

Introduction to CSCI-587: Geospatial Information Management 8/24/2024

University of Southern California USC Viterbi School of Engineering Fall 2024

* Some content are adapted from Chiang, Yao-Yi Introduction to Spatial Artificial Intelligence. Available from https://yaoyichi.github.io/spatial-ai.html

University of Southern California

What is Information Management?



2 University of Southern California

What is Data Management?

How do you manage your photos?

- Most cellphones take nice photos
 - Taking 3 photos a day will give you ~1,000 photos a year
 - Taking a 5-day vacation would give you 200 photos
- Ways to managing photos
 - Leave them on the phone?
 - Organize them into folders?
 - Upload them to some cloud services?
- Which method is the best?

Louvre, con il solito

vincitori e vinti.

I had hoped to see more but no luck so

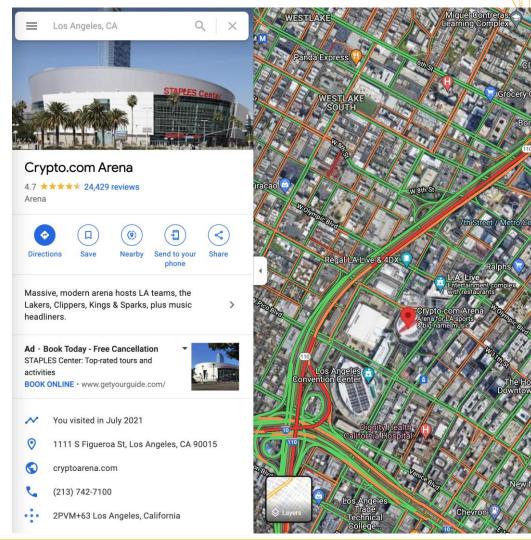
Considerations for Managing Photos

Data Management (Oracle)

- Data management is the practice of collecting, keeping, and using data securely, efficiently, and cost-effectively.
- help people, organizations, and connected things
 - optimize the use of data within the bounds of policy and regulation
 - (use data to) make decisions and take actions that maximize the benefit to the organization

https://www.oracle.com/database/what-is-data-management/

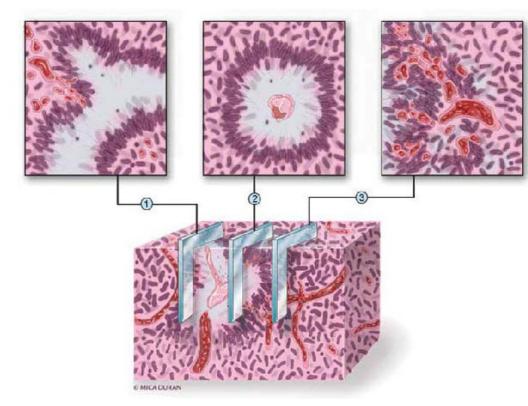
What are Spatial Data?


6 University of Southern California

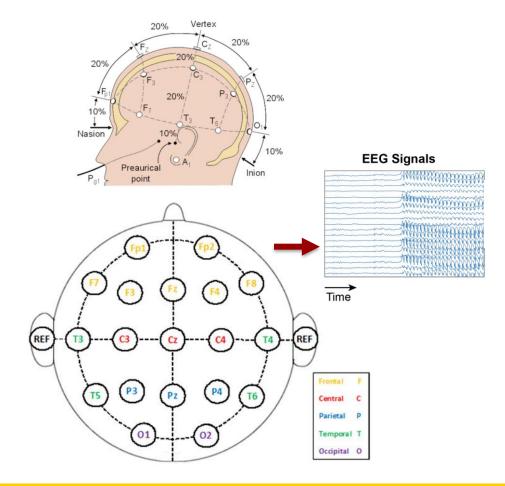
Spatial Data

What is Spatial Data?

- Data that can be spatially referenced, e.g.,
 - Time series from fixed-site sensors (e.g., traffic, air quality)
 - Remotely sensed data (e.g., satellite imagery)
 - Geotagged photos and tweets
 - Documents mentioning location entities



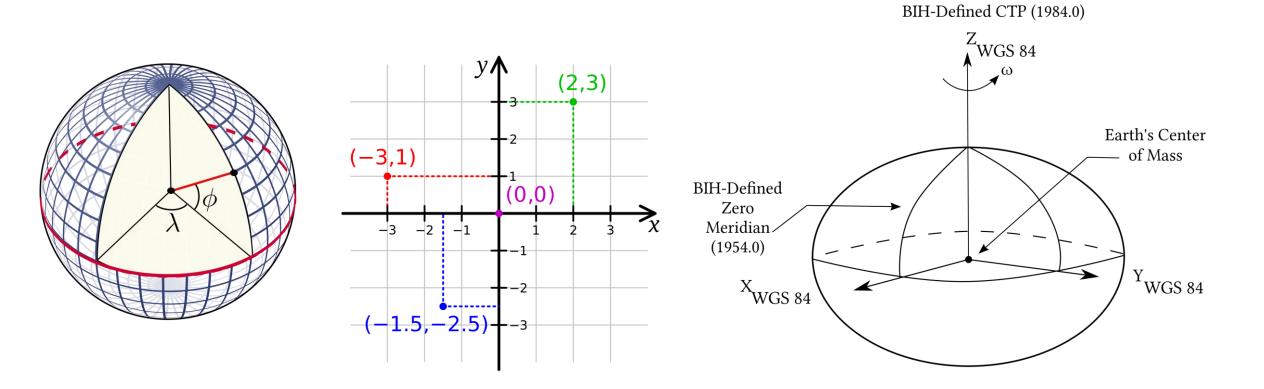
Spatial Data Do Not Have to be Geo Data


• Digital Pathology

Rong, Y., Durden, D. L., Van Meir, E. G., & Brat, D. J. (2006). 'Pseudopalisading'necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. *Journal of Neuropathology & Experimental Neurology*, *65*(6), 529-539.

• EEG Data

What does "Spatially Referenced" Mean?

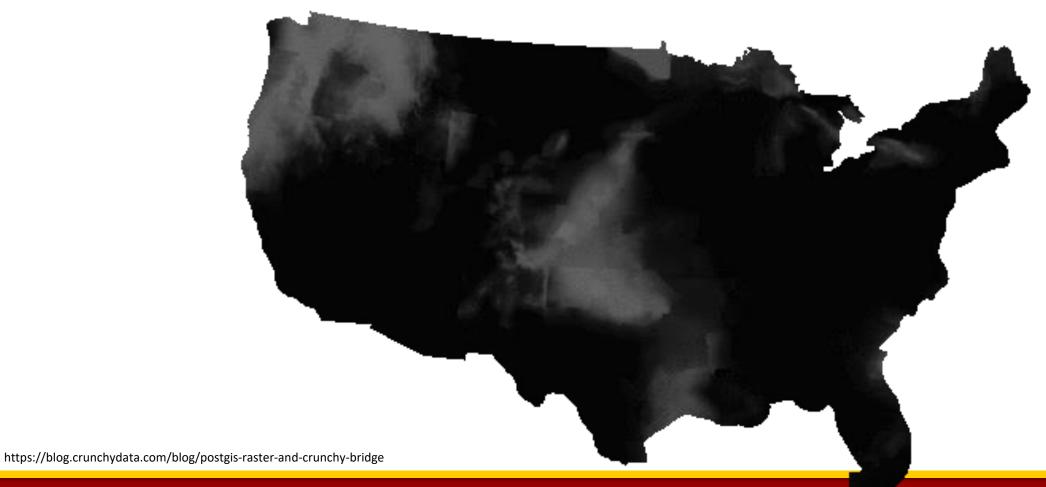


Spatial Coordinates

e.g., latitude and longitude, X and Y

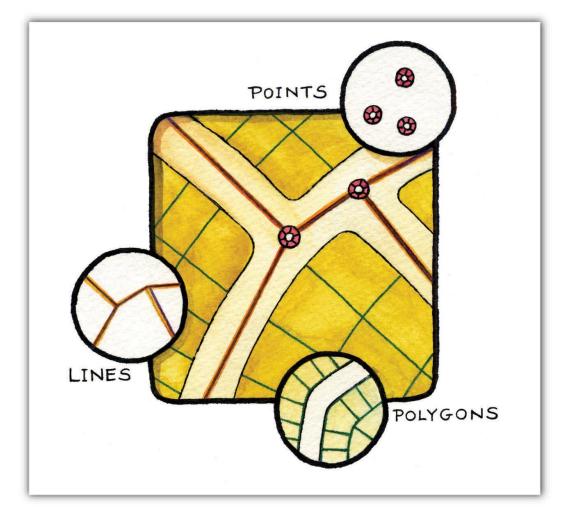
Spatial Reference System

e.g., WGS84, Cartesian System



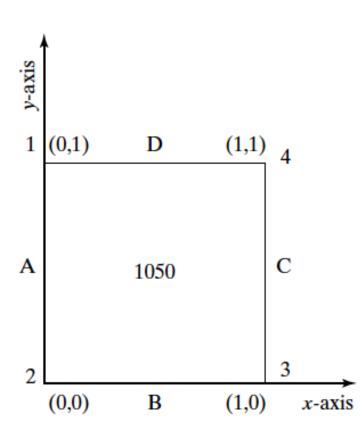
Spatial Data Representations – Raster Data

Probability of Precipitation



10 University of Southern California

Spatial Data Representations – Vector Data

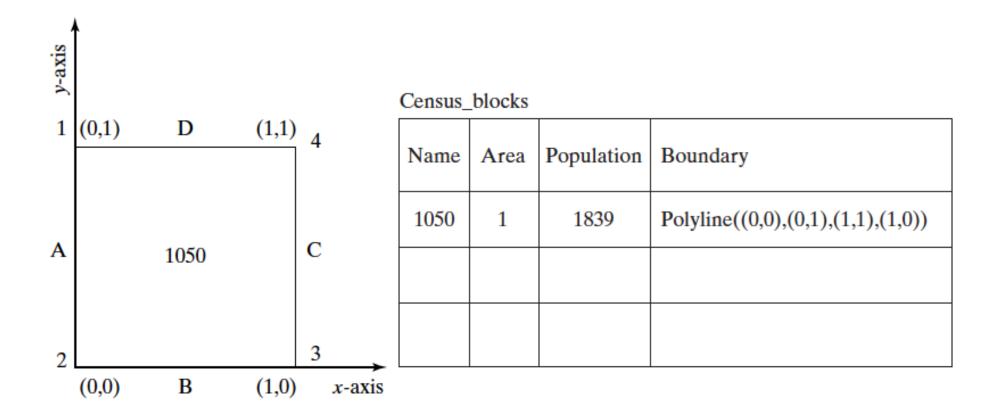

https://saylordotorg.github.io/text_essentials-of-geographic-information-systems/s08-02-vector-data-models.html

Spatial Data in Traditional Database Management Systems

• Use common Abstract Data Types, e.g., integer, string, floating points

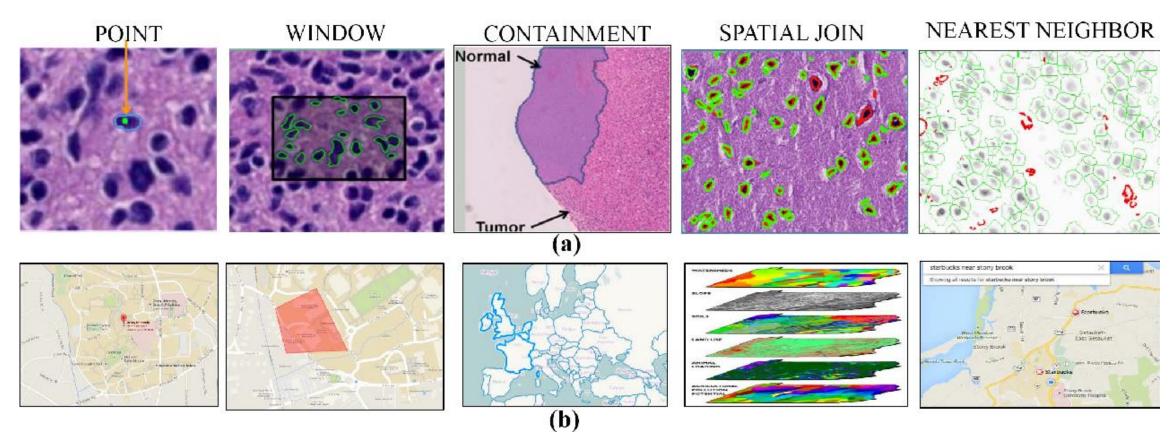
Census_bl	ocks			Polygon		
Name	Area	Population	boundary-ID	boundary-ID	edge-name	
340	1	1839	1050	1050	А	
				1050	В	
				1050	С	
				1050	D	

Edge


Edge				
edge-name	endpoint			
Α	1	Point		
A	2	endpoint	x-coor	y-coor
В	2	1	0	1
В	3	2	0	0
С	3	3	1	0
С	4	4	1	1
D	4	4	1	1
D	1			

Spatial Data in Traditional Database Management Systems

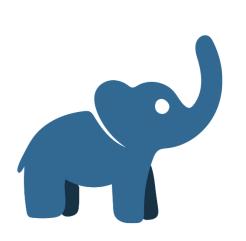
• How about this? What is the data type of the boundary column? String?



Why do We Need Spatial DBMS?

• Example of spatial query use cases in (a) pathology imaging; (b) GIS applications

Wang, Fusheng, Ablimit Aji, and Hoang Vo. "High performance spatial queries for spatial big data: from medical imaging to GIS." Sigspatial Special 6, no. 3 (2015): 11-18.

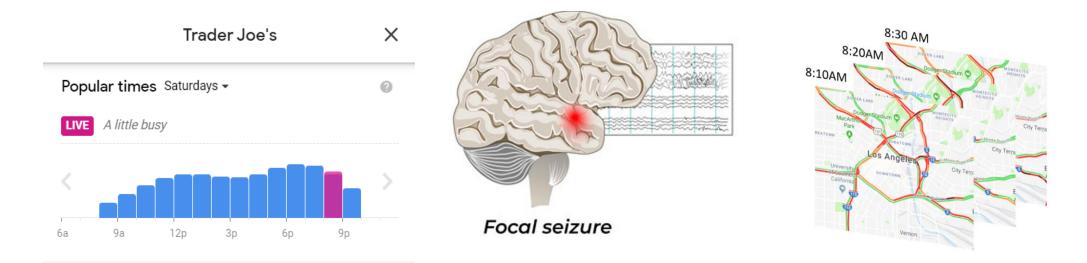

Spatial Data Management

Spatial Databases

- Support spatial data manipulations using SQL like languages
- Require a relational database engine
- e.g., PostGIS

Spatial Big Data Platforms

- Support highly parallelized spatial data manipulations
- Require a Big Data processing platform
- e.g., GeoMESA (MapReduce), Apache Sedona (based on Spark)


ML-based Applications using Spatial Data?

ML-based Applications using Spatial Data

• Examples

- **POI Visit Forecasting:** Predicting the # of visits to specific POIs at different times
- Seizure Detection: Predicting the occurrence of seizures in specific brain regions during particular time intervals.
- Traffic Forecasting: Predicting traffic flow on roads during various times of day

This Course

18 University of Southern California

Course Overview

• Course Focus:

- Efficient storage, manipulation, and analysis of geospatial data
- Introduction to real-world location-based applications and datasets
- Materials will cover both traditional methods and modern ML-based approaches
- Topics
 - Spatial Index Structures: Quadtrees, K-d Trees, R-Trees, Voronoi indexes
 - Spatial Queries: k-NN, Reverse-NN, Skyline, Spatial Skyline
 - Non-Euclidean Spaces: Road networks, land surfaces analysis
 - Geo-Spatial Applications: Spatial crowdsourcing, geo-social networks, ride sharing
 - Data Privacy: Geospatial data privacy and security
 - Machine Learning: Clustering, classification, anomaly detection
 - Al for Spatiotemporal Analysis: Predictive analytics, traffic forecasting, dynamic routing

Course Prerequisites

- Some Level of Familiarity with:
 - Data Modeling: ER model, relational model, SQL, normalization
 - Physical Data Design: Storage devices, B+-tree, hash indexes
 - Database Protocols: Concurrency control, crash recovery
 - Machine Learning: Supervised, unsupervised, reinforcement learning
 - CSCI-567 (ML): Recommended, but not mandatory
 - Programming Languages: Proficiency in C/C++ or Python
 - Some understanding of deep learning frameworks like PyTorch is recommended

Grading and Course Work

Grading is as follows

- Two midterms (60%)
 - Midterm 1: 10/14 (30%)
 - Covers material up to Lecture 14
 - Midterm 2: 12/04 (30%)
 - Covers material from Lecture 15 onwards
- Assignments: (30%)
 - Deliverable 1: Due 9/29 (10%)
 - Deliverable 2: Due 10/28 (10%)
 - Deliverable 3: Due 12/3 (10%)
- Participation: (10%)

Assignments

- Assignment 1: Will be released on 09/04
 - **Topic:** Spatial Indexing and Simple Queries
 - Main Tasks:
 - Implement a spatial index using KD-Tree
 - Implement and analyze nearest neighbor and range queries.
 - Compare simple partitioning techniques with spatial indexing.
- Assignment 2: Will be released on 09/30
 - Topic: Advanced Spatial Queries and Non-Euclidean Spaces
 - Main Tasks:
 - Develop Reverse K-Nearest Neighbor queries.
 - Process queries within road networks and other complex spaces.

Assignments (cont'd)

- Assignment 3: Will be released on 10/30
 - **Topic:** Traffic Forecasting with Graph Neural Network Models
 - Main Tasks:
 - Implement a GNN forecasting model.
 - Experiment with different graph constructions and compare outcomes.

Logistics

- **Platform:** Released and submitted via Brightspace and course website.
- Late Policy: 5% deduction per day late, with a maximum of 3 days, no exception
- Collaboration: Individual work unless stated otherwise.
- **Grading Criteria:** Evaluated based on the correctness of results, clarity of presentation, and quality of code (details in assignment descriptions).

Course Staff and Office Hours

- Instructor: Professor Cyrus Shahabi
 - Email: shahabi@usc.edu
 - Office Hours: Mon-Wed, 4-5 PM, PHE-306a.

Teaching Assistants:

- Maria Despoina Siampou
 - Email: siampou@usc.edu
 - Office Hours: TBD
- Arash Hajisafi
 - Email: <u>hajisafi@usc.edu</u>
 - Office Hours: TBD

Communications

- Course Website: infolab.usc.edu/teaching/csci587/
 - Material distributions: e.g., lecture slides, reading materials
 - Lectures schedule
- Assignments: Through Brightspace + course website
- Questions/Requests: Email

Readings

- Textbook: Foundations of Multidimensional and Metric Data Structures by Hanan Samet.
 - Not required, but recommended.
 - A 30% coupon is available at https://www.cs.umd.edu/~hjs/.
- Additional Readings: Published Papers (strongly recommended)
 - A list of reading material is available at the course schedule through the website: <u>infolab.usc.edu/teaching/csci587/</u>
 - Readings are available through infolab.usc.edu/teaching/csci587_syllabus/
 - All USC students have automatic access to these digital archives.
 - Strongly recommended for the exams.

Q&A

