
CONTINUOUS NEAREST
NEIGHBOR SEARCH

Instructor: Cyrus Shahabi

OVERVIEW
• Introduction
• Preliminary & Related Work
• Continuous k-Nearest Neighbor Query(CkNN)

– Definition
– Problem Characteristics
– R-tree algorithm
– Query analysis
– Complex CNN extension

• Experiments
• Discussion and Conclusion

2

INTRODUCTION
• Continuous Nearest Neighbor

• Why called “continuous”?
– Nearest neighbor of every points in the trajectory

3

Object

Query
Point

PRELIMINARY -- CONTINUOUS
NEAREST NEIGHBOR

• Data: A set of points (P={a,b,c,d,f,g,h})
• Query: A line segment q=[s, e]
• Result: The nearest neighbor (NN) of every point on

q.
• Result representation: {<a,[s,s1]>, <c,[s1,s2]>,

<f,[s2,s3]>, <h, [s3,e]>} 4

a c

f

h

RELATED WORK – SAMPLING

• Try to convert the continuous-NN to point-
NN
– Every point on the line -> unlimited points
– Sampling

• Drawback:
– Sample Rate: low -> incorrect
– Sample Rate: high -> overhead (still cannot

guarantee accuracy)

5

RELATED WORK – TP NN (CONT.)

• Step 1: Find the NN of the start point s, i.e., point a.
• Step 2: Use the TP technique: find the first point on the line

segment (s1) where there is a change in the NN (i.e., point
c) will become the next NN – result: <a, [s,s1), c>

• Can be thought as conventional NN query, where the
goal is to find the point x with the minimum dist(s,sx)

s1 sf

f
sd

d

g
h

sh sg

┐

RELATED WORK – TP NN (CONT.)

• Step 3: Perform another TP NN to find:
• Starting from s1, the smallest distance we need

to travel for the current NN (i.e., c) to change
• Repeat this until we finish the entire segment.

7

RELATED WORK – TP NN (CONT.)

• Not only NN, but support k-NN
• Still overhead: n (= split points) times NN

queries, multiple scans of database

8

CKNN - DEFINITION

• Goal: Find all split points (as well as the corresponding NN
for each segment) with a single traversal.

• Split List (SL): The set of split points (including s and e).
• Each split point si∈SL and all points in [si, si+1] have the same

NN, denoted as si.NN (e.g., s1.NN is c, which is also the NN for
all points in interval [s1, s2])

• si.NN (e.g., c) covers point si (s1) and interval [si, si+1] ([s1, s2]).
• Vicinity Circle (VC): The circle that centers at split point si

with radius dist(si, si.NN)
9

CKNN – PROBLEM
CHARACTERISTICS

• Lemma 1: Given a split list SL {s0, s1, …,
s|SL−1|}, and a new data point p, then: p
covers some point on query segment q if and
only if p covers a split point.

10

s1

┐

Analyzing the first
data point “a” (in
alphabetical order)

Analyzing “b”: not
in VC of s and e,
hence no point on
[s,e] closer to b
than a

Analyzing “c”: in
VC of e, hence:
Creating a new
split point…

d not in any VC
(note that it was
in VC of e
before adding c)

Result: {<a, [s,s1]>, <c, [s1,e]> }

CKNN - PROBLEM CHARACTERISTICS
• Lemma 2: (Covering Continuity)

– The split points covered by a point p are continuous.
– Namely, if p covers split point si but not si−1(or si+1), then

p cannot cover si−j (or si+j) for any value of j>1.
– Below: p cover Si, Si+1 and Si+2 (p falls in their vicinity

circles), but not si-1, si+3, so no need to check p
against any other split points

CKNN - PROBLEM CHARACTERISTICS
• Finding new split points for b (after adding p):

– b covers Si-1 and f covers Si+2; so we need to find the
space that NN changes from b to p and then to f

12

┐ ┐

When new data
point “p”
arrives…

Processing
point “p” …

CKNN - PROBLEM
CHARACTERISTICS

• How about the k-NN?
• Lemma 1 : Fit || Lemma 2 : Cannot Fit
• Eg:

– K=3

13

h covers
si, si+3
But not
si+1, si+2

CKNN – R-TREE ALGORITHM
• General key notes:

– Use branch-and-bound techniques to prune the
search space.

– R-tree traverse principle:
• When a leaf entry (i.e., a data point) p is

encountered, SL is updated if p covers any split point
(i.e., p is a qualifying entry) – By Lemma 1.

• For an intermediate entry, We visit its subtree only if
it may contain any qualifying data point – Use
heuristics.

– Avoid accessing non qualified nodes

14

R-TREE ALGORITHM – HEURISTIC 1

• Given an intermediate entry E and query segment q,
the sub-tree of E may contain qualifying points only
if mindist(E,q) < SLMAXD, where SLMAXD is the
maximum distance between a split point and its NN.

15Compute Mindist(E,q)

R-TREE ALGORITHM – HEURISTIC 2
(AFTER 1)

• Given an intermediate entry E and query segment q,
the subtree of E must be searched if and only if
there exists a split point si∈SL such that dist(si,
si.NN) > mindist(si, E).

16

R-TREE ALGORITHM – HEURISTIC 3
(ORDER)

• Entries (satisfying heuristics 1 and 2) are
accessed in increasing order of their
minimum distances to the query segment q.

17

R-TREE ALGORITHM – LEAF ENTRY

• Input: New entry p, SL ={s1,…s10}
– 1) retrieve the split points covered by p
– 2) update SL

• Binary search: 1) [s0,s10] -> s5 2) [s0,s5] -> s2

– Using bisector to judge the direction

18

CKNN – R-TREE ALGORITHM
(EXAMPLE)

• Depth First (query segment: se)

19

OTHER
CNN QUERY
• kCNN query (k=2)

• Trajectory NN query (TNN)
– q1 = [s,u]
– q2 = [u,v]
– q3 = [v,e]
– Each segment has a SL
– Treated one by one

20

20

EXP: PERFORMANCE VS QUERY
LENGTH

21

DISCUSSION AND CONCLUSION
• A fast algorithm for C-kNN query.
• Future work:

– Rectangle data
– Moving data points
– Application to road networks (i.e., travel instead of

Euclidean distance)

22

References

• Tao, Y.; Papadias, D. & Shen, Q. Continuous
Nearest Neighbor Search. VLDB, 2002, 287-
298.

• A presentation by Penny Pan in csci587
Fall’2010

23

Sample question

24

