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Motivation

• Growing Popularity of Online Mapping 
Services



Challenges

• Real-time response for point-to-point shortest 
path computation

• Calculating all pairs shortest path is costly 
• Storing pre-computed  shortest paths is not 

easy 
• Scalability 



Contribution:
• Greedy Algorithm Independent: Avoids applying 

Dijkstra's algorithm for each query which visits all 
vertices on the shortest path to the destination
– Shortest path computation belongs the databases.
– Complexity of the SP computation is reduced to 

number of nodes in the actual SP path. 
• Pre-computes shortest paths between all vertices 

in spatial network
– Reduces cost of storing shortest paths between all 

pairs of N vertices from O(N3) to O(N1.5)
• Decouples shortest path and nearest neighbor 

computation processes
– Efficient k-NN techniques rely on partitioning the 

space (i.e.,road network) based on the data objects  



Shortest Path Computation

• Usually based on Dijkstra's or A* shortest path 
algorithm
– Not feasible in real time for large spatial networks
– Algorithm visits too many vertices during the search process

%72 of the vertices are visited. 
• Popular solution by online map services is to use Euclidean distance



Even Google!



Precomputation of SP
• By precomputing and storing all of the shortest 

paths, point-to-point SP and nearest neighbor 
queries could be answered instantly
– How to effectively compute the shortest path?
– How to effectively store the shortest path?
– Challenge: very large network (approximately 45 

million nodes in North America)

• N:Nodes, M:Edges, P:Number of nodes in the path 

Method Space Retrieval Time

Exhaustive O(N3) O(1)

Next-Hop O(N2) O(P)

Dijkstra O(N+M) O(M+Nlog N)

SLIC O(N1.5) O(P log N)



Path Encoding

• Path coherence
– Vertices in proximity share portion of the shortest 

paths to them from distant sources



Path Encoding

• Path coherence
– Vertices in proximity share portion of the shortest 

paths to them from distant sources

• Source vertex u in a spatial network
• Assign colors to the outgoing edges of u
• Color vertex based on the first edge on the shortest path from u



Path Encoding

• Path coherence



Path Encoding

• Path coherence

Shortest path map of U



Path Encoding 

• How to store and access colored regions?

• Indexing regions with R-tree [Wagner03]
– However the problem is the overlapping regions! 



Path Encoding

• Indexing with Quad-Tree (SILC): Decompose 
each colored region until all vertices in a block 
have same color.

Shortest Path Quad-Tree



Path Retrieval

• How to retrieve the shortest path from s to d 
using the shortest path Quad-tree?



Path Retrieval

• Retrieve the shortest-path quadtree Qs
corresponding to s



Path Retrieval
• Find the colored region that contains d in 

Qs

• Retrieve the vertex t connected to s in the 
region containing d in Qs



Path Retrieval
• Retrieve the shortest-path quadtree Qt

corresponding to t
• Find the colored region that contains d in 

Qt



Contribution:
• Greedy Algorithm Independent: Avoids applying 

Dijkstra's algorithm for each query which visits all vertices 
on the shortest path to the destination
– Shortest path computation belongs the databases.
– Complexity of the SP computation is reduced to number of 

nodes in the actual SP path. 

• Pre-computes shortest paths between all vertices in 
spatial network
– Reduces cost of storing shortest paths between all pairs of N 

vertices from O(N3) to O(N1.5)

• Decouples shortest path and nearest neighbor 
computation processes
– Efficient k-NN techniques rely on partitioning the space 

(i.e.,road network) based on the data objects  



How is space reduced?

• Only consider boundaries 



How is space reduced?
• Embedding the N vertices in a square grid implies 

that the grid is N0.5 x N0.5   

• Perimeter of a region with monotonic boundary  
(increasing in each coordinate) is of size O(N0.5)

• Perimeter of a region with a non-monotonic 
boundary can be of size O(N)

• Assumption with SILC: Regions of the shortest-
path quadtree have monotonic boundaries

• The space complexity of the shortest path 
quadtree corresponding to the shortest path map 
is proportional to the sum of the perimeters of 
the polygons that make up the shortest path map.

• Size of a shortest-path quadtree of a vertex u is 
cxN0.5 , where c is the outdegree of u

• Total storage complexity of SILC framework is 
O(N*N0.5)=O(N1.5) closely follows empirical results



Contribution:
• Greedy Algorithm Independent: Avoids applying 

Dijkstra's algorithm for each query which visits all vertices 
on the shortest path to the destination
– Shortest path computation belongs the databases.
– Complexity of the SP computation is reduced to number of 

nodes in the actual SP path. 

• Pre-computes shortest paths between all vertices in 
spatial network
– Reduces cost of storing shortest paths between all pairs of N 

vertices from O(N3) to O(N1.5)

• Decouples shortest path and nearest neighbor 
computation processes
– Efficient k-NN techniques rely on partitioning the space 

(i.e.,road network) based on the data objects  



K-NN Algorithm

• Set of objects
• Pre-computed paths (quadtree)



k-NN Algorithm

Two more properties are stored in each  block b of the quadtrees: λ- and 
λ+

At the query time, the min and max network distance to specific 
node w is computed by w(σ x (λ- ,λ+)) = w(δ-,δ+)



kNN Example

L is ordered based on the maximum network distances, δ+

Queue is ordered based on the minimum network distances, δ-



kNN Example



kNN Example



kNN Example



kNN Example

Dk is the maximum network distance of the k th nearest 
neighbor candidate



kNN Example

When a leaf block is retrieved from Queue, for each child object o in it, the 
network min and max distances (δ-, δ+) are obtained 
If  δ- from q to o is greater than or equal to Dk, then exit and return L as the 
set of k nearest neighbors because o and all other objects in Queue or in 
blocks in Queue cannot be found at a distance from q which is less than Dk.)

Otherwise, o is put in the Queue again and



kNN Example

When a leaf block is retrieved from Queue, for each child object o in it, 
the network min and max distances (δ-, δ+) are obtained 
If  δ- from q to o is smaller than Dk, o is put in the Queue again, and
If  δ+ is also smaller than Dk, o is inserted in L as well
(otherwise (i.e., Dk ≥ δ+) which means that o is one of the k nearest 
neighbors of q



kNN Example



kNN Example



kNN Example



kNN Example



kNN Example



kNN Example



kNN Example



kNN Example



kNN Example
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• Compared kNN with other algorithms including variants of 
kNN
– INE: Basically Dijkstra's algorithm [Papa03]
– IER: Using Euclidean distance as a filter [Papa03]
– INN: Incremental variant of kNN which invokes kNN k times no priority 

queue, L, or Dk

– kNN-I: Use L to calculate Dk using first k objects
– kNN-M: Reduce number of renements by dropping need for total 

ordering k

• Test set is important roads on US eastern seaboard consisting 
of 91,113 vertices and 114,176 edges

• S is generated at random and stored in a PMR quadtree
• Each query run on at least 50 random input datasets of same 

size

Evaluation



Evaluation

• kNN and Variants are at least one order of magnitude faster than 
INE and IER for small values of k and moderate values of S
• INE and IER improve relatively for large values of S as easy to find 
k neighbors around q
• IER always slowest



Evaluation

• Compared maximum size of priority queue of kNN and variants with INN
which cannot use Dk to reduce insertions
• 35% of INN on the average
• As k increases, savings in maximum queue size vanish 

• most likely due to an increase in the number of objects having 
overlapping distance intervals from q



Conclusion

• Very efficient  shortest path and kNN computation in static 
spatial networks
– Avoid applying Dijkstra's algorithm for each query which visits all 

vertices on the shortest path to the destination

• General framework for query processing in spatial networks
• Not restricted to nearest neighbor queries
• Transform solution from a graph-based combinatorial 

algorithm to a purely geometric one
• Pure database solution and hence can be integrated with 

DBMS architecture easily 
• Reduce cost of storing shortest paths between all pairs of N 

vertices from O(N3) to O(N1.5)
• Scalable



Discussion

• Minimalist experiments: Most of the experiments 
focus on the variation of the proposed technique. 
Can compare with state of the art shortest path 
computation approaches 

• Edge weights are assumed to be constant however in 
real-world edge weights are function of time 

• Assumptions: Monotonic shortest path map for each 
vertex? Can the shortest path map be non-
monotonic? 
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