margibi 0.54 0.6,1

Result . [0.6. 1]

Bong 0.52 [0.4, 0.6]
Gbarpolu  0.63 [0.2, 0.4]
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DeepDive with Spatial Data ...

EbOIa infECtiOn rates in Liberia Pl: County X has high Ebola infection rate

P2: Counties X&Y have same sanitation level
P3: Counties X&Y are within 150 miles

Gharpolu

Inference
Rules

Rule: P1&P2&P3 =» Y has high infection rate

Infections QD DEEP Dive

=N
County | | | S
Data |[Montserradg 1 0.6 [:i
— p
oo 2 o]
Gbarpolu ? 10.6 [:i -
. M 054 051 :
Sanitation Result gy e [0.6, 1]
Bong 852 045 [0.4, 0.6]
Gbarpolu 663—- 0.06 [0.2, 0.4]
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DeepDive with Spatial Data ...

Ebola infection rates in Liberia P1: County X has high Ebola infection rate
P2: Counties X&Y have same sanitation level

, P3: Counties X&Y are within 150 miles (0.01)

Gbarpolu P4: Counties X&Y are within 148.5 miles (0.02)

Inference ..
Rules P102: Counties X&Y are within 1.5 miles (1)

Rule: P1l&..&P102 = Y has high infection rate

cion dD DeepDive

County | | | S
Data |Montserradg 1 |0.6 [:i
— 5
Song” [ oo
Gbarpolu ? 10.6 [:i .

Sanitation Result Margibi 054- -85+ 0.63 [0.6, 1]

Bong 852 845 048 [0.4, 0.6]

Execution time of these rules in the Gbamolu 663 -0:06- 0.14 0.2, 0.4

grounding phase explodes !!
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DeepDive with Spatial Data ...

Ebola infection rates in Liberia

Data

Gharpolu

County [ | | S
Montserradg 1 [0.6
Margibi ? (0.6
Bong ? 10.6
Gbarpolu ? 10.6

Infections

wh b

Sanitation

Pl: County X has high Ebola infection rate
P2: Counties X&Y have same sanitation level
Inference
Rules : -

P3: The closer Y&X the higher Y infection rate

Rule: P1&P2&P3 =» Y has high infection rate
dD DeepDive
Margibi 054 851+ 063 0.6,1

Result : [06.1]

Bong 052 045 048 [0.4, 0.6]
Gbarpolu 6:63—- 866~ 034 [0.2, 0.4]
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Where Is the Problem?

B DeepDiveis built on top of Markov Logic Networks (MLN)
O MLN is designed for binary logic only
» E.qg., bitwise-AND, bitwise-OR, and imply

B MLN s not spatially- aware

O It can not interpret the gradual semantics of spatial predicates
» E.Q.,P3: The closer Y&X the higher Y infect rate

\ !
, We propose Spatial Markov Logic Networks (SMLN),
a full-fledged MLN framework with a native support

for spatial data and applications

~
/\

2
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Outline

Introduction to Spatial Markov Logic Networks (SMLN)
O MLN in a Nutshell
O SMLN Architecture

SMLN for Knowledge Base Construction
SMLN for Spatial Analysis

Summary

15



Markov Logic Networks (MLN)

B MLNis an end-to-end ML A | WPy Alchemy - Open Source Al
S O I ut i O n .‘;' ACM S‘T;::;sl':/”l;;:;‘:I:s;i:l:tionalConlerence on Management of Data

June 10 - June 15, 2018 Houston, TX, USA
SIGMOD 2018: Keynote Talks

Machine Learning for Data Management: Problems and Solutions

O Covers wide range of ML problems
O  User-friendly and efficient
» No need for ML expert to use it dé‘i’énami
» Thousands of lines of ML code can ...

July 3,2018

be done Iin very few MLN formulas Can Markov Logic Take Machine Learning to the Next Level?

Alex Woodie

Advances in machine learning, including deep
learning, have propelled artificial intelligence (Al) into
the public conscience and forced executives to create
new business plans based on data. However, the

Weighted rules Markov Logic __Learning and >
as MLN formulas [NEWCICCK(YIRN)IE inference outputs

Scalable RDBMS-based
MLN System

Firstorder | T llliteracy = Crime [0.5]
logic rules | F,: Crime » Non-safety [0.7]

05 | K| | F, |07

@ MEMEX | e
Factor graph . 9
Qﬁé @) o dD DecpDive kel @l r]:
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Markov Logic Networks (MLN)

B Combination of two things @ Express rules with weights
O First-order Logic rules

> Handles reasoning @ Ground to a factor graph

ts from the factor

To solve a problem with MLN, find equivalent Gibbs sampling and
SESCs  variables and rules representation. That is it! cent optimization

d

n variables based

Rules Smoke on weights using Gibbs sampling
F,: Smoke = Cancer [W,]
F,: Cancer ” Die [0.7] Joe 0.9 0. 9<: Wi
Factor Factor graph Llly o Gibbs s§|ollngi
Wi | Fy F, 0.7 _ & GD Gibbs
Cancer Die optimization

sampling

@?@ oo () (For,d
oe Joe

b oy 2 OO
Variable Lily 05 Lily 5 @ @ @ 0.6
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MLN Architecture

Application
Developer

F,: llliteracy = Crime [0.5]
F,: Crime * Non-safety [0.7]

-

Language

Propositional

Logic Language

Application
\< Rules

Applications

(e.g., DeepDive, ... )

System
Admin

Configs | %
Y

-

Inference

Gibbs Sampling

4 Learning \( a Algorithm
Inference
~ / Gradient Output
Descent [€
_ Optimization >
Compiled Rules Inference Read /
\_ ) Iterations Update
v Factor Graph Learned Correlations’
4 Grounding N\ Correlations Weights
In-DBMS Factor Input and Inferred Variables’ In-memory
Supervision Data Values
G raph' P -~ Factor Graph
Construction w v q Index
Factor os[r) (®]er Factor Graph
- / Graph @) © ® Variables

~
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SMLN Architecture

F,: llliteracy = Crime [0.5]
F,: Crime * Non-safety [0.7]

‘ %Application

Developer

Configs | %
Y

System
Admin

-

Application
4 )
LR — Applications
BI5iag [LATEUEE (e.g., Sya, Flash, ... )
with Spatial
Extensions .
4 Learning ) < |
Inference
- J Spatial Gradient Output
Descent [€
_ Optimization >
Compiled Rules Inference
\_ ) Iterations
v Factor Graph Learned Correlations’
4 Grounding N\ Correlations Weights
In-DBMS Spatial Input and Inferred Variables’
Supervision Data Values
Factor Graph P -
Construction - >
Spatial s (] [w)or Factor Graph
(F;i‘:g; ololo Variables

Inference

Spatial Gibbs
Sampling

Algorithm

Read /
Update

In-memory
Spatial Factor

Graph Index

~
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Outline

SMLN for Knowledge Base Construction

 Sya: A Spatial Probabilistic Knowledge Base Construction
System [ICDE'2020, SIGMOD’18]

SMLN for Spatial Analysis

Summary

20



Going Back to the Ebola Example ...

Ebola infection rates in Liberia

Gharpolu

County [ | | S
Data [Montserradg 1 [0.6
Maragibi ? 10.6
Bong ? 0.6
Gbarpolu ? 10.6

Infections
D

[ I

D |

Sanitation

Objective: Achieving more accurate

Pl: County X has high Ebola infection rate
P2: Counties X&Y have same sanitation level
Inference
Rules : :

P3: The closer Y&X the higher Y infection rate

Rule: P1&P2&P3 =» Y has high infection rate
dD DeepDive
Margibi 054 -85+ 063 0.6,1

Result : [06.1]

Bong 052 045 048 [0.4, 0.6]
Gbarpolu 665~ -8-06- 0314 [0.2, 0.4]

confidence scores than DeepDive, while
keeping the execution time efficient

21




Going Back to the Ebola Example ...

EbOIa InfeCtlon rates in I—Iberla Pl: County X has high Ebola infection rate
P2: Counties X&Y have same sanitation level
Gharpolu P4—e . see s 1485 3 62
Inference ..
Rules P102: Counties X&Y are within 1.5 miles (1)
P3: The closer Y&X the higher Y infection rate
Rule: P1&P2&P3 =» Y has high infection rate
Infections
N
County [ | | S
Data |Montserradg 1 |0.6 [ii
Maraqibi ? 10.6 Dy "
e 5
Gbarpolu ? (0.6 Margibi — e 0
Sanitation Resylt Margibl - -S54 65+ 063 0. [0.6, 1]

Bong 952 945 048 053 [0.4, 0.6]

Objective: Achieving more accurate
confidence scores than DeepDive, while
keeping the execution time efficient

Gbarpolu 663 -0806- 014 022 [0.2, 0.4]

22




-

Language

~N
<€

Application

SMLN Architecture

Application
Developer

Admin

Rules

Applications

DDlog Language

(e.g., Sya, Flash, ... )

Configs | %
Y

System

-

with Spatial
Extensions .
4 Learning ) < |
Inference
~ J Spatial Gradient Output
Descent [€
_ Optimization >
Compiled Rules Inference
\_ ) Iterations
v Factor Graph Learned Correlations’
: i Weights
4 Grounding N\ Correlations g
In-DBMS Spatial Input and Inferred Variables’
Supervision Data Values
Factor Graph P - =
Construction - >
Spatial Factor ’ Factor Graph
Graph Variables

Inference

Spatial Gibbs
Sampling

Algorithm

Read /
Update

In-memory
Spatial Factor

Graph Index

~
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Language Module

B Extending the DDlog language
O Easy to express spatial functionalities

B Example: some rules from the Ebola KB example

. Spatial data types
#Schema Declaration

S1: County (id bigint, location point, hasLowSanitation bool).

@spatial(exp) €=
S2: HasEbola? (id bigint, location point).

Spatial parameters

#Derivation Rule
D1: HasEbola(C1, L1) = NULL :- County(C1, L1, -).

#Inference Rule

R1: @weight (0.35)

HasEbola(C1, L1) => HasEbola(C2, L2) :- County(C1, L1, -), County(C2, L2, S2)
[distance(L1, L2) < 150, \ivghin(liberia_geom, L1), S2 = true].

Spatial functions ==

24
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Application

SMLN Architecture

Application
Developer

Admin

Rules

Applications

DDlog Language

(e.g., Sya, Flash, ... )

Configs | %
Y

System

-

with Spatial
Extensions .
4 Learning ) < |
Inference
~ J Spatial Gradient Output
Descent [€
_ Optimization >
Compiled Rules Inference
\_ ) Iterations
v Factor Graph Learned Correlations’
: i Weights
4 Grounding N\ Correlations g
In-DBMS Spatial Input and Inferred Variables’
Supervision Data Values
Factor Graph P - =
Construction - >
Spatial Factor ’ Factor Graph
Graph Variables

Inference

Spatial Gibbs
Sampling

Algorithm

Read /
Update

In-memory
Spatial Factor

Graph Index

~
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Grounding Module: Spatial Factors

Introducing a new spatial Spatial variables
factor type Wd(v;.5) vj,(; T
i i k=3 — :
Q  Considers the spatial Pj o~ Wi v otherwise
correlation over variables

based on their distance
Distance-based weight

Extended to support the
categorical case w

g - . . d'(vj:'”k) l‘_j‘ (-[—j) — l‘,{‘s(tﬂ) — 1"-[—_] — {—A
d Favors similar domain ity te) = e e ui(t) = vg(ty) = L t; # ty

values from close variables 1 otherwise y

Domain values

(&

Spatial factor graph

0 Combines spatial and logical (i.e., non-spatial)
factors in an efficient manner

26



Grounding Module: Spatial Factor
Graph Construction

#Inference Rule

Generating the spatial RL: @weight (0.35)
factor graph using O iatancelLL, L2) < ToCwithin(tberia_geom, LD] 62 2 tre).
SDBMS (e.g., PostGIS)
0 Rules are translated into @
spatial SQL queries

INSERT INTO R1_Factors (varl, var2, type, weight)

0 e.g., Rule R1 from the ( _ _ _
SELECT C1.id AS “varl”, C2.id AS “var2”, "imply", 0.35
Ebola example FROM (
SELECT * FROM County CO
WHERE WITHIN (liberia_geom, C0.location)
Spatial ) C1, County C2
join €=|WHERE DISTANCE (C1.location, C2.location) < 150
AND C2.hasLowSanitation = true
)

Range Query

Two effective optimizations
O Providing a heuristic query optimizer (e.g., spatial queries reordering)

O Using co-occurrence statistics to predict and remove inactive spatial
factors based on training data

27
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Configs | %
Y

System

-

with Spatial
Extensions .
4 Learning ) < |
Inference
~ J Spatial Gradient Output
Descent [€
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Compiled Rules Inference
\_ ) Iterations
v Factor Graph Learned Correlations’
: i Weights
4 Grounding N\ Correlations g
In-DBMS Spatial Input and Inferred Variables’
Supervision Data Values
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Construction - >
Spatial Factor ’ Factor Graph
Graph Variables

Inference

Spatial Gibbs
Sampling

Algorithm

Read /
Update

In-memory
Spatial Factor

Graph Index

~
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Inference Module: Spatial Gibbs
Sampling

B Existing Gibbs sampling algorithms are inefficient
O Sequential or single-site sampling updates within the same epoch
O Slow convergence when having spatial correlations

B Spatial variation of Gibbs

0 / I ‘: @

Instead of sequential sampling, we

. ) | L CETCET
use concliques-based sampling ,
> A conclique is a set of “. . Qi CsCyuCy
locations such that no two y ;/%5;;}517 Q, CyCyCu
. . /! Cl10~ C11C1
locations are neighbors / A8 cocr C.C.C
. . [1] 6 o v Qs C;CCyy
» Designed for sampling over Cys
spatially-dependent variables Q, CyCiCyo
O Guarantees both efficiency and _
accuracy in our case In-memory Spatial Factor Graph Index

[1] M. Kaiser, S. Lahiri, and D. Nordman. Goodness of Fit Tests for a Class of Markov Random Field Models.
The Annals of Statistics, 2012
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Inference Module: Spatial Factor
Graph Index Maintenance

B Merging B Splitting
O 4-cell quadrant at level 0 Opposite operation as
(h+1) “merged” into parent merging
at level h O Splitting decision made on
L Merging decision made on trade-off between locality
trade-off between locality gain and scalability loss

loss and scalability gain

/N n
// n \\ /N \\

Y
£ N V/

ﬁ Merging/Splitting

Initial Complete Pyramid Index Final Partial Pyramid Index
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Applications
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Configs | %
Y

System

-

with Spatial
Extensions .
4 Learning ) < |
Inference
~ J Spatial Gradient Output
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Compiled Rules Inference
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Construction - >
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Graph Variables
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In-memory
Spatial Factor

Graph Index

~
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Learning Module

B Introducing the concept of Correlation Locality

O Correlations between spatially close variables should have higher
effect on learned weights than correlations between distant variables

O Very important for spatial analysis applications

B Spatial variation of gradient descent optimization

. : : : 1
0 We employ the inverse-weight method to weigh gradient updates 5

m(m—1) I Gradient sign (i.e., -1 or 1)

i=1 &j=i+1

L _pWs = Ws + — agK
Current weight r 2 Zm m d(vievj1 \
Step size

Previous weight
Inverse-weight

2
B Employing parallel technique for high throughput 2

[1] G. Lu and D. Wong. An Adaptive Inverse-distance Weighting Spatial Interpolation Technique. In Computers
and Geosciences, 2008
[2] M. Zinkevich, M. Weimer, L. Li, and A. Smola. Parallelized Stochastic Gradient Descent. In NIPS, 2010
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Experimental Setup

B Building two knowledge bases, each from different dataset
O KB about the water quality in Texas
» Texas Ground Water Database (GWDB) about 9831 wells
» 11 inference rules with spatial relationships
KB about the air pollution concentrations in New York
» New York Heals and Mental Hygiene dataset (NYCCAYS)
» 5 inference rules with spatial relationships

B Evaluation metrics
O F1-score for quality
 Total Inference time for scalability

1
B State-of-the-art system to compare with: DeepDive[ ]

[1] J. Shin, S. Wu, F. Wang, C. D. Sa, C. Zhang, and C. Re. Incremental Knowledge Base Construction Using
DeepDive. VLDB, 2015

33



0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

F1-Score [0, 1]

Sya Results

Quality

> 2X gain

GWDB

Dataset

m Sya
m DeepDive

> 1.3X gain

NYCCAS

10000

[EEN
o
o
o

100

[EEN
o

Inference Time in Sec. (Log)

Scalability

GWDB

Dataset

m Sya
m DeepDive

NYCCAS

Sya can achieve two times accuracy gain over DeepDive, while scalability is a

little bit better
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Outline

B SMLN for Spatial Analysis

O TurboReg: A Framework for Scaling Up Autologistic
Regression Models [ACM TSAS'19, SIGSPATIAL’18]

1 Flash: Scalable Spatial Probabilistic Graphical Modeling
[SIGSPATIAL Special’20, VLDB’19, SIGSPATIAL’19]

B Summary

35



Autologistic Regression

B Predict whether a spatial phenomenon exists or not, based on

neighbor values and features (=0 =1) =Tk =)
17 2 —7 I3 4
__ Weather Prediction Birds Migration / o 1| 1] 1
5 ‘ \ : é‘ A : I5 le 17 Is \
P S s Fcatures 11 41 ol 1| Phenomenon
w2 [ 110 111 112 /D value
1 1 0 0)
\ 113 114 115 l16 Vv
1] \?] o 0
\ (x1\=1,xz=0)

Features _
Neighbor

values

] 4‘@:1%6\@ “k

Regression Parameters

Land Cover

Learning regression parameters for 80K
cells takes more than one day ®

36



TurboReg Using SMLN

Regression : _
log Pra=1.230) Equation SN SMLN Rules Rule weights =
8 Pr(z,=0/x, Zyn,) -— 5 _ > >
m Transformation Regression
Ej:l Bz +1 Y ke,
Parameters
e
P e S SMLN SMLN Rules J
LB Ty B , Transformation 3.,N
,_'I___Zl_‘_ _/_ I Ll___zls_ Z _____ SMLN Rules >
log PrE=1%.2x,) _ 1207 %0, B
Pr(zi=0[X,Zx,) [Z, ™ Z5, ]
> ; [Z, " Z3, ]
log P;EZ—O; b1z +nze + 7723| [Z, " X4, 4]
: [Z27 24, ]
" Z, " Zs, Theoretical proof of the
log% By + nze +nz3 + Nz +nzio [2/\ 2l . P )
[25 " X1, Bl Autologistic Regression-
° A ; ..
. (25" Za, 1] SMLN equivalence is in
z 1)
log pTE;z —o) = Ao+ nza s L the paper
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Two More Benefits

Generalized Models
B Conditional dependency

A A 7. 1 .
L~ / L 5 / C 4 O Traditional model:
/
,:/___Z_S_ __/42_4_//___2_7/___2_8_,'/ Lyt 23+ 27+ 2y x

/ /, /
S Zo f  Zs 0 4 3  TurboReg model:

4 Zy / 4, 7 / VAT 2 )/ v N
LETETETEwE — v I(Z3 Z7) Z4I

Z,"NZ
Depends on at least one of them 2 4

VAT

Higher-degree Interactions B Complex dependency

_______________________ , O Traditional model:
’z / z ’Z / ze 7 : . _
! . 2/ ° R4 » Expensive matrix computations x

o5 / /‘24 *,’ Z; Zs /' O TurboReg model:

4 Z, / Z4s /. R [/ » Same computation, yet, with longer
y- P 4 factors N> Ao A
‘/ Zy / Zy L/ le%ém // Z13 Z14 Z15 ZlG
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Multinomial Autologistic Regression

B Prediction and feature variables are multinomial (i.e., categorical)
O Domain values are predefined values (e.g., {0, 1, 2})
O Represent each multinomial variable with a set of binary variables

o i o ;e
.. s 0 L) .’
Prediction | <2 Feature T T, T, \

w= a0 {0 B TR
{0,1,2} zi(2) {0,1,2} L2000 21 2.2

/ J J 3

Pr(zi(1)=1|X(),Zn;,) &L 1,6 1.t
log & Pr(z:i(0)=11X (1), Zx,) Z:: %: Bj L +k§\ﬁ Se%; M,s2k(S)
wj K Zk

r

Pr(z;(2)=1|X(2),Zx,) 2,t 2t
log 7z 0 =112 Zx) —letez By k;:v SE%: 12.5%k(5)
m 1 Zk

Pr(z;(0)=1)=1— Pr(z(1)=1) — Pr(z(2) =1)
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Pr(zi=1|X,Zy,)

log Pr(z=01%,Zx,)

RegRocket: Multinomial Case

Regression

Equation
—_—

2211 Bz +1 Y ke,

Pr(z=1|X,2Zn;)

Pr(z;=01X,Zy,)

Using SMLN

SMLN
Transformation

SMLN
Transformation

|

log

Pr(z(1)=1) _
Priz(0)=1)

Pr(z:(2)=1)

t€D,,

> Bt X muslza(s) + za(s)]

SEDZ2

|

log prtzio=n — , 2 Byl + 2 malzals) + ()]
T zo
[ ]
[ ]

log

log

Pr(zi6(1)=1) __
Pr(z16(0)=1)

Pr(zi5(2)=1) 2,t 2,
Prias)=n =, 22 Ao
xy

PORNCINE TR S
teDy,

s€Dzy,

€Dz,

M,s[z14(8) + z15(5)]

+ 20 m2s[z1a(s) + z15(5)]

SMLN Rules

SMLN Rules

>

SMLN Rules

[Z0 (1) ™ Xy, 3419]

[Z, (1) ™ Xt B ]

[Z, (1) ~ Xt2, B3,17]

[Z1 (1) ™ Z;(0), 1]

[Z, (1) ™ Z,(1), ma4]

[Z, (D) ™ 2Z,(2), 111,2]

[Z: (1) ™ Z5(0), 110]

[Z, (1) ~Z5(2), "11,1]

[Z, (1) ™ Z;5(2), "11,2]

>

Rule weights =
>
Regression
Parameters

B1’n

An extended theorem is
provided for the equivalence
of multinomial case as well
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Experimental Setup

Three datasets, different variations, different data sizes

O Ebird dataset, with 3 predictors, ranging from 250 to 84K cells

O MNCrime dataset, covering 87 neighborhoods, with 11 binary predictors
O MNLandCover dataset, with 3 predictors, ranging from 1K to 1M cells

Parameters and configurations
d  85% training and 15% testing
O 7 threads, 200 factor graph grid partitions

Evaluation metrics

O Total training time

O Ratio of correctly predicted cells
O F1-score

State-of-the-art system to compare with: ngspatial’

[1] John Hughes. ngspatial: A Package for Fitting the Centered Autologistic and Sparse Spatial Generalized
Linear Mixed Models for Areal Data. The R Journal, 2014
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TurboReg Results

Scalability Accuracy
100000 ~ 27 hours o TurboReg 1 —e—TurboReg
0.9 .

10000 ——ngspatial 0 —&—ngspatial
= ~3 hours '
S 1000 =
2 =) 0.6
- >
o 100 3 05
i § 0.4
g < 03
-
: :

0.1 0

250 1k 35k 21k 84k 250 1k 35k 21k 84k
Grid Size Grid Size

TurboReg achieves at least three orders of magnitude performance gain, while
accuracy is almost the same
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RegRocket Results

Scalability F1-Score
100000 1
—o—RegRocket 09
?lOOOO ngspatial 0.8 /\\/d
8 — 0.7
v) 1000 o 0.6
i= .
g § 0.5
E 100 B 04
2 T 03
|_
0.1 ngspatial
1 0
1k 4k 15k 60k 250k Im 1k 4k 15k 60k 250k 1m
Grid Size Grid Size

RegRocket can handle 1 million grid cells in few minutes only and with 30%
average Fl-score improvement




Outline

Motivation
Introduction to Spatial Markov Logic Networks (SMLN)
SMLN for Knowledge Base Construction

SMLN for Spatial Analysis

O TurboReg: A Framework for Scaling Up Autologistic
Regression Models [ACM TSAS'19, SIGSPATIAL’18]

O Flash: Scalable Spatial Probabilistic Graphical Modeling
[SIGSPATIAL Special’20, VLDB’19, SIGSPATIAL’19]

Summary
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Spatial Probabilistic Graphical
Modeling (SPGM)

B Performing uncertain (i.e., prob.) predictions over spatial data
O Classical ML approaches (e.g., regression) ignore the probabilistic relationships

Dlsaster AnaIyS|s Crime Analysis Public Health Monitoring Geo-tagged Ads

B Representing the world as a collection of random variables with
joint probabilistic distribution
Q0 Tasks: learning the distribution, and inferring unknown variables via the distribution

Spatial Markov Random Field (SMRF) Spatial Hidden Markov Model (SHMM) Spatial Bayesian Network (SBN)
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SPGM Challenges

B Scalability Issue

0  Existing SPGM solutions can not scale beyond
prototypes over small spatial datasets

» E.g., existing SMRF solutions take more than
24 hours to perform learning and inference over

80k grid cells g™

B Reusability Issue

O Existing SPGM solutions are tailored for domain-
specific applications
» A developer would need to re-implement and

optimize the same solution for different
applications

We need to employ scalable ML frameworks

(e.g., SMLN) to build SPGM models with
efficient learning and inference operations
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Flash using SMLN

B Generates an equivalent set of weighted rules containing
logical predicates for any SPGM input
O Weights represent the original SPGM parameters
O  Rules follow the syntax of the DDlog logic programming framework

Spatial Markov Random Field (SMRF)  Spatial Hidden Markov Model (SHMM) Spatial Bayesian Network (SBN)

| [P ™M Fy, Rq] | | [O; 2> Py, b]| | ['P,vIF VIC] |

I [P1 7 P2, ] I I [PL> P, a] I I[!P3v!P1v!F3v!01]|
| [P " Ps, 1] | [O, > P,, b] [P,V IF,vIC]

[P Fy, B4] [P, > P, a] ['P,v P,V IF,vIC]
[P2 ™ Py, m] [O3 > P, b] [1D; v IF]




Flash Architecture

Admin

User SPGM User-defined
l Functions
[

MLN Rules h
Representation

SMRF ‘ SHMM
\_ _J

Logical Rules l

Factor Graph Construction

Built SPGM
Factor Graph

Casual
Prediction User Prediction
Queryl A Answer
" )
Prediction Queries
—_— )
Processing
. v,
A
Loaded Learned SPGM
SPGM Parameters
Factor
Graphs
Parameters Learning
Loaded SPGM
Factor Graphs
R
‘)

Input Data

> S~ Database Engine (e.g., PostgreSQL)

v
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Experimental Setup

B Three SPGM applications, with three different datasets
O  Bird monitoring: SMRF model + Ebird dataset
» Competitor: ngspatial 4]
O Safety analysis: SHMM model + Chicago crime dataset
» Competitor: shmm!?!
0 Land use change tracking: SBN model + Minnesota land cover dataset
» Competitor: bnspatial[s]

B Training and testing configurations
d  85% training and 15% testing

B Evaluation metrics
O Learning time (Scalability), and ratio of correctly predicted cells (Accuracy)

[1] John Hughes. ngspatial: A Package for Fitting the Centered Autologistic and Sparse Spatial Generalized
Linear Mixed Models for Areal Data. The R Journal, 2014

[2] shmm: An R Implementation of Spatial Hidden Markov Models. github.com/mawp/shmm, 2019
[3] bnspatial: Spatial Implementation of Bayesian Networks. cran.r-project.org/web/packages/bnspatial, 2019
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Flash Results

Scalability Accuracy
100000 1
—o— SMRF-Flash 0.9
10000 .
—a— SMRF-ngspatial 0.8
=)
€ 1000 = O
S S, 0.6
2 100 & 0.5
= S 04
£ 10 < 03
S .
0.2 —o— SMRF-Flash
1
0.1 —— SMRF-ngspatial
0.1 0
250 1k 35k 21k 84k 250 1k 35k 21k 84k
Grid Size Grid Size

Flash is at least two orders of magnitude faster than state-of-the-art
computational methods in learning SPGM parameters
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Summary

SMLN ‘ Sya ‘ TurboReg ‘ ‘ Flash
2 Language h
DDlog Language with Spatial Extensions
. ' ' ' y,
4 ) 4 )

Grounding Learning

Spatial Gradient Descent
Optimization

Spatial Factor Graph

J .

Inference

In-memory Spatial Factor Graph
Index

Spatial Gibbs Sampling
Algorithm




Thank You

Questions

[
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Quality (Precision)

B Precision and Recall

—

0.8
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04 ;
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Sya Results — Extension (1/7)
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Sya Results — Extension (2/7)

Execution time breakdown
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000 Inference
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7 7
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Dataset vs. Execution Time
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Sya Results — Extension (3/7)

B Effect of number of step function rules in DeepDive

0.8 | DeepDive A
‘E;‘ SYA =
O
o * K * 7 S
@ 06} -
-
= \
=
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=
o
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11 110 1.1k 11k
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Quality [0, 1]

B Effect of pruning threshold

Sya Results — Extension (4/7)
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Quality (F1-Score)

Sya Results — Extension (5/7)

B Effect of inference epochs
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Sya Results — Extension (6/7)

B Effect of incremental inference and locality level

@
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Avg KL Divergence (Log)

Sya Results — Extension (7/7)

Spatial Gibbs sampling

Spatial Gibbs Sampling
Basic Gibbs Sampling
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TurboReg Results — Extension (1/3)

B Effect of learning epochs
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B Effect of neighborhood degree

Time in sec.(Log)
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TurboReg Results — Extension (2/3)
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TurboReg Results — Extension (3/3)

B Effect of number of threads and hybrid
neighborhood degree

s & -
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RegRocket Results — Extension (1/9)

B Effect of grid size on accuracy (Table results)

Grid Metric || ngspatial RegRocket RegR:cket— RegR;cket— Grid Metric || ngspatial RegRocket RegR;Jcket- RegR;Ckﬁ_
Size Size
Prec. 0.498 0.746 0.872 0.731 Prec. 0.551 0.846 0.847 0.858
1k Rec. 0.491 0.757 0.837 0.763 250 Rec. 0.951 0.966 0.976 0.985
F1 0476 0.653 0.708 0.683 F1 0.698 0.902 0.907 0.917
Prec. 0.667 0.803 0.808 0.933 Prec. 0.503 0.801 0.876 0.883
4k Rec. 0.601 0.834 0.856 0.871 1k Rec. 0.981 0.986 0.965 0.961
F1 0.606 0.742 0.704 0.782 F1 0.665 0.834 0.918 0.921
Prec. 0.671 0.804 0.906 0.962 Prec. 0.477 0.865 0.91¢6 0.901
15k Rec. 0.741 0.832 0.898 0.903 3.5k  Rec. 0.977 0.991 0.992 0.985
F1 0.635 0.721 0.841 0.834 F1 0.641 0.924 0.952 0.941
Prec. N/A 0.822 0.913 0.976 Prec. N/A 0.885 0.875 0.912
60k Rec. N/A 0.821 0.919 0.919 5k Rec. N/A 0.984 0.986 0.984
F1 N/A 0.678 0.736 0.798 F1 N/A 0.932 0.927 0.947
Prec. N/A 0.864 0.932 0.967 Prec. N/A 0.864 0.866 0.895
250k  Rec. N/A 0.893 0.912 0.915 21k Rec. N/A 0.984 0.991 0.991
F1 N/A 0.839 0.781 0.806 F1 N/A 0.921 0.924 0.941
Prec. N/A 0.878 0.929 0.961 Prec. N/A 0.889 0.929 0.919
1m Rec. N/A 0.908 0.931 0.895 84k Rec. N/A 0.991 0.993 0.991
F1 N/A 0.859 0.868 0.873 F1 N/A 0.937 0.956 0.954

MNLandCover Dataset

Ebird Dataset
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B Effect of grid size on scalability

Time in Sec. (Log)

RegRocket Results — Extension (2/9)
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RegRocket Results — Extension (3/9)

B Effect of learning epochs on accuracy

Num. of Metric || RegRocket RegRocket-4 RegRocket-8 Num. of Metric || RegRocket RegRocket-4 RegRocket-8
Epochs Epochs
Prec. 0.815 0.883 0.906 Prec. 0.849 0.899 0.909
100 Rec. 0.845 0.864 0.854 100 Rec. 0.845 0.835 0.825
F1 0.772 0.732 0.715 F1 0.847 0.866 0.865
Prec. 0.864 0.932 0.967 Prec. 0.889 0.929 0.919
1000 Rec. 0.893 0.912 0.915 1000 Rec. 0.991 0.993 0.991
F1 0.839 0.781 0.806 F1 0.937 0.961 0.954
Prec. 0.881 0.931 0.966 Prec. 0.909 0.919 0.919
10k Rec. 0.866 0.909 0.915 10k Rec. 0.925 0.935 0.995
F1 0.826 0.785 0.795 F1 0.917 0.927 0.955

MNLandCover Dataset

Ebird Dataset
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RegRocket Results — Extension (4/9)

B Effect of learning epochs on scalability
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RegRocket Results — Extension (5/9)

B Effect of optimization step size on accuracy
Step  Metric || RegRocket RegRocket-4 RegRocket-8 Step  Metric || RegRocket RegRocket-4 RegRocket-§
Size Size
Prec. 0.829 0.921 0.966 Prec. 0.914 0.909 0.929
0.0001 Rec. 0.816 0.789 0.915 0.0001 Rec. 0.993 0.998 0.995
F1 0.782 0.825 0.875 F1 0.952 0.951 0.961
Prec. 0.864 0.932 0.967 Prec. 0.889 0.929 0.919
0.001 Rec. 0.893 0.912 0.915 0.001 Rec. 0.991 0.993 0.991
F1 0.839 0.781 0.806 F1 0.937 0.956 0.954
Prec. 0.819 0.871 0.926 Prec. 0.879 0.909 0.899
0.01 Rec. 0.806 0.838 0.875 0.01 Rec. 0.985 0.985 0.985
F1 0.756 0.745 0.795 F1 0.929 0.945 0.941
Prec. 0.779 0.861 0.916 Prec. 0.779 0.884 0.879
0.1 Rec. 0.766 0.828 0.865 0.1 Rec. 0.985 0.895 0.895
F1 0.676 0.745 0.785 F1 0.871 0.839 0.887

MNLandCover Dataset

Ebird Dataset
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RegRocket Results — Extension (6/9)

B Effect of optimization step size on scalability
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RegRocket Results — Extension (7/9)

B Effect of factor graph partitions on accuracy

Num. of Metric || RegRocket RegRocket-4 RegRocket-8 Num. of Metric || RegRocket RegRocket-4 RegRocket-8
Partitions Partitions
Prec. 0.945 0.962 0.971 Prec. 0.967 0.944 0.968
50 Rec. 0.894 0.931 0.912 50 Rec. 0.992 0.991 0.982
F1 0.852 0.877 0.914 F1 0.979 0.967 0.975
Prec. 0.913 0.954 0.961 Prec. 0.923 0.941 0.937
100 Rec. 0.891 0.923 0.931 100 Rec. 0.971 0.981 0.983
F1 0.843 0.812 0.861 F1 0.946 0.961 0.959
Prec. 0.864 0.932 0.967 Prec. 0.889 0.929 0.919
200 Rec. 0.893 0.912 0.915 200 Rec. 0.991 0.993 0.991
F1 0.839 0.781 0.806 F1 0.937 0.959 0.953
Prec. 0.782 0.812 0.815 Prec. 0.674 0.789 0.792
300 Rec. 0.734 0.831 0.821 300 Rec. 0.782 0.712 0.812
F1 0.689 0.701 0.712 F1 0.724 0.748 0.802

MNLandCover Dataset

Ebird Dataset
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RegRocket Results — Extension (8/9)

B Effect of factor graph partitions on scalability
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RegRocket Results — Extension (9/9)

B Effect of number of threads on scalability
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Flash Results — Extension (1/2)

B SHMM accuracy and scalability
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Flash Results — Extension (2/2)

B SBN accuracy and scalability
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