

Fundamentals of Computational Geometry

CSCI 587: Lecture 2 01/15/2025

What is Computational Geometry?

 Design, Analysis and Implementation of *efficient algorithms* for solving geometric problems, e.g., problems involving points, lines, segments, triangles, polygons

Many Applications

Robotics

Computer Graphics

Many Applications

Fundamental Operations

• In computational geometry, the most primitive object is a point.

Fundamental Operations

- In computational geometry, the most primitive object is a point.
- Common Operations: addition, subtraction

Fundamental Operations

- In computational geometry, the most primitive object is a point.
- Common Operations: addition, subtraction, dot product, cross product

Line Side Test

• Decide whether a point *q* is on the left or right of a line segment

Line Side Test

- Decide whether a point *q* is on the left or right of a line segment
 - Construct vectors: $v_1 = p_2 p_1$ and $v_2 = q p_1$
 - Compute the cross product v_1 and v_2
 - Compare value to 0

Convexity

A set of points **P** in a Euclidean space

Convex Hull

School of Engineering Integrated Media Systems Center

Convexity

A set of points **P** in a Euclidean space

Convex Hull

A point set $P \subseteq R^d$ is convex if it is closed under convex combinations.

Convexity

A set of points **P** in a Euclidean space

Concave

12

A set of points **P** in a Euclidean space

Convex Hull

Definition: The convex hull of a set of points **P** is the boundary of the convex closure of **P**. That is, it is the *smallest convex polygon* that contains *all* of the points in **P**, either on its boundary or interior.

Claim: A directed segment between a pair of points \mathbf{p}_i , \mathbf{p}_j is <u>on</u> the convex hull if and only if all other points are to the left of the ray through \mathbf{p}_i and \mathbf{p}_i .

Brute Force Algorithm

- 1. Try every pair of points **p**_i, **p**_i
- 2. Perform Line Side Test on every other point $\mathbf{p}_{\mathbf{k}}$
- 3. If every $\mathbf{p}_{\mathbf{k}}$ is on the left:
 - a. Add $\mathbf{p}_i \rightarrow \mathbf{p}_i$ to the hull
- 4. Sort the final set of edges into *counterclockwise* order

Claim: A directed segment between a pair of points \mathbf{p}_i , \mathbf{p}_j is <u>on</u> the convex hull if and only if all other points are to the left of the ray through \mathbf{p}_i and \mathbf{p}_i .

- Try every pair of points p_i, p_i
- 2. Perform Line Side Test on every other point $\mathbf{p}_{\mathbf{k}}$
- 3. If every $\mathbf{p}_{\mathbf{k}}$ is on the left:
 - a. Add $\mathbf{p}_i \rightarrow \mathbf{p}_i$ to the hull
- 4. Sort the final set of edges into counterclockwise order

Claim: A directed segment between a pair of points \mathbf{p}_i , \mathbf{p}_j is <u>on</u> the convex hull if and only if all other points are to the left of the ray through \mathbf{p}_i and \mathbf{p}_i .

Brute Force Algorithm $\implies O(N^3)$

- Try every pair of points p_i, p_i
- 2. Perform Line Side Test on every other point $\mathbf{p}_{\mathbf{k}}$
- 3. If every **p**_k is on the left:
 - a. Add $\mathbf{p}_i \rightarrow \mathbf{p}_i$ to the hull
- 4. Sort the final set of edges into counterclockwise order

Claim: A directed segment between a pair of points \mathbf{p}_i , \mathbf{p}_j is <u>on</u> the convex hull if and only if all other points are to the left of the ray through \mathbf{p}_i and \mathbf{p}_i .

A little bit faster Algorithm

- 1. Take the point with the lowest y-coordinate **p**
- 2. Measure the angle from $\mathbf{p}_{\mathbf{k}}$ to all the other points $\mathbf{p}_{\mathbf{k}}$
- 3. Select the point with the *smallest angle*
 - a. Add $\mathbf{p}_{s} \rightarrow \mathbf{p}_{k}$ to the hull
- 4. Find the point \mathbf{p}_{u} that has the smallest angle with respect to $(\mathbf{p}_{s}, \mathbf{p}_{k})$
- 5. Continue until all points are exhausted

Claim: The lowest y-coordinate point **p**_s is *always* in the convex hull.

Claim: The lowest y-coordinate point **p**_s is *always* in the convex hull.

19

- 1. Take the point with the lowest y-coordinate **p**
- 2. Measure the angle from \mathbf{p}_{s} to all the other points \mathbf{p}_{k}
- 3. Select the point with the *smallest angle*
 - a. Add $\mathbf{p}_{s} \rightarrow \mathbf{p}_{k}$ to the hull
- 4. Find the point \mathbf{p}_{u} that has the smallest angle with respect to $(\mathbf{p}_{s}, \mathbf{p}_{k})$
- 5. Continue until all points are exhausted

Claim: The lowest y-coordinate point **p**_s is *always* in the convex hull.

Claim: The lowest y-coordinate point **p** is *always* in the convex hull.

21

Claim: The lowest y-coordinate point **p** is *always* in the convex hull.

Graham Scan Algorithm							
1.	Find lowest y-coordinate point p						
2.	Sort the points counterclockwise by their angle with p _						
3.	$Hull = [\mathbf{p}_0, \mathbf{p}_1]$						
4.	For each point p						
	a.	If LineSideTest(Hull, p,) is RIGHT					
		i. H.pop() // remove last element					
	b.	H.add(p _i)					

Claim: The lowest y-coordinate point **p**_s is *always* in the convex hull.

School of Engineering Integrated Media Systems Center

Graha	am Sca	an Algorithm	───→ Complexity?	
1.	Find	lowest y-coordir	nate point p _	
2.	Sort the points counterclockwise by <i>their angle with</i> p ₀			
3.	$Hull = [\mathbf{p}_0, \mathbf{p}_1]$			
4.	For each point p			
	a. If LineSideTest(Hull, p _i) is RIGHT			
		i. H.pop()	// remove last element	
	b.	H.add(p _i)		

Claim: The lowest y-coordinate point **p**_s is *always* in the convex hull.

Graha	am Sca	an Algorithm	───→ O(NlogN)	
1.	Find lowest y-coordinate point p			
2.	Sort the points counterclockwise by their angle with p _o			
3.	$Hull = [\mathbf{p}_0, \mathbf{p}_1]$			
4.	For each point p			
	a.	If LineSideTest(H	lull, p _i) is RIGHT	
		i. H.pop()	// remove last element	
	b.	H.add(p _i)		

Claim: The lowest y-coordinate point **p**_s is *always* in the convex hull.

School of Engineering Integrated Media Systems Center

When do segments **AB** and **CD** *intersect*?

Intersections

• When do segments **AB** and **CD** intersect?

- We can take every point in one segment and test if it exists in the other.
- We can check if A and B are on opposite sides of **CD** segment.
 - eg. LineSideTest(CD, A) = RIGHT and LineSideTest(CD, B) is LEFT

Intersections

- What if we have N segments and want to detect k intersections?
 - We can perform the same checks for <u>all</u> possible pairs of segments.
 - **Complexity:** O(N²)

Currently exploring: a

Currently exploring: b, a

→ b does not intersect with a

Currently exploring: b, c, a

→ c does not intersect with b or a

Currently exploring: b, c, a, d

→ d does not intersect with a

Currently exploring: b, c, a, d, e

→ e does not intersect with d

Currently exploring: b, c, a, d, e

→ c does not intersect with d !

School of Engineering Integrated Media Systems Center

- Currently exploring: b, ¢, d, e
- → b *intersects* with d !

Currently exploring: b, d, e

→ b *intersects* with d !

37

Currently exploring: f, b, d, e

→ f does not intersect with b

Currently exploring: f, b, d, e

→ e *intersects* with b !

Note: Treat intersection point as endpoint

Currently exploring: f, b, d, e

→ e *intersects* with b !

Note: Treat intersection point as endpoint

Currently exploring: f, b, d, e

Currently exploring: f, d, e

→ f does not intersect with d

Currently exploring: f, e

→ f does not intersect with e

Currently exploring: e

Currently exploring:

45

Plane Sweep Algorithm

- 1. Queue **EQ** = start and end of each segment *Si;* List **SL** = {}
- 2. For pi in **EQ**:
 - a. If pi is *start* point:
 - . **SL**.add(pi); Intersects(Si, succ(Si)); Intersects(Si, predec(Si));
 - b. If pi is end point:
 - i. **SL**.delete(pi); Intersects(succ(Si), predec(Si));
 - c. If *cross event* for Si, Sj:
 - i. Remove Si from **SL**; Intersects(Sj, new neighbor);
 - ii. Remove Sj from **SL**; Intersects(Si, new neighbor);

- - 1. Queue **EQ** = start and end of each segment *Si;* List **SL** = {}
 - 2. For pi in EQ:
 - a. If pi is start point:
 - . **SL**.add(pi); Intersects(Si, succ(Si)); Intersects(Si, predec(Si));
 - b. If pi is end point:
 - i. **SL**.delete(pi); Intersects(succ(Si), predec(Si));
 - c. If *cross event* for Si, Sj:
 - i. Remove Si from **SL**; Intersects(Sj, new neighbor);
 - ii. Remove Sj from **SL**; Intersects(Si, new neighbor);

Triangulation

Convex Hull

Triangulated Convex Hull

Definition: A triangulation is the process of subdividing a complex object (e.g. convex hull) into a disjoint collection of "simpler" objects (e.g. triangles).

School of Engineering Integrated Media Systems Center

Triangulation

Convex Hull

Triangulated Convex Hull

We can again use the Plane Sweep Algorithm!

School of Engineering Integrated Media Systems Center

Intuition: Try to triangulate everything you can that is left from the sweep by *adding diagonals*.

How can we determine if a region is *un-triangulated*?

Lemma: For $i \ge 2$, after processing vertex v_i , **if** there are 2 x-monotone *chains*, a lower and an upper chain, and one has multiple edges, then this is an **untriangulated region**.

Triangulation: Delaunay Triangulation

Triangulation might not be **optimal!**

Triangulation: Delaunay Triangulation

Triangulation might not be **optimal!**

Delaunay Triangulation

 \rightarrow

- Use any triangulation algorithm to triangulate a polygon, e.g. plane sweep triangulation.
- → Fix bad triangulations afterwards.
 - a. Triangle points should not be collinear.
 - b. The circumcircle of each triangle not contain any other vertices from the mesh except for the three vertices that define the triangle.

p p p p q q q

62

School of Engineering Integrated Media Systems Center

Voronoi Diagrams

Voronoi Diagram of airports in the US

Definition: A Voronoi diagram is a partition of a plane into regions close to each a given set of objects.

School of Engineering Integrated Media Systems Center

Voronoi Diagrams

Which is the closest POI to X?

Voronoi Diagrams

Dual with Delaunay Triangulation

School of Engineering Integrated Media Systems Center

References

- CMU Fall 2022 Lectures on Fundamentals of Computational Geometry (https://www.cs.cmu.edu/~15451-f22/lectures/lec21-geometry.pdf)
- Duke Fall 2008 Lectures on Design and Analysis of Algorithms (https://courses.cs.duke.edu/fall08/cps230/Lectures/L-20.pdf)
- UCR CS133 Lectures on Computational Geometry

(https://www.cs.ucr.edu/~eldawy/19SCS133/slides/CS133-05-Intersection.pdf)

