Adopting Markov Logic Networks for Big Spatial Data and Applications

Ibrahim Sabek

 Computer Science

USCViterbi School of Engineering

Thomas Lord Department of Spatial Sciences Institute (SSI)

Dana and David Dornsife College of Letters, Arts and Sciences

The Rise of Machine Learning (ML)

PYTÓRCH **TensorFlow** mxnet Chainer Spark Caffe **MLIib** theano Caffe2 **Microsoft** Cognitive **Toolkit**

> *"Machine learning is a core, transformative way by which we're rethinking everything we're doing." -Google CEO Sundar Pichai*

ML and Big Data

Event Detection Image Analysis

Meanwhile, … Big Spatial Data

ML and Big Spatial Data

Event Detection Image Analysis

ML internals ignore the properties of spatial data and relationships

"Thinking Spatial" … Can we adapt ML internals to properly use spatial data?

Knowledge Base Construction

Knowledge Base Construction

Google Vault

DeepDive: Introduction

Extracting structured data from unstructured data.

❑ Structured data: SQL tables, Knowledgebases, association rules …

Lo. Ildeepo

- ❑ Unstructured data: text, image, PDFs, tables, ….
- **Infrastructure for probabilistic machine** Deep Dive saw **learning and data mining algorithms.**
- **Think of features not algorithms.**
	- **Declarative inference rules:**

```
person_smokes(p) => 
     person_has_cancer(p) :-
     person(p, _).
```


DeepDive: Smoke Example

```
person (
   person_id bigint,
   name text
).
person_has_cancer? (
   person_id bigint
).
person_smokes? (
   person_id bigint
).
friends (
     person_id bigint,
     friend_id bigint
).
@weight(0.5)
person_smokes(p) => 
person has cancer(p):- person(p).
@weight(0.4)
person_smokes(p1) => 
 person_smokes(p2) :-
   person(p1, _), person(p2, _),
   friends(p1, p2).
```
■ **person_has_cancer and person_smokes need to be inferred.**

Implication relation depends on Boolean logic (AND, OR)

What if the implication relation has spatial semantics, e.g. meet, neighbor, north of?

Variables are linked to each other through ID matching (Hash join).

What if the variables should be matched based on their overlap areas (Spatial Join)?

Where Is the Problem?

DeepDive is built on top of Markov Logic Networks (MLN)

- ❑ MLN is designed for *binary logic* only
	- \triangleright E.g., bitwise-AND, bitwise-OR, and imply

■ **MLN is not spatially- aware**

- ❑ It can not interpret the *gradual semantics* of spatial predicates
	- ➢ E.g., P3: The closer Y&X the higher Y infect rate

We propose *Spatial Markov Logic Networks (SMLN)***, a full-fledged MLN framework with a native support for spatial data and applications**

Outline

■ **Motivation**

■ **Introduction to Spatial Markov Logic Networks (SMLN)**

- ❑ MLN in a Nutshell
- ❑ SMLN Architecture
- **SMLN for Knowledge Base Construction**
- **SMLN for Spatial Analysis**
- **Summary**

Markov Logic Networks (MLN)

MLN is an end-to-end ML

solution

Alchemy - Open Source AI

IQUISTON, TEXAS, LISA 2018

ACM SIGMOD/PODS International Conference on Management of Data

Markov Logic Networks (MLN)

MLN Architecture

SMLN Architecture

Outline

■ **Motivation**

Introduction to Spatial Markov Logic Networks (SMLN)

■ **SMLN for Knowledge Base Construction**

❑ Sya: A Spatial Probabilistic Knowledge Base Construction System [ICDE'2020, SIGMOD'18]

SMLN for Spatial Analysis

■ **Summary**

Going Back to the Ebola Example ...

Going Back to the Ebola Example ...

SMLN Architecture

Language Module

SMLN Architecture

Grounding Module: Spatial Factors

Introducing a new spatial factor type

❑ Considers the spatial correlation over variables based on their distance

Extended to support the categorical case

❑ Favors similar domain values from close variables

$$
p_{j,k}(t_j, t_k) = \begin{cases} e^{w_{d(v_j, v_k)}} & v_j(t_j) = v_k(t_k) = 1, t_j = t_k \\ e^{-w_{d(v_j, v_k)}} & v_j(t_j) = v_k(t_k) = 1, t_j \neq t_k \\ 1 & otherwise \end{cases}
$$

Domain values

Spatial factor graph

❑ Combines spatial and logical (i.e., non-spatial) factors in an efficient manner

Grounding Module: Spatial Factor Graph Construction

Two effective optimizations

- ❑ Providing a heuristic query optimizer (e.g., spatial queries reordering)
- ❑ Using co-occurrence statistics to predict and remove *inactive* spatial factors based on training data

SMLN Architecture

Inference Module: Spatial Gibbs Sampling

Existing Gibbs sampling algorithms are inefficient

- ❑ Sequential or single-site sampling updates within the same epoch
- ❑ Slow convergence when having spatial correlations

Spatial variation of Gibbs sampling

- ❑ Instead of sequential sampling, we use *concliques-based sampling*
	- \triangleright A conclique is a set of locations such that no two locations are neighbors
	- \triangleright Designed for sampling over^[1] spatially-dependent variables
- □ Guarantees both efficiency and accuracy in our case

In-memory Spatial Factor Graph Index

[1] M. Kaiser, S. Lahiri, and D. Nordman. Goodness of Fit Tests for a Class of Markov Random Field Models. The Annals of Statistics, 2012

Inference Module: Spatial Factor Graph Index Maintenance

Merging

- ❑ 4-cell quadrant at level (*h*+1) "merged" into parent at level *h*
- ❑ Merging decision made on trade-off between *locality loss* and *scalability gain*

■ **Splitting**

- ❑ Opposite operation as merging
- ❑ Splitting decision made on trade-off between *locality gain* and *scalability loss*

Initial Complete Pyramid Index Final Partial Pyramid Index

SMLN Architecture

Learning Module

Introducing the concept of Correlation Locality

- ❑ Correlations between spatially close variables should have higher effect on learned weights than correlations between distant variables
- \Box Very important for spatial analysis applications

Spatial variation of gradient descent optimization

❑ We employ the inverse-weight method to weigh gradient updates

[1] G. Lu and D. Wong. An Adaptive Inverse-distance Weighting Spatial Interpolation Technique. In Computers and Geosciences, 2008 [2] M. Zinkevich, M. Weimer, L. Li, and A. Smola. Parallelized Stochastic Gradient Descent. In NIPS, 2010

[1]

Experimental Setup

Building two knowledge bases, each from different dataset

- ❑ KB about the water quality in Texas
	- ➢ Texas Ground Water Database (GWDB) about 9831 wells
	- \geq 11 inference rules with spatial relationships
- ❑ KB about the air pollution concentrations in New York
	- ➢ New York Heals and Mental Hygiene dataset (NYCCAS)
	- \geq 5 inference rules with spatial relationships

Evaluation metrics

- ❑ F1-score for quality
- ❑ Total Inference time for scalability

■ **State-of-the-art system to compare with: DeepDive** [1]

[1] J. Shin, S. Wu, F. Wang, C. D. Sa, C. Zhang, and C. Re. Incremental Knowledge Base Construction Using DeepDive. VLDB, 2015

Sya Results

Sya can achieve two times accuracy gain over DeepDive, while scalability is a little bit better

Outline

■ **Motivation**

Introduction to Spatial Markov Logic Networks (SMLN)

■ **SMLN for Knowledge Base Construction**

SMLN for Spatial Analysis

- ❑ TurboReg: A Framework for Scaling Up Autologistic Regression Models [ACM TSAS'19, SIGSPATIAL'18]
- ❑ Flash: Scalable Spatial Probabilistic Graphical Modeling [SIGSPATIAL Special'20, VLDB'19, SIGSPATIAL'19]

■ **Summary**

Autologistic Regression

TurboReg Using SMLN

Two More Benefits

Generalized Models

Conditional dependency

❑ Traditional model:

 $\mathbf{Z}_2 + \mathbf{Z}_3 + \mathbf{Z}_7 + \mathbf{Z}_{10}$

❑ TurboReg model:

 $(\mathbf{Z}_3^\vee \mathbf{Z}_7) \wedge \mathbf{Z}_4$ $\mathbf{Z}_{2} \wedge \mathbf{Z}_{4}$ Z_{10} ^ Z_4

Higher-degree Interactions

Complex dependency

- ❑ Traditional model:
	- \triangleright Expensive matrix computations
- ❑ TurboReg model:
	- \triangleright Same computation, yet, with longer factors Z_{13} ^ Z_{14} ^ Z_{15} ^ Z_{16}

Multinomial Autologistic Regression

Prediction and feature variables are multinomial (i.e., categorical)

- ❑ Domain values are predefined values (e.g., {0, 1, 2})
- ❑ Represent each multinomial variable with a set of binary variables

RegRocket: Multinomial Case Using SMLN

Experimental Setup

■ **Three datasets, different variations, different data sizes**

- ❑ Ebird dataset, with 3 predictors, ranging from 250 to 84K cells
- ❑ MNCrime dataset, covering 87 neighborhoods, with 11 binary predictors
- ❑ MNLandCover dataset, with 3 predictors, ranging from 1K to 1M cells

■ **Parameters and configurations**

- ❑ 85% training and 15% testing
- \Box 7 threads, 200 factor graph grid partitions

Evaluation metrics

- ❑ Total training time
- ❑ Ratio of correctly predicted cells
- ❑ F1-score

■ State-of-the-art system to compare with: ngspatial^[1]

[1] John Hughes. ngspatial: A Package for Fitting the Centered Autologistic and Sparse Spatial Generalized Linear Mixed Models for Areal Data. The R Journal, 2014

TurboReg Results

TurboReg achieves at least three orders of magnitude performance gain, while accuracy is almost the same

RegRocket Results

RegRocket can handle 1 million grid cells in few minutes only and with 30% average F1-score improvement

Outline

■ **Motivation**

Introduction to Spatial Markov Logic Networks (SMLN)

SMLN for Knowledge Base Construction

SMLN for Spatial Analysis

- ❑ TurboReg: A Framework for Scaling Up Autologistic Regression Models [ACM TSAS'19, SIGSPATIAL'18]
- ❑ Flash: Scalable Spatial Probabilistic Graphical Modeling [SIGSPATIAL Special'20, VLDB'19, SIGSPATIAL'19]

■ **Summary**

Spatial Probabilistic Graphical Modeling (SPGM)

■ **Performing** *uncertain* **(i.e., prob.) predictions over spatial data**

❑ Classical ML approaches (e.g., regression) ignore the probabilistic relationships

Representing the world as a collection of *random variables* **with joint probabilistic distribution**

Tasks: learning the distribution, and inferring unknown variables via the distribution

Spatial Markov Random Field (SMRF)

Spatial Hidden Markov Model (SHMM)

Spatial Bayesian Network (SBN)

SPGM Challenges

Scalability Issue

- ❑ Existing SPGM solutions can not scale beyond prototypes over small spatial datasets
	- ➢ E.g., existing SMRF solutions take more than 24 hours to perform learning and inference over 80k grid cells

■ **Reusability Issue**

- ❑ Existing SPGM solutions are tailored for domainspecific applications
	- ➢ A developer would need to re-implement and optimize the same solution for different applications

We need to employ scalable ML frameworks (e.g., SMLN) to build SPGM models with efficient learning and inference operations

Flash using SMLN

Generates an equivalent set of weighted rules containing logical predicates for any SPGM input

- ❑ Weights represent the original SPGM parameters
- ❑ Rules follow the syntax of the DDlog logic programming framework

Spatial Markov Random Field (SMRF)

Spatial Hidden Markov Model (SHMM)

Spatial Bayesian Network (SBN)

Flash Architecture

Experimental Setup

Three SPGM applications, with three different datasets

- ❑ Bird monitoring: SMRF model + Ebird dataset
	- \triangleright Competitor: ngspatial^[1]
- ❑ Safety analysis: SHMM model + Chicago crime dataset
	- > Competitor: shmm^[2]
- ❑ Land use change tracking: SBN model + Minnesota land cover dataset \triangleright Competitor: bnspatial^[3]
- **Training and testing configurations**
	- ❑ 85% training and 15% testing

Evaluation metrics

❑ Learning time (Scalability), and ratio of correctly predicted cells (Accuracy)

[1] John Hughes. ngspatial: A Package for Fitting the Centered Autologistic and Sparse Spatial Generalized Linear Mixed Models for Areal Data. The R Journal, 2014

[2] shmm: An R Implementation of Spatial Hidden Markov Models. github.com/mawp/shmm, 2019

[3] bnspatial: Spatial Implementation of Bayesian Networks. cran.r-project.org/web/packages/bnspatial, 2019

Flash Results

Flash is at least two orders of magnitude faster than state-of-the-art computational methods in learning SPGM parameters

Summary

Thank You

Questions

Sya Results – Extension (1/7)

Precision and Recall

Sya Results – Extension (2/7)

Execution time breakdown

Dataset vs. Execution Time

Sya Results – Extension (3/7)

Effect of number of step function rules in DeepDive

Sya Results – Extension (4/7)

Effect of pruning threshold

Sya Results – Extension (5/7)

Effect of inference epochs

Accuracy **Inference Time**

Sya Results – Extension (6/7)

Effect of incremental inference and locality level

Incremental Inference Locality Level

Sya Results – Extension (7/7)

Spatial Gibbs sampling

GWDB Dataset NYCCAS Dataset

TurboReg Results – Extension (1/3)

Effect of learning epochs

TurboReg Results – Extension (2/3)

Effect of neighborhood degree

Scalability Accuracy

TurboReg Results – Extension (3/3)

Effect of number of threads and hybrid neighborhood degree

RegRocket Results – Extension (1/9)

Effect of grid size on accuracy (Table results)

RegRocket Results – Extension (2/9)

Effect of grid size on scalability

RegRocket Results – Extension (3/9)

Effect of learning epochs on accuracy

RegRocket Results – Extension (4/9)

Effect of learning epochs on scalability

RegRocket Results – Extension (5/9)

Effect of optimization step size on accuracy

RegRocket Results – Extension (6/9)

Effect of optimization step size on scalability

RegRocket Results – Extension (7/9)

Effect of factor graph partitions on accuracy

RegRocket Results – Extension (8/9)

Effect of factor graph partitions on scalability

RegRocket Results – Extension (9/9)

Effect of number of threads on scalability

Flash Results – Extension (1/2)

SHMM accuracy and scalability

Scalability Accuracy
Flash Results – Extension (2/2)

SBN accuracy and scalability

Scalability Accuracy