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Trajectory based routing / Reachability Analysis

CSCI 587: Lecture 17

10/28/2024
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Location-based services are everywhere
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Location-based services are everywhere

These are only a few examples…
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Origin Destination Queries
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➔ Nodes: Intersections
➔ Edges: Roads

Road Network as a Graph

city road network extracted from OpenStreetMaps (OSM)
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limits

Road Network as a Graph

city road network extracted from OpenStreetMaps (OSM)
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Road Network as a Graph

★ How can we get accurate, time dependent weights?
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Data Acquisition Preprocessing

data cleaning map matching model training

Examples of preprocessing steps

Road Network Edge 
Annotation

Traffic Snapshots 
and Updates

Third-Party 
Sources

Traffic Sensors

Vehicle data 25
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ph35
 m

ph

+10 s

+5 s

8:00 AM

8:10 AM
8:20 AM

       R
outing

Typical Pipeline of Routing Services

- Large scale, up-to date GPS data are continuously collected 
- Several cost-intensive preprocessing steps to extract time dependent “features”

- E.g.  Map matching: GPS data is aligned with the road network
- Road network edges are dynamically updated (e.g. every 5 minutes) and new traffic snapshots are created 
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Map Matching

Example of a driver trajectory

● Lyft and Uber use map matching to:
○ To compute the distance travelled by a driver to calculate the fare
○ Dispatch decisions and to display the drivers’ cars on the rider app
○ Detect reckless driving

● Approaches for Map Matching
○ Hidden Markov Model: Newson & Krumm @ SIGSPATIAL ‘09 [1] 

■ DiDi’s IJCAI-19 Tutorial [2] 
■ Map Matching @ Uber [3]
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Data Acquisition Preprocessing

data cleaning map matching model training

Examples of preprocessing steps

Road Network Edge 
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       R
outing

Typical Pipeline of Routing Services

- Large scale, up-to date GPS data are continuously collected 
- Several cost-intensive preprocessing steps to extract time dependent “features”

- E.g.  Map matching: GPS data is aligned with the road network
- Road network edges are dynamically updated (e.g. every 5 minutes) and new traffic snapshots are created 

Repeats as new data 
becomes available
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TrajRoute (Motivation)

CIVIC 
CENTER

FISHERMAN’S 
WHARF

     
DESTINATION

2024-10-08 
08:03:00 AM

2024-10-01 
08:03:00 AM

2024-10-08 
08:10:00 AM

OR: Fisherman’s Wharf 
DEST: Home
Time: 08:03:00 AM
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TrajRoute: Approach

- Routing based on raw historical trajectories
- Ensure that only trajectories that are spatially and temporarily close to current position are considered

- Fallback to the road network when trajectories are not available

       Routing

…
R

Sn

Si+1

Si

DTi
Ti+1

Tn

…

Data Acquisition Spatio-temporal Index

Third-Party 
Sources

Vehicle data

B-Tree
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TrajRoute: Approach
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15

TrajRoute: Approach
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TrajRoute: Approach
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TrajRoute: Approach
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TrajRoute: Approach
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TrajRoute: Approach
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TrajRoute: Approach
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TrajRoute: Approach
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TrajRoute: Approach
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TrajRoute: Approach
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TrajRoute: Approach
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 is always less than C
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. Does not 
account for:

- Intersection costs
- Acceleration/Deceleration
- Traffic Lights
- Traffic Congestion etc.

Inherently 
encoded in 
trajectory 
timestamps
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TrajRoute: Approach
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TrajRoute: Approach
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TrajRoute: Approach
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TrajRoute: Approach
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TrajRoute: Approach
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TrajRoute: Approach
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TrajRoute: Approach
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TrajRoute: Approach
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TrajRoute: Approach
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- Any pathfinding algorithm can be applied.

- For Dijkstra:
-    

- For A*:
-                                         ➡ always underestimates the cost

p
1

p
k

p
n
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• Data Source
– San Francisco Taxi Data 
– OSM for road network

• Data Statistics
– > 1M trajectories, 27.279 roads
– 99% spatial coverage
– Peak: ~25%, Off-peak: ~75%
– Weekend: ~35%, Weekday: ~65%

• Evaluation
– Random Origin-Destination Queries 

from trajectories.
– Comparison of routes with Azure Maps

• Length of route
• ETA of route

TrajRoute: Experiments
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• Data Source
– San Francisco Taxi Data 
– OSM for road network

• Data Statistics
– > 1M trajectories, 27.279 roads
– 99% spatial coverage
– Peak: ~25%, Off-peak: ~75%
– Weekend: ~35%, Weekday: ~65%

• Evaluation
– Random Origin-Destination Queries 

from trajectories.
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• Length of route
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TrajRoute: Experiments



36

• Evaluation
– Random Origin-Destination Queries 

from trajectories.
– Comparison of routes with Azure Maps

• Length of route
• ETA of route

– Spatial Coverage
• Keep trajectories that cover x% of the 

area
• Keep α=3.0 and rw=0.75 constant 

TrajRoute: Experiments
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TrajRoute: Experiments

Query Time: 06:01 PM
Azure Maps ETA: 21 mins

Query Time: 01:25 AM
Azure Maps ETA: 12 mins
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8 mins

*Actual travel times might vary

Isochrone Maps
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8 mins

Reverse Reachability Analysis
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Graph-based Approaches

• Isochrone maps extensively studied in the databases community
• In graph theory defined as the minimal subgraph that can be reached from a query vertex given a 

limited path cost that is equivalent to travel time.
– More precisely, it’s the set of all reachable vertices, fully traversed edges, and possibly partially 

traversed edges
• Standard solutions are based on Dijkstra’s (or Dreyfus) shortest path algorithm

– [ICDE’06] Finding fastest paths on a road network with speed patterns, Kanoulas et al.
– [GIS’08] Computing isochrones in multi-modal, schedule-based transport networks, Bauer et al.
– [EDBT’08] Finding time-dependent shortest paths over large graphs, Ding et al.
– [CIKM’11] Defining isochrones in multi-modal spatial networks, Gamber et al.
– [SEA’16] Fast  exact computation  of isochrones in road networks, Baum et al.
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Data-Driven Reachability

• Remove the expensive map-matching step
– Can take days to compute time-dependent 

weights for big data
• Remove the traversal step of complex graphs

– The higher the query time limit the more 
edges need to be explored

• Compute isochrone maps directly from data

– Only process trajectories that satisfy query 
criteria

• Support multiple Reachability Queries

– Single-Source & Multi-Source (Normal)

– Single-Target & Multi-Target (Reverse)
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Single-Source & Multi-Source Queries

Reachability Query 
   - Q(s, t, d)

• s: source location
• t: departure time
• d: time limit in minutes

7:27 am

7:25 am

7:30 am

7:30 am

Query Point GPS Point

Q(     , 7:25am,  5 minutes)
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Single-Target & Multi-Target Queries

Reverse Reachability Query 
   - Q(q, t, d)

• q: target location
• t: arrival time
• d: time limit in minutes

7:27 am

7:25 am

7:22 am

7:21 am

Query Point GPS Point

Q(     , 7:30am,  10 minutes)
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Visualization Methods

Query Point GPS Point

Convex Hull Cells Trajectory Buffer
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Experiments
• Data Source

– Navicall (Seoul Brand Taxi Call Company)
• Data collection period

– July 2016 – November 2016
• Data Statistics

– 5,000 taxies
– 1 min unit sensing data
– ~600M readings
– ~50 GB total
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