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Introduction

= Network distance
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Introduction

s Euclidean distance vs. Network distance

Any relationship?
d:-< d

the Euclidean distance between two points is equal or
smaller than their network distance.
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= How can we represent a road network?

= Graphs
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* Related work
— Disk-based graph representations: 2DMatrix, CCAM structure
— R-tree
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Disk-based graph representations

* A graph can be represented as
— Two-dimensional matrix

— An adjacency list
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Disk-based graph representations: 2D Matrix

— Two-dimensional matrix

nl

Adjacency matrix

" > HRNEEE

o 1 0 1 1

n3 n2z 1 0 1 0 0

n4 n3 0 1 0 1 O

— Disadvantage? n4 1 0 1 0 1
n5 1 0 0 1 O
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Disk-based graph representations: 2D Matrix

— Two-dimensional matrix

nl

Adjacency matrix

" > HNEEEE

n3

n4
— Disadvantage?

Sparse, More 1/O
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Disk-based graph representations: CCAM structure

 The Connectivity-clustered Access Method (CCAM) structure
— Each node has a list that stores its neighbors
— Stores the lists of neighbor nodes together
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Disk-based graph representations: CCAM structure

* Anexample

n1 n4
A graph Index:
— a B-tree in order
n1 n2 n3 n4 n5 of node id
\\l/ \J: Disk:

L1 L2 L3 L4 L5 Adjacency lists

n4
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Disk-based graph representations: CCAM structure

= An example

A graph

n4

CSCI 587 - Geospatial Information Management

n1 n4
Index:
— a B-tree in order
n1 n2 n3 n4 n5 of node id
/ \\ Disk:

L2 L3 L4 L5

Adjacency lists

Adjacency list of n1

n2 2 — n4 7 %>n5 5 —»null

16 16
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Disk-based graph representations- CCAM structure

e CCAM vs. 2D Matrix ?

* CCAM is preferable for applications, such as
road networks, where the graphs are sparse.
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— Disk-based graph representations: 2DMatrix, CCAM structure
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e Spatial query in network databases
— Architecture
— Spatial queries:
* Nearest neighbor query
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— Range Euclidean Restriction (RER) method
— Range Network Expansion (RNE) method

* Experiments

* Summary
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Spatial query processing in Euclidean Space

e An R-tree index
— Multidimentional extension of B-tree

nl El E2
(@) ® ns |
ED £y oo I ]
n2 7N E5 E6 E3 E4
n3 © l—l \_l Ll|
E3 :
(@) E2 nl n2 nZ n8 n9 n3 n4 n5 né6
n4 @ n6
.E4
n5
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e Spatial query in network databases
— Architecture
— Spatial queries:
* Nearest neighbor query

— Incremental Euclidean Restriction (IER) method
— Incremental Network Expansion (INE) method
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e Underlying network and spatial entities are separated
* Index the entity datasets (e.g., hotels) separately by R-trees (called Objects R-tree)

e For the network: preserve connectivity (adjacency comp) & location (network R-tree)

adjacency component network R-tree

P] l PZ
377N
/./.,./ '\\{l// \\\l

MBR(nn,)| P,| MBR(nn,) | P

— P,|8|MBR(nn,)| P,

MBR(nn,) P

P,|8|MBR(npn,)| P,
\ 10MBR(nn,)| P,

polyline component

olyline olyline
P, | poly (P,P) poty (P,P)

: P
ofnn, of nn, polyline of n n, (P,P,) 4
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Functions

check_entit(seg, p): is a Boolean function that returns true if point (entity)
p lies on the network segment seg (i.e., seg covers p)
» MBR of segis used for filtering and its poly-line representation for
refinement.

find_segment(p): outputs the segment that covers point p by performing a
point location query on the network R- tree.

find_entities( seqg): returns entities covered by segment seg.
« first finds all the candidate entities that lie in the MBR of seg, and then
eliminates the false hits using the poly-line of seg.

compute_NOD(pl,p2): returns the network distance of two arbitrary points
pl, p2in the network,
« by applying a (secondary-memory) Dijkstra's algorithm to compute the
shortest path from p1to pZ.
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Nearest Neighbor - |[ER

e Example: NN ofqg?
* Step 1: Find Euclidean NN pg; of g on

the entity R-tree

* Step 2: Compute the network distance
dn(a, pe1) of pex

* Step 3: Euclidean lower-bound. Objects
dn(a, Pe1) closer to g than pg; should be within
Euclidean distance dg.c = dn(q, pe1) from
g. Only check SHADED AREA!

dn(9, Pe2) g

de(a, Pei)

23
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Nearest Neighbor - |[ER

Example: NN of g ?

Emax=An(0, Pe2)

dn(a, Pe1)

Pe3

de(a, pe2)

24

* Step 1: Find Euclidean NN pg; of g on
the entity R-tree

* Step 2: Compute the network distance
dn(a, pe1) of pex

* Step 3: Euclidean lower-bound. Objects
closer to g than pg; should be within
Euclidean distance dg.x = dn(4, pe1) from
g. Only interesting if in SHADED AREA!

* Step 4: Find 2" Euclidean NN pg,
within range depay -

* Step 5: dy(d, pe2) < dn(a, pey). Current
NN is pg; .

* Step 6: Set dgmax = dn(d, Pe2). Range is
now smaller.

 Step 7: Next NN pgs is out of dgmax
range. Terminate!
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IER: Shortcoming

IER performs well if the
ranking of the data points
by their Euclidean
distance is similar to that
with respect to the
network distance.
Otherwise, a large
number of Euclidean NNs
may be inspected before
the network NN is found

E.g., P5is the closest in
network distance but
farther than plto p4in
Euclidean distance

Since p5 has the largest
Euclidean distance, it will be
examined after all other
entities, i.e., p1 to p4
correspond to false hits, for
which the network distance
computations are redundant.
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Nearest Neighbor — INE

* Incremental Network Expansion (INE) performs network
expansion (starting from g), and examines entities in the order

they are encountered.

Ny
N2 g B --> Network node
,/,“ \\\\ 3 . .
2 A T @D © --> Object (entity)
n / o i
2 W " @® --> Query point
7 1
1 T ;
\. . Onp
...__2__~~\\O ' K
n “ y
? P, 4 yo 3
------ a
Ny

28 28
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Find NN for a given query point g.
Ny
W 2 q
2 \‘\--‘ ______ :9’
" N o
) 7 s
\\\ ) . O pl

_.__2____\0 . R

n SN \\ ll
’ p, 4 o 3

------ a
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Nearest Neighbor — INE
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Find the edge that g is on using Network R-tree, initiate heap
Ny
2
n, . . e Min Heap
g 7 !
1 .'I T 'I (nll 2)1 (n51 3)

\ . O p

3 0, \\\4 \“ / 3

------ a
Ny

30 30
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Nearest Neighbor — INE
For each edge e in heap, find entities that are on e and add e’s neighboring edges
into heap.
Ny
| )
2 g
n, . . e Min Heap
K 7 !
1 el ! ,2),(ng, 3
1 .‘\ . O n (ny, 2), (ns, 3)
.20
N3 ™ \\\4 \“ :.'3
------ a
Ny

3131
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Nearest Neighbor — INE

Add n, and n, into heap
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(n51 3)' (nZI 4)1 (n4l 9)
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Add n, into heap
Ny
W 2 q
2 \‘\--. ______ :D’
" m o
! 7 |
; - 1
1 : N‘\\ 1
\. . Onm
_.__2____\0 . ,’
n . N
’ p, 4 o 3
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Ny
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(nZI 4)' (n4l 7),—(-911,4-)-
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Nearest Neighbor — INE

C. Shahabi
p, is found on the edge (ns, n,)
Ny
W 2 q 3
2 @ .
"o m
7 !
1 !
\. . Onm
_.__2____\0 N k
n - \
} p, "4 o 3
------ L |
Ny
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¢ dN(qr pl) = dymax = 4
* The next entry in the heap n, doesn‘t have a

smaller distance than dymax. Thus, the
algorithm terminates.

Min Heap
(nZI 4)1 (n4l 7)
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e Spatial query in network databases

— Spatial queries:

* Range query
— Range Euclidean Restriction (RER) method
— Range Network Expansion (RNE) method
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Range Queries — ER

* Range query: given a query point g, a range e and a spatial dataset S, find
all objects that are within network distance e from gq.

e Range Euclidean Restriction (RER) method:

— Perform a range query at the entity dataset and find the set of objects
S"within (Euclidean) distance e from g.
« S'is guaranteed to avoid false misses using lower-bound property (dy(q,p) < e =>

de(a,p) < e).
e But it may contain a large number of false hits.

— RER examines all segments within network distance e from g. Points of
S'that fall on some segment, are removed from S’ and returned to the

user as result.
— The process terminates when all the segments in the range are
exhausted, or when S’ becomes empty.

Problem? Works well when S’ gets empty first
(i.e., when too many qualified segments, QS)
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Range Queries — NE

« Range Network Expansion (RNE) algorithm

— First compute the set QS of qualifying segments within network
range e from q.

— Retrieve the data entities falling on these segments (intersection-
join between QS and objects)

QS with Object R-tree overlay Object R-tree
n
g .,\.5‘\ a n, E, | E,
|
v v
E, | E, E. | E
|
v v
a | b c | d

Problem? QS may be large
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Range Queries — NE - Optimized

Network and Objects Object R-tree
n n
Sov o, a " E, | E,
|
v v
E, | E, E. | E
|
v v
a b c | d

e Start traversing the object R-tree from root
* Compute QS; for each entry E, in the current R-tree node.
* Ex: QS;={}, QS,={all segments except nsng and n;n,}, QSs={n,n,, n,ns, N,ng}
* For each entry E;
If QS; # {}, recurse down the tree
* If current node is a leaf (suppose Eg), its points only be checked against QS;.
* Return entities falling on the segments in QS; (QS¢). Note that cis not a
qualifying object.
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e Related work

— Disk-based graph representations: 2DMatrix, CCAM structure
— R-tree
e Spatial query in network databases
— Architecture
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* Nearest neighbor query

— Incremental Euclidean Restriction (IER) method
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* Summary
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Experiments - NN queries

e |ER (Incremental Euclidean Restriction) vs. INE (Incremental Network Expansion).
e Cost as a function of the ratio entity/edge cardinality
* Number of neighbours to be retrieved k=10

0 Page Acces ses 100 CPUtime-ms ecs R
IR O R-trees %0 - e
604 [ ] O pework
] 60 -
0 40 -
2 % 20 -
INE L e N &R%E 0+———————= : - -
y w o1 05 1 2 10

0.1 0.5 1 2 10

cardimality ratio - 1SIAN cardinality ratio - |SI/IN|
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Experiments - Range Sear¢h™™

e RER (Range Euclidean Restriction) vs. RNE (Range Network Expansion).
e Cost as a function of the ratio entity/edge cardinality

e Length of the range e=1% of the data universe side length

Page Acces ses CPU time -msecs
30 - RER 50 7
0 - RER
R-tree |
407 —=—RNE
O network RNE
20 4 30
RER
R RER RNE RNE 20 7
10 - e [
RER 10
0
0 0.1 0.5 1 2 10
0.1 0.5 | 2 10

cardinalitv ratio - 1S AN cardinality ratio - 1S|/IN|
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Summary

e Network distance is a more realistic metric than Euclidean
distance.

* Euclidean restriction assumes the lower bounding property,
which may not always hold in practice (if, for instance, the
edge cost is defined as the expected travel time). On the
contrary, network expansion permits a wide variety of costs
associated with the edges.

* Network expansion has superior performance for nearest
neighbour and range queries.
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