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Motivation

* Growing Popularity of Online Mapping
Services
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Challenges

* Real-time response for point-to-point shortest
path computation

* Calculating all pairs shortest path is costly

e Storing pre-computed shortest paths is not
easy

e Scalability
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Contribution:

* Greedy Algorithm Independent: Avoids applying
Dijkstra's algorithm for each query which visits all
vertices on the shortest path to the destination

— Shortest path computation belongs the databases.

— Complexity of the SP computation is reduced to
number of nodes in the actual SP path.

* Pre-computes shortest paths between all vertices
in spatial network

— Reduces cost of storing shortest paths between all
pairs of N vertices from O(N3) to O(N1->)

* Decouples shortest path and nearest neighbor
computation processes

— Efficient k-NN techniques rely on partitioning the
space (i.e.,road network) based on the data objects
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Shortest Path Computation

e Usually based on Dijkstra's or A* shortest path
algorithm
— Not feasible in real time for large spatial networks
— Algorithm visits too many vertices during the search process

%72 of the vertices are visited.
* Popular solution by online map services is to use Euclidean distance
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Precomputation of SP

* By precomputing and storing all of the shortest
paths, point-to-point SP and nearest neighbor
gueries could be answered instantly

— How to effectively compute the shortest path?
— How to effectively store the shortest path?

— Challenge: very large network (approximately 45
million nodes in North America)

Exhaustive O(N3) 0O(1)
Next-Hop O(N?2) O(P)

Dijkstra O(N+M) O(M+Nlog N)
SLIC O(N1-) O(P log N)

* N:Nodes, M:Edges, P:Number of nodes in the path
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Path Encoding

e Path coherence

— Vertices in proximity share portion of the shortest
paths to them from distant sources
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Path Encoding

e Path coherence

— Vertices in proximity share portion of the shortest
paths to them from distant sources

\
e u

* Source vertex u in a spatial network
* Assign colors to the outgoing edges of u
* Color vertex based on the first edge on the shortest path from u
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Path Encoding

e Path coherence
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Path Encoding

e Path coherence

Shortest path map of U
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Path Encoding

. How to store and access colored regions?

* Indexing regions with R-tree [Wagner03]
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Path Encoding

* |Indexing with Quad-Tree (SILC): Decompose
each colored region until all vertices in a block
have same color.

Shortest Path Quad-Tree




¢ shanab USC Viterbi

Path Retrieval

* How to retrieve the shortest path from s to
using the shortest path Quad-tree?

LY
/\




¢ shanab USC Viterbi

Path Retrieval

* Retrieve the shortest-path quadtree Qg
corresponding to




C. Shahabi USC Viterbi
. School of Engineering
Path Retrieval

* Find the colored region that contains d in
Q,

* Retrieve the vertex t connected to s in the
region containing d in Qg

/jj/% A
fit!
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Path Retrieval

* Retrieve the shortest-path quadtree Q,
corresponding to t

* Find the colored region that contains d in

Q,
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* Greedy Algorithm Independent: Avoids applying
Dijkstra's algorithm for each query which visits all vertices
on the shortest path to the destination

— Shortest path computation belongs the databases.

— Complexity of the SP computation is reduced to number of
nodes in the actual SP path.

* Pre-computes shortest paths between all vertices in
spatial network

— Reduces cost of storing shortest paths between all pairs of N
vertices from O(N3) to O(N*-)

* Decouples shortest path and nearest neighbor
computation processes

— Efficient k-NN techniques rely on partitioning the space
(i.e.,road network) based on the data objects
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How is space reduced?

* Only consider boundaries
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How is space reduced?

Embedding the N vertices in a square grid implies
that the grid is N%> x N9

Perimeter of a region with monotonic boundary
(increasing in each coordinate) is of size O(N°?)

Perimeter of a region with a non-monotonic
boundary can be of size O(N)

Assumption with SILC: Regions of the shortest-
path quadtree have monotonic boundaries

The space complexity of the shortest path
qguadtree corresponding to the shortest path map
is proportional to the sum of the perimeters of
the polygons that make up the shortest path map.

Size of a shortest-path quadtree of a vertex u is
cxN©%> , where cis the outdegree of u

Total storage complexity of SILC framework is
O(N*N0->)=0(N?*-) closely follows empirical results

USC Viterbi

School of Engineering
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* Greedy Algorithm Independent: Avoids applying
Dijkstra's algorithm for each query which visits all vertices
on the shortest path to the destination

— Shortest path computation belongs the databases.

— Complexity of the SP computation is reduced to number of
nodes in the actual SP path.

* Pre-computes shortest paths between all vertices in
spatial network

— Reduces cost of storing shortest paths between all pairs of N
vertices from O(N3) to O(N*-)

* Decouples shortest path and nearest neighbor
computation processes

— Efficient k-NN techniques rely on partitioning the space
(i.e.,road network) based on the data objects
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K-NN Algorithm

e Set of objects
* Pre-computed paths (quadtree)
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k-NN Algorithm

Distances:

e(qw) =8 (Network)
olqw)=3.02 (Spatial)
A=¢g/o (Ratio)
Mgw) =8/3.02 =2.65
rMq,s) =5/1.65=3.03
Mat) =7/3.05=2.30

(&, A+)=(2.30,3.03)

230,3.03 Distance Estimate g-w:

w(3.02 X (1, &%) =
. w(3-, )
w(6.95, 9.15)

6-  Min. Network Distance
' \ o+  Max. Network Distance

Two more properties are stored in each block b of the quadtrees: A~ and
}\+

At the query time, the min and max network distance to specific
node w is computed by w(o x (A-,A*)) = w(6,6%)
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KNN Example

k=2
o [ 4
q e le
X 9
|® m 0
5 @
oL efgmammohb
front
L Queue
L is ordered based on the maximum network distances, 6*

Queue is ordered based on the minimum network distances, 6

Scalable Network Distance Browsing in Spatial Databases — p.24/43
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KNN Example

m 0

5 @

efgmammohb

®h

1. Insert n into Queue.

front

L Queue

Scalable Network Distance Browsing in Spatial Databases — p.24/43
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KNN Example

k=2

N < expand

o @

efgmammohb

®h

1. Insert n into Queue.
2. Expand n. Insert o,m into Queue.

[To] front

L Queue

Scalable Network Distance Browsing in Spatial Databases — p.24/43
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KNN Example

a4 x g

°]

efgmammohb

‘b
1. Insert n into Queue.

2. Expand n. Insert o,m into Queue.
3. Expand o. Insert a,b into Queue, L.

Scalable Network Distance Browsing in Spatial Databases — p.24/43
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KNN Example

a/ b/ efgmam@b

1. Insert n into Queue.
2 Expand n. Insert o,minto Queue
3. Expand o. Insert a,b into Qu L.Set Dy

D, is the maximum network distance of the k th nearest
neighbor candidate

Scalable Network Distance Browsing in Spatial Databases — p.24/43
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KNN Example

k=2
rg ,f n
z \ |o
e feo expand
)o\ m o
?-/
T efgmammohb
1. Insert n into Queue. EI
2. Expand n. Insert o,m into Queue. :I
Set Dy
4. Expand m. Insert g,e,f into Queue and g into L. e 1
= = front
L  Queue

When a leaf block is retrieved from Queue, for each child object o in it, the
network min and max distances (6-, 6*) are obtained

If & from g to o is greater than or equal to Dy, then exit and return L as the
set of k nearest neighbors because o and all other qbjects in Queue or in

Scalable

blocks in Queue cannot be found at a distance from g which is less than D,.)

Otherwise, o is put in the Queue again and
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KNN Example

A Y

r g f n
; \ |o
e o expand
}o\ m o

efgmammohb

®b

1. Insert n into Queue.
2. Expand n. Insert o,m into Queue.
Set Dy
4. Expand m. Insert g,e,f into Queue and g into L.

(]
=1 [ front

L Queue

HEEE

When a leaf block is retrieved from Queue, for each child object o in it,
the network min and max distances (6, 6*) are obtained

If 6~ from q to o is smaller than Dy, o is put in the Queue again, and

If 6*is also smaller than Dy, o isinserted in L as well .

(otherwise (i.e., D, =2 6*) which means that o is one of the k nearest
neighbors of g




¢ shahab USC Viterbi
School of Engineering
KNN Example

k=2

o
|
—
-]

Lo~ expand

12

m 0

N

efgmammohb

l

T;

1. Insert n into Queue.

2. Expand n. Insert o,m into Queue.

3. Expand o. Insert a,b into Queue, L.Set Dy

4. Expand m. Insert g,e,f into Queue and g into L.

Update Dk_

HEEEE

E front

9
c
®
c
®

Scalable Network Distance Browsing in Spatial Databases — p.24/43
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KNN Example

’

U/OI’UHG n

Lo~ expand

m 0

efgmammohb

1. Insert n into Queue.

2. Expand n. Insert o,m into Queue.

3. Expand o. Insert a,b into Queue, L.Set Dy

4. Expand m. Insert g,e,f into Queue and g into L.

[e_]
Update Dk. Prune f and b from Queue. ] ]
= front

2
L Queue

Scalable Network Distance Browsing in Spatial Databases — p.24/43
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KNN Example

m 0

N efgmammohb
collision

1. Insert n into Queue.

2. Expand n. Insert o,m into Queue.

3. Expand o. Insert a,b into Queue, L.Set Dy

4. Expand m. Insert g,e,f into Queue and g into L.

1 ]
Update Dk. Prune f and b from Queue.
5. Process a. Collision of a with g. tront

a
L Queue

Q

Scalable Network Distance Browsing in Spatial Databases — p.24/43
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refine

KNN Example

collision

1. Insert n into Queue.

2. Expand n. Insert o,m into Queue.

USC Viterbi

School of Engineering

m 0

efgmammohb

3. Expand o. Insert a,b into Queue, L.Set Dy

4. Expand m. Insert g,e,f into Queue and g into L. [Ce]
Update Dk. Prune f and b from Queue. 1 =]
5. Process a. Collision of a with g.
Refine a. Reinsert a into Queue and L. ? QIII front
ueue

Scalable Network Distance Browsing in Spatial Databases — p.24/43
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KNN Example

‘ k=2
———— ’f n
°
L e le-
a4 x g
" - m 0
““ g/ ','
A —_— efgmammb
collision \b

1. Insert n into Queue.
2. Expand n. Insert o,m into Queue.
3. Expand o. Insert a,b into Queue, L.Set Dy

4. Expand m. Insert g,e,f into Queue and g into L. [Ce]
Update Dk. Prune f and b from Queue. 1 =]
5. Process a. Collision of a with g.
Refine a. Reinsert a into Queue and L. =0 [T front
6. Process g. Collision of g with a. L Queue

Scalable Network Distance Browsing in Spatial Databases — p.24/43
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KNN Example

m 0

efgmammohb
collision

1. Insert n into Queue.
. Expand n. Insert o,m into Queue.
. Expand o. Insert a,b into Queue, L.Set Dy
. Expand m. Insert g,e,f into Queue and g into L.
Update Dk. Prune f and b from Queue. II'
. Process a. Collision of a with g. E
Refine a. Reinsert a into Queue and L.
. Process g. Collision of g with a. L
Refine and Reinsert g into Queue and L.

ESNEEVN V]

[6)]

front

(o)}

< (@)
®©
C
O
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KNN Example

)
m (o)

efgmammohb

I

collision

1. Insert n into Queue.

2. Expand n. Insert o,m into Queue.

3. Expand o. Insert a,b into Queue, L.Set Dy

4. Expand m. Insert g,e,f into Queue and g into L. [e]

Update Dk. Prune f and b from Queue.
5. Process a. Collision of a with g.

o] [
Refine a. Reinsert a into Queue and L. E Izl front
6. Process g. Collision of g with a. L Queue
Refine and Reinsert g into Queue and L.Update D i

Scalable Network Distance Browsing in Spatial Databases — p.24/43
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KNN Example

m 0

efgmammohb
no
collision f

. Insert n into Queue. report

. Expand n. Insert o,m into Queue.

. Expand o. Insert a,b into Queue, L.Set Dy

. Expand m. Insert g,e,f into Queue and g into L. El
Update Dk. Prune f and b from Queue. 1 1

. Process a. Collision of a with g. Izl Izl
Refine a. Reinsert a into Queue and L.

6. Process g. Collision of g with a. L Queue
Refine and Reinsert g into Queue and L.Update D i

7. Process a. No collision of a with g. No need to refine a further.

A ON—

[6)]

front

Scalable Network Distance Browsing in Spatial Databases — p.24/43
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KNN Example

m 0

efgmammohb

1. Insert n into Queue. report
2. Expand n. Insert o,m into Queue.

3. Expand o. Insert a,b into Queue, L.Set Dy

4. Expand m. Insert g,e,f into Queue and g into L.

Update Dk. Prune f and b from Queue. g
5. Process a. Collision of a with g. fEf
Refine a. Reinsert a into Queue and L. ront
6. Process g. Collision of g with a. L Queue

Refine and Reinsert g into Queue and L.Update D i
7. Process a. No collision of a with g. No need to refine a further.

8. Process g. No collision of g with e.
No need to refine g further. Report L.

Scalable Network Distance Browsing in Spatial Databases — p.24/43
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Evaluation

 Compared kNN with other algorithms including variants of
KNN

INE: Basically Dijkstra's algorithm [Papa03]
IER: Using Euclidean distance as a filter [Papa03]

INN: Incremental variant of KNN which invokes kNN k times no priority
queue, L, or D,

kKNN-I: Use L to calculate D, using first k objects

kNN-M: Reduce number of renements by dropping need for total
ordering k

* Test set is important roads on US eastern seaboard consisting
of 91,113 vertices and 114,176 edges

* Sisgenerated at random and stored in a PMR quadtree

* Each query run on at least 50 random input datasets of same
Size
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Evaluation

= 1 ; NE - 10 ¢
: S
-
o KNN-| = e
Lo 0.1 KNN = 4 Lo
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0.001 001 005 0.2 5 10 50 100 300
Object Distribution (S) (log scale) Number of Neighbors (k) (log scale)
k=10 and varying sizes of S S = 0.07N and varying k

* KNN and Variants are at least one order of magnitude faster than
INE and IER for small values of k and moderate values of S

* INE and IER improve relatively for large values of S as easy to find
k neighbors around g

* |[ER always slowest
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Evaluation

50 NN 100
(0] \ - — (0]
3 40 N\ | > 70
530 - \\ \\\‘ : S 50
35% |
N2s -\ ° / . N 40
)] ' )/ v 30 ) 1
5220 1 / 2 20 savings.
15+ T 10 ]
10 L \ 1 | J O 1 1 1 - |
0.001 0.01 0.1 0.2 5 10 50 100 300
Obiject Distribution (S) (log scale) Number of Neighbors (K) (log scale
k=10 and varying sizes of S S = 0.07N and varying k

* Compared maximum size of priority queue of kNN and variants with INN
which cannot use D, to reduce insertions
* 35% of INN on the average
* As k increases, savings in maximum queue size vanish
* most likely due to an increase in the number of objects having
overlapping distance intervals from g
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Conclusion

* Very efficient shortest path and kNN computation in static
spatial networks

— Avoid applying Dijkstra's algorithm for each query which visits all
vertices on the shortest path to the destination

 General framework for query processing in spatial networks
* Not restricted to nearest neighbor queries

* Transform solution from a graph-based combinatorial
algorithm to a purely geometric one

* Pure database solution and hence can be integrated with
DBMS architecture easily

* Reduce cost of storing shortest paths between all pairs of N
vertices from O(N3) to O(N1~)

 Scalable



¢ shanab USC Viterbi

Discussion

* Minimalist experiments: Most of the experiments
focus on the variation of the proposed technique.
Can compare with state of the art shortest path
computation approaches

 Edge weights are assumed to be constant however in
real-world edge weights are function of time

 Assumptions: Monotonic shortest path map for each
vertex? Can the shortest path map be non-
monotonic?
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