
1

Fundamentals of Computational Geometry

CSCI 587: Lecture 2

01/15/2025

2

What is Computational Geometry?

• Design, Analysis and Implementation of efficient algorithms
for solving geometric problems, e.g., problems involving
points, lines, segments, triangles, polygons

 A

A

B

 A

 B

C

D
E

 F

 G
A

B

C

3

Many Applications

Robotics Geographic
Information Systems

Computer Graphics

4

polygon

line

point

Many Applications

5

Fundamental Operations

● In computational geometry, the most primitive object is a point.

A = (0, 1)

B = (34.022, -118.285)

6

Fundamental Operations

● In computational geometry, the most primitive object is a point.
● Common Operations: addition, subtraction

B = (34.022, -118.285)

A = (0, 1)
A

B

subtraction addition

A

B

(0,0)

7

Fundamental Operations

● In computational geometry, the most primitive object is a point.
● Common Operations: addition, subtraction, dot product, cross product

v

u
θ

dot product

Α

Β

(0,0)

Α + Β

cross product

8

Line Side Test

● Decide whether a point q is on the left or right of a line segment

q is right of v
1

q is left of v
1

9

Line Side Test

● Decide whether a point q is on the left or right of a line segment
○ Construct vectors: v

1
= p

2
−p

1
 and v

2
= q−p

1

○ Compute the cross product v
1

and v
2

○ Compare value to 0

q is right of v
1

q is left of v
1

10

Convexity

A set of points P in a Euclidean space Convex Hull

https://en.wikipedia.org/wiki/Euclidean_space

11

Convexity

A set of points P in a Euclidean space Convex Hull

A point set P ⊆ Rd is convex if it is closed under convex
combinations.

https://en.wikipedia.org/wiki/Euclidean_space

12

Convexity

A set of points P in a Euclidean space Concave

https://en.wikipedia.org/wiki/Euclidean_space

13

Convexity

A set of points P in a Euclidean space Convex Hull

Definition: The convex hull of a set of points P is the boundary of the convex closure of P . That is, it is the
smallest convex polygon that contains all of the points in P , either on its boundary or interior.

https://en.wikipedia.org/wiki/Euclidean_space

14

Algorithms for 2D Convex Hull

p
j

p
i

Claim: A directed segment between a pair of points p
i
, p

j
 is on the convex hull if and only if all other points

are to the left of the ray through p
i
 and p

j
.

15

Claim: A directed segment between a pair of points p
i
, p

j
 is on the convex hull if and only if all other points

are to the left of the ray through p
i
 and p

j
.

p
k

p
i

p
j

Brute Force Algorithm

1. Try every pair of points p
i
, p

j

2. Perform Line Side Test on every other point p
k

3. If every p
k
 is on the left:

a. Add p
i
→p

j
 to the hull

4. Sort the final set of edges into counterclockwise order

Algorithms for 2D Convex Hull

16

Claim: A directed segment between a pair of points p
i
, p

j
 is on the convex hull if and only if all other points

are to the left of the ray through p
i
 and p

j
.

p
k

p
i

p
j

Algorithms for 2D Convex Hull

Brute Force Algorithm

1. Try every pair of points p
i
, p

j

2. Perform Line Side Test on every other point p
k

3. If every p
k
 is on the left:

a. Add p
i
→p

j
 to the hull

4. Sort the final set of edges into counterclockwise order

Complexity?

17

Claim: A directed segment between a pair of points p
i
, p

j
 is on the convex hull if and only if all other points

are to the left of the ray through p
i
 and p

j
.

p
k

p
i

p
j

Algorithms for 2D Convex Hull

Brute Force Algorithm

1. Try every pair of points p
i
, p

j

2. Perform Line Side Test on every other point p
k

3. If every p
k
 is on the left:

a. Add p
i
→p

j
 to the hull

4. Sort the final set of edges into counterclockwise order

O(N3)

18

Claim: The lowest y-coordinate point p
s
is always in the convex hull.

Algorithms for 2D Convex Hull

A little bit faster Algorithm

1. Take the point with the lowest y-coordinate p
s

2. Measure the angle from p
s
 to all the other points p

k

3. Select the point with the smallest angle

a. Add p
s
→p

k
 to the hull

4. Find the point p
u
 that has the smallest angle with respect to (p

s
, p

k
)

5. Continue until all points are exhausted
p

s

p
kθ

19

Claim: The lowest y-coordinate point p
s
is always in the convex hull.

Algorithms for 2D Convex Hull

A little bit faster Algorithm

1. Take the point with the lowest y-coordinate p
s

2. Measure the angle from p
s
 to all the other points p

k

3. Select the point with the smallest angle

a. Add p
s
→p

k
 to the hull

4. Find the point p
u
 that has the smallest angle with respect to (p

s
, p

k
)

5. Continue until all points are exhausted
p

s

p
kθ

Complexity?

20

Claim: The lowest y-coordinate point p
s
is always in the convex hull.

Algorithms for 2D Convex Hull

A little bit faster Algorithm

1. Take the point with the lowest y-coordinate p
s

2. Measure the angle from p
s
 to all the other points p

k

3. Select the point with the smallest angle

a. Add p
s
→p

k
 to the hull

4. Find the point p
u
 that has the smallest angle with respect to (p

s
, p

k
)

5. Continue until all points are exhausted
p

s

p
kθ

O(N2)

21

Claim: The lowest y-coordinate point p
s
is always in the convex hull.

Algorithms for 2D Convex Hull

p
0

p
1θ

p
0

p
1

p
2

p
0

p
1

p
2

p
0

p
1

p
2

we are making a
right turn!

22

Claim: The lowest y-coordinate point p
s
is always in the convex hull.

Algorithms for 2D Convex Hull

p
0

p
1θ

p
0

p
1

p
2

we are making a
right turn!

…
p

0

p
1

p
2

p
3

Remove the last added
point from Hull

23

Claim: The lowest y-coordinate point p
s
is always in the convex hull.

Algorithms for 2D Convex Hull

p
0

p
1θ

Graham Scan Algorithm

1. Find lowest y-coordinate point p
0

2. Sort the points counterclockwise by their angle with p
0

3. Hull = [p
0,

p
1
]

4. For each point p
i

a. If LineSideTest(Hull, p
i
) is RIGHT

i. H.pop() // remove last element

b. H.add(p
i
)

24

Claim: The lowest y-coordinate point p
s
is always in the convex hull.

Algorithms for 2D Convex Hull

p
0

p
1θ

Graham Scan Algorithm

1. Find lowest y-coordinate point p
0

2. Sort the points counterclockwise by their angle with p
0

3. Hull = [p
0,

p
1
]

4. For each point p
i

a. If LineSideTest(Hull, p
i
) is RIGHT

i. H.pop() // remove last element

b. H.add(p
i
)

Complexity?

25

Claim: The lowest y-coordinate point p
s
is always in the convex hull.

Algorithms for 2D Convex Hull

p
0

p
1θ

Graham Scan Algorithm

1. Find lowest y-coordinate point p
0

2. Sort the points counterclockwise by their angle with p
0

3. Hull = [p
0,

p
1
]

4. For each point p
i

a. If LineSideTest(Hull, p
i
) is RIGHT

i. H.pop() // remove last element

b. H.add(p
i
)

O(NlogN)

26

Intersections

A

B

C

D

A

B

C

D

When do segments AB and CD intersect?

Intersecting pair Non Intersecting pair

27

Intersections

A

B

C

D

A

B

C

D

● When do segments AB and CD intersect?

○ We can take every point in one segment and test if it exists in

the other.

○ We can check if A and B are on opposite sides of CD segment.

■ eg. LineSideTest(CD, A) = RIGHT and LineSideTest(CD, B) is

LEFT

28

Intersections

● What if we have N segments and want to detect k

intersections?

○ We can perform the same checks for all possible pairs of

segments.

○ Complexity: O(N2)

a

c

b f

d
e

29

Intersections: Plane Sweep Algorithm

a

c

b f

d
e

PS

30

Intersections: Plane Sweep Algorithm

a

c

b f

d
e

Currently exploring: a

31

Intersections: Plane Sweep Algorithm

a

c

b f

d
e

Currently exploring: b, a

➔ b does not intersect with a

32

Intersections: Plane Sweep Algorithm

a

c

b f

d
e

Currently exploring: b, c, a

➔ c does not intersect with b or a

33

Intersections: Plane Sweep Algorithm

a

c

b f

d
e

Currently exploring: b, c, a, d

➔ d does not intersect with a

34

Intersections: Plane Sweep Algorithm

a

c

b f

d
e

Currently exploring: b, c, a, d, e

➔ e does not intersect with d

35

Intersections: Plane Sweep Algorithm

a

c

b f

d
e

Currently exploring: b, c, a, d, e

➔ c does not intersect with d !

36

Intersections: Plane Sweep Algorithm

a

c

b f

d
e

Currently exploring: b, c, d, e

➔ b intersects with d !

37

Intersections: Plane Sweep Algorithm

a

c

b f

d
e

Currently exploring: b, d, e

➔ b intersects with d !

38

Intersections: Plane Sweep Algorithm

a

c

b f

d
e

Currently exploring: f, b, d, e

➔ f does not intersect with b

39

Intersections: Plane Sweep Algorithm

a

c

b f

d
e

Currently exploring: f, b, d, e

➔ e intersects with b !

Note: Treat intersection point as endpoint

40

Intersections: Plane Sweep Algorithm

a

c

b f

d
e

Currently exploring: f, b, d, e

➔ e intersects with b !

Note: Treat intersection point as endpoint

41

Intersections: Plane Sweep Algorithm

a

c

b f

d
e

Currently exploring: f, b, d, e

42

Intersections: Plane Sweep Algorithm

a

c

b f

d
e

Currently exploring: f, d, e

➔ f does not intersect with d

43

Intersections: Plane Sweep Algorithm

a

c

b f

d
e

Currently exploring: f, e

➔ f does not intersect with e

44

Intersections: Plane Sweep Algorithm

a

c

b f

d
e

Currently exploring: e

45

Intersections: Plane Sweep Algorithm

a

c

b f

d
e

Currently exploring:

46

Intersections: Plane Sweep Algorithm

a

c

b f

d
e

PS

Plane Sweep Algorithm

1. Queue EQ = start and end of each segment Si; List SL = {}

2. For pi in EQ:

a. If pi is start point:

i. SL.add(pi); Intersects(Si, succ(Si)); Intersects(Si, predec(Si));

b. If pi is end point:

i. SL.delete(pi); Intersects(succ(Si), predec(Si));

c. If cross event for Si, Sj:

i. Remove Si from SL; Intersects(Sj, new neighbor);

ii. Remove Sj from SL; Intersects(Si, new neighbor);

47

Intersections: Plane Sweep Algorithm

a

c

b f

d
e

PS

Plane Sweep Algorithm

1. Queue EQ = start and end of each segment Si; List SL = {}

2. For pi in EQ:

a. If pi is start point:

i. SL.add(pi); Intersects(Si, succ(Si)); Intersects(Si, predec(Si));

b. If pi is end point:

i. SL.delete(pi); Intersects(succ(Si), predec(Si));

c. If cross event for Si, Sj:

i. Remove Si from SL; Intersects(Sj, new neighbor);

ii. Remove Sj from SL; Intersects(Si, new neighbor);

O(NlogN)

48

Triangulation

Definition: A triangulation is the process of subdividing a complex object (e.g. convex hull) into a disjoint
collection of “simpler” objects (e.g. triangles).

Convex Hull Triangulated Convex Hull

49

Triangulation

We can again use the Plane Sweep Algorithm!

Convex Hull Triangulated Convex Hull

50

Triangulation: Plane Sweep Algorithm

PS

Intuition: Try to triangulate everything you
can that is left from the sweep by adding
diagonals.

51

Triangulation: Plane Sweep Algorithm

52

Triangulation: Plane Sweep Algorithm

53

Triangulation: Plane Sweep Algorithm

54

Triangulation: Plane Sweep Algorithm

55

Triangulation: Plane Sweep Algorithm

56

Triangulation: Plane Sweep Algorithm

57

Triangulation: Plane Sweep Algorithm

58

Triangulation: Plane Sweep Algorithm

How can we determine if a region is
un-triangulated?

59

Triangulation: Plane Sweep Algorithm

Lemma: For i≥2, after processing vertex v
i
, if there are 2

x-monotone chains, a lower and an upper chain, and one
has multiple edges, then this is an untriangulated region.

v
i

60

Triangulation: Delaunay Triangulation

Triangulation might not be optimal!

61

Triangulation: Delaunay Triangulation

Triangulation might not be optimal!

62

Delaunay Triangulation

➔ Use any triangulation algorithm to triangulate a polygon,

e.g. plane sweep triangulation.

➔ Fix bad triangulations afterwards.

a. Triangle points should not be collinear.

b. The circumcircle of each triangle not contain any other
vertices from the mesh except for the three vertices that
define the triangle.

Accepted

Not Accepted

63

Voronoi Diagrams

Definition: A Voronoi diagram is a partition of a plane into regions close to each a given set of objects.

Voronoi Diagram of airports in the US

https://en.wikipedia.org/wiki/Partition_of_a_set
https://en.wikipedia.org/wiki/Plane_(geometry)

64

Voronoi Diagrams

Which is the closest POI to X ?

65

Voronoi Diagrams

Dual with Delaunay Triangulation

66

References

• CMU Fall 2022 Lectures on Fundamentals of Computational Geometry
(https://www.cs.cmu.edu/~15451-f22/lectures/lec21-geometry.pdf)

• Duke Fall 2008 Lectures on Design and Analysis of Algorithms
(https://courses.cs.duke.edu/fall08/cps230/Lectures/L-20.pdf)

• UCR CS133 Lectures on Computational Geometry
(https://www.cs.ucr.edu/~eldawy/19SCS133/slides/CS133-05-Intersection.pdf)

https://www.cs.cmu.edu/~15451-f22/lectures/lec21-geometry.pdf
https://courses.cs.duke.edu/fall08/cps230/Lectures/L-20.pdf
https://www.cs.ucr.edu/~eldawy/19SCS133/slides/CS133-05-Intersection.pdf

