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What is Information Management?
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What is Data Management?

How do you manage your photos?
* Most cellphones take nice photos

 Taking 3 photos a day will give you ~1,000
photos a year

 Taking a 5-day vacation would give you 200
photos
* Ways to managing photos
* Leave them on the phone?
* Organize them into folders?

 Upload them to some cloud services?
*  Which method is the best?
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Considerations for Managing Photos

Searching must
be fast!

@ Find photos by
time
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Find photos by
locations

Find photos by

subjects
Available
resources

Photos need to
be secure
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Data Management (Oracle)

. Data management is the practice of collecting, keeping,
and using data securely, efficiently, and cost-effectively.

. help people, organizations, and connected things

- optimize the use of data within the bounds of policy and
regulation

_ (use data to) make decisions and take actions that maximize the
benefit to the organization

https://www.oracle.com/database/what-is-data-management/
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What are Spatial Data?

USCVlterbl | 6

School of Eng ng Jniversity of Southern California



Spatial Data

What is Spatial Data?
e Data that can be spatially referenced, e.g.,

e Time series from fixed-site sensors
(e.g., traffic, air quality)

Crypto.com Arena

4.7 24,429 reviews

* Remotely sensed data (e.g., satellite
imagery) o O

Directions Save Nearby Sendtoyour Share
phone

* Geotagged photos and tweets

Massive, modern arena hosts LA teams, the
Lakers, Clippers, Kings & Sparks, plus music >

* Documents mentioning location

Ad - Book Today - Free Cancellation
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Spatial Data Do Not Have to be Geo Data

* Digital Pathology  EEG Data
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What does “Spatially Referenced” Mean?

Spatial Coordinates Spatial Reference System
e.g., latitude and longitude, X and Y e.g., WGS84, Cartesian System
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Spatial Data Representations — Raster Data

Probability of Precipitation

https://blog.crunchydata.com/blog/postgis-raster-and-crunchy-bridge
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Spatial Data Representations — Vector Data

https://saylordotorg.github.io/text_essentials-of-geographic-information-systems/s08-02-vector-data-models.html
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Spatial Data in Traditional Database Management Systems

 Use common Abstract Data Types, e.g., integer, string, floating points

Census_blocks Polygon
A Name Area Population boundary-ID boundary-1D edge-name
-z 340 1 1839 1050 1050 A
fi 1050 B
1050 C
1{(0,1) D (1,1) 4 1050 D
Edge
edge-name endpoint
A 1 Point
A 2 endpoint X-coor y-coor
A 1050 C - 5
1 0 1
B 3 2 0 0
¢ 3 3 1 0
; C 4 A 1 1
2 . D 1
(0,0) B (1,0)  x-axis 2 !
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Spatial Data in Traditional Database Management Systems

How about this? What is the data type of the boundary column? String?

A
T
- Census_blocks
1(0,1) D (1,1) 4
Name | Area |Population | Boundary
1050 ] 1839 Polyline((0,0),(0,1),(1,1),(1,0))
A 1050 C
2 3
(0,0) B (1,0)  x-axis
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Why do We Need Spatial DBMS?

 Example of spatial query use cases in (a) pathology imaging; (b) GIS applications

CONTAINMENT SPATIAL JOIN NEAREST NEIGHBOR
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Wang, Fusheng, Ablimit Aji, and Hoang Vo. "High performance spatial queries for spatial big data: from medical imaging to GIS." Sigspatial Special 6, no. 3 (2015): 11-18.
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Spatial Data Management

Spatial Databases

 Support spatial data manipulations using SQL like
languages

 Require a relational database engine
* e.g., PostGIS

Spatial Big Data Platforms M\
* Support highly parallelized spatial data manipulations )
* Require a Big Data processing platform geomesa

 e.g., GeoMESA (MapReduce), Apache Sedona (based
on Spark)
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ML-based Applications using Spatial Data?
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ML-based Applications using Spatial Data

 Examples
— POI Visit Forecasting: Predicting the # of visits to specific POls at different times
— Seizure Detection: Predicting the occurrence of seizures in specific brain regions during
particular time intervals.
— Traffic Forecasting: Predicting traffic flow on roads during various times of day
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This Course
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Course Overview

* Course Focus:
— Efficient storage, manipulation, and analysis of geospatial data
— Introduction to real-world location-based applications and datasets
— Materials will cover both traditional methods and modern ML-based approaches
* Topics
— Spatial Index Structures: Quadtrees, K-d Trees, R-Trees, Voronoi indexes
— Spatial Queries: k-NN, Reverse-NN, Skyline, Spatial Skyline
— Non-Euclidean Spaces: Road networks, land surfaces analysis
— Geo-Spatial Applications: Spatial crowdsourcing, geo-social networks, ride sharing
— Data Privacy: Geospatial data privacy and security
— Machine Learning: Clustering, classification, anomaly detection
— Al for Spatiotemporal Analysis: Predictive analytics, traffic forecasting, dynamic routing
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Course Prerequisites

 Some Level of Familiarity with:
— Data Modeling: ER model, relational model, SQL, normalization
— Physical Data Design: Storage devices, B+-tree, hash indexes
— Database Protocols: Concurrency control, crash recovery

— Machine Learning: Supervised, unsupervised, reinforcement learning
* CSCI-567 (ML): Recommended, but not mandatory

— Programming Languages: Proficiency in C/C++ or Python
* Some understanding of deep learning frameworks like PyTorch is recommended

USC Viterbi | 20
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Grading and Course Work

Grading is as follows

 Two midterms (60%)
— Midterm 1: 10/14 (30%)
* Covers material up to Lecture 14
— Midterm 2:12/04 (30%)
* Covers material from Lecture 15 onwards
* Assignments: (30%)
— Deliverable 1: Due 9/29 (10%)
— Deliverable 2: Due 10/28 (10%)
— Deliverable 3: Due 12/3 (10%)

e Participation: (10%)
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Assignments

e Assignment 1: Will be released on 09/04
— Topic: Spatial Indexing and Simple Queries
— Main Tasks:

* Implement a spatial index using KD-Tree
* Implement and analyze nearest neighbor and range queries.
* Compare simple partitioning technigues with spatial indexing.

* Assignment 2: Will be released on 09/30

— Topic: Advanced Spatial Queries and Non-Euclidean Spaces
— Main Tasks:

* Develop Reverse K-Nearest Neighbor queries.
* Process queries within road networks and other complex spaces.
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Assignments (cont’d)

e Assignment 3: Will be released on 10/30
— Topic: Traffic Forecasting with Graph Neural Network Models

— Main Tasks:
* Implement a GNN forecasting model.
* Experiment with different graph constructions and compare outcomes.

Logistics
* Platform: Released and submitted via Brightspace and course website.
e Late Policy: 5% deduction per day late, with a maximum of 3 days, no exception

 Collaboration: Individual work unless stated otherwise.

e Grading Criteria: Evaluated based on the correctness of results, clarity of presentation, and
quality of code (details in assignment descriptions).
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Course Staff and Office Hours

e Instructor: Professor Cyrus Shahabi

— Email: shahabi@usc.edu
— Office Hours: Mon-Wed, 4-5 PM, PHE-306a.

Teaching Assistants:
 Maria Despoina Siampou

— Email: siampou@usc.edu
— Office Hours: TBD
* Arash Hajisafi

— Email: hajisafi@usc.edu
— Office Hours: TBD
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Communications

e Course Website: infolab.usc.edu/teaching/csci587/

— Material distributions: e.g., lecture slides, reading materials

— Lectures schedule
* Assignments: Through Brightspace + course website
* Questions/Requests: Email
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https://infolab.usc.edu/teaching/csci587/

Readings

 Textbook: Foundations of Multidimensional and Metric Data Structures by
Hanan Samet.

— Not required, but recommended.
— A 30% coupon is available at https://www.cs.umd.edu/~hjs/.

* Additional Readings: Published Papers (strongly recommended)

— A list of reading material is available at the course schedule through the website:
infolab.usc.edu/teaching/csci587/

— Readings are available through infolab.usc.edu/teaching/csci587 syllabus/

— AIl USC students have automatic access to these digital archives.
— Strongly recommended for the exams.
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https://www.amazon.com/Foundations-Multidimensional-Structures-Kaufmann-Computer/dp/0123694469/ref=sr_1_1/105-6267729-7062047?ie=UTF8&s=books&qid=1189703688&sr=1-1
https://www.amazon.com/Foundations-Multidimensional-Structures-Kaufmann-Computer/dp/0123694469/ref=sr_1_1/105-6267729-7062047?ie=UTF8&s=books&qid=1189703688&sr=1-1
https://www.cs.umd.edu/~hjs/
https://infolab.usc.edu/teaching/csci587/
https://infolab.usc.edu/teaching/csci587_syllabus/

Q&A
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