
Scalable Network Distance
Browsing in Spatial Database

Instructor: Cyrus Shahabi

Outline

• Motivation
• Overview
• Proposed Approach
• Evaluation
• Questions

Motivation

• Growing Popularity of Online Mapping
Services

Challenges

• Real-time response for point-to-point shortest
path computation

• Calculating all pairs shortest path is costly
• Storing pre-computed shortest paths is not

easy
• Scalability

Contribution:
• Greedy Algorithm Independent: Avoids applying

Dijkstra's algorithm for each query which visits all
vertices on the shortest path to the destination
– Shortest path computation belongs the databases.
– Complexity of the SP computation is reduced to

number of nodes in the actual SP path.
• Pre-computes shortest paths between all vertices

in spatial network
– Reduces cost of storing shortest paths between all

pairs of N vertices from O(N3) to O(N1.5)
• Decouples shortest path and nearest neighbor

computation processes
– Efficient k-NN techniques rely on partitioning the

space (i.e.,road network) based on the data objects

Shortest Path Computation

• Usually based on Dijkstra's or A* shortest path
algorithm
– Not feasible in real time for large spatial networks
– Algorithm visits too many vertices during the search process

%72 of the vertices are visited.
• Popular solution by online map services is to use Euclidean distance

Even Google!

Precomputation of SP
• By precomputing and storing all of the shortest

paths, point-to-point SP and nearest neighbor
queries could be answered instantly
– How to effectively compute the shortest path?
– How to effectively store the shortest path?
– Challenge: very large network (approximately 45

million nodes in North America)

• N:Nodes, M:Edges, P:Number of nodes in the path

Method Space Retrieval Time

Exhaustive O(N3) O(1)

Next-Hop O(N2) O(P)

Dijkstra O(N+M) O(M+Nlog N)

SLIC O(N1.5) O(P log N)

Path Encoding

• Path coherence
– Vertices in proximity share portion of the shortest

paths to them from distant sources

Path Encoding

• Path coherence
– Vertices in proximity share portion of the shortest

paths to them from distant sources

• Source vertex u in a spatial network
• Assign colors to the outgoing edges of u
• Color vertex based on the first edge on the shortest path from u

Path Encoding

• Path coherence

Path Encoding

• Path coherence

Shortest path map of U

Path Encoding

• How to store and access colored regions?

• Indexing regions with R-tree [Wagner03]
– However the problem is the overlapping regions!

Path Encoding

• Indexing with Quad-Tree (SILC): Decompose
each colored region until all vertices in a block
have same color.

Shortest Path Quad-Tree

Path Retrieval

• How to retrieve the shortest path from s to d
using the shortest path Quad-tree?

Path Retrieval

• Retrieve the shortest-path quadtree Qs
corresponding to s

Path Retrieval
• Find the colored region that contains d in

Qs

• Retrieve the vertex t connected to s in the
region containing d in Qs

Path Retrieval
• Retrieve the shortest-path quadtree Qt

corresponding to t
• Find the colored region that contains d in

Qt

Contribution:
• Greedy Algorithm Independent: Avoids applying

Dijkstra's algorithm for each query which visits all vertices
on the shortest path to the destination
– Shortest path computation belongs the databases.
– Complexity of the SP computation is reduced to number of

nodes in the actual SP path.

• Pre-computes shortest paths between all vertices in
spatial network
– Reduces cost of storing shortest paths between all pairs of N

vertices from O(N3) to O(N1.5)

• Decouples shortest path and nearest neighbor
computation processes
– Efficient k-NN techniques rely on partitioning the space

(i.e.,road network) based on the data objects

How is space reduced?

• Only consider boundaries

How is space reduced?
• Embedding the N vertices in a square grid implies

that the grid is N0.5 x N0.5

• Perimeter of a region with monotonic boundary
(increasing in each coordinate) is of size O(N0.5)

• Perimeter of a region with a non-monotonic
boundary can be of size O(N)

• Assumption with SILC: Regions of the shortest-
path quadtree have monotonic boundaries

• The space complexity of the shortest path
quadtree corresponding to the shortest path map
is proportional to the sum of the perimeters of
the polygons that make up the shortest path map.

• Size of a shortest-path quadtree of a vertex u is
cxN0.5 , where c is the outdegree of u

• Total storage complexity of SILC framework is
O(N*N0.5)=O(N1.5) closely follows empirical results

Contribution:
• Greedy Algorithm Independent: Avoids applying

Dijkstra's algorithm for each query which visits all vertices
on the shortest path to the destination
– Shortest path computation belongs the databases.
– Complexity of the SP computation is reduced to number of

nodes in the actual SP path.

• Pre-computes shortest paths between all vertices in
spatial network
– Reduces cost of storing shortest paths between all pairs of N

vertices from O(N3) to O(N1.5)

• Decouples shortest path and nearest neighbor
computation processes
– Efficient k-NN techniques rely on partitioning the space

(i.e.,road network) based on the data objects

K-NN Algorithm

• Set of objects
• Pre-computed paths (quadtree)

k-NN Algorithm

Two more properties are stored in each block b of the quadtrees: λ- and
λ+

At the query time, the min and max network distance to specific
node w is computed by w(σ x (λ- ,λ+)) = w(δ-,δ+)

kNN Example

L is ordered based on the maximum network distances, δ+

Queue is ordered based on the minimum network distances, δ-

kNN Example

kNN Example

kNN Example

kNN Example

Dk is the maximum network distance of the k th nearest
neighbor candidate

kNN Example

When a leaf block is retrieved from Queue, for each child object o in it, the
network min and max distances (δ-, δ+) are obtained
If δ- from q to o is greater than or equal to Dk, then exit and return L as the
set of k nearest neighbors because o and all other objects in Queue or in
blocks in Queue cannot be found at a distance from q which is less than Dk.)

Otherwise, o is put in the Queue again and

kNN Example

When a leaf block is retrieved from Queue, for each child object o in it,
the network min and max distances (δ-, δ+) are obtained
If δ- from q to o is smaller than Dk, o is put in the Queue again, and
If δ+ is also smaller than Dk, o is inserted in L as well
(otherwise (i.e., Dk ≥ δ+) which means that o is one of the k nearest
neighbors of q

kNN Example

kNN Example

kNN Example

kNN Example

kNN Example

kNN Example

kNN Example

kNN Example

kNN Example

41

• Compared kNN with other algorithms including variants of
kNN
– INE: Basically Dijkstra's algorithm [Papa03]
– IER: Using Euclidean distance as a filter [Papa03]
– INN: Incremental variant of kNN which invokes kNN k times no priority

queue, L, or Dk

– kNN-I: Use L to calculate Dk using first k objects
– kNN-M: Reduce number of renements by dropping need for total

ordering k

• Test set is important roads on US eastern seaboard consisting
of 91,113 vertices and 114,176 edges

• S is generated at random and stored in a PMR quadtree
• Each query run on at least 50 random input datasets of same

size

Evaluation

Evaluation

• kNN and Variants are at least one order of magnitude faster than
INE and IER for small values of k and moderate values of S
• INE and IER improve relatively for large values of S as easy to find
k neighbors around q
• IER always slowest

Evaluation

• Compared maximum size of priority queue of kNN and variants with INN
which cannot use Dk to reduce insertions
• 35% of INN on the average
• As k increases, savings in maximum queue size vanish

• most likely due to an increase in the number of objects having
overlapping distance intervals from q

Conclusion

• Very efficient shortest path and kNN computation in static
spatial networks
– Avoid applying Dijkstra's algorithm for each query which visits all

vertices on the shortest path to the destination

• General framework for query processing in spatial networks
• Not restricted to nearest neighbor queries
• Transform solution from a graph-based combinatorial

algorithm to a purely geometric one
• Pure database solution and hence can be integrated with

DBMS architecture easily
• Reduce cost of storing shortest paths between all pairs of N

vertices from O(N3) to O(N1.5)
• Scalable

Discussion

• Minimalist experiments: Most of the experiments
focus on the variation of the proposed technique.
Can compare with state of the art shortest path
computation approaches

• Edge weights are assumed to be constant however in
real-world edge weights are function of time

• Assumptions: Monotonic shortest path map for each
vertex? Can the shortest path map be non-
monotonic?

References

• Hanan Samet, Jagan Sankaranarayanan,
Houman Alborzi: Scalable network distance
browsing in spatial databases. SIGMOD
Conference 2008: 43-54

• A presentation by Ugur Demiryurek in csci587
Fall’2010

46

