

Fundamentals of Computational Geometry

CSCI 587: Lecture 2 01/15/2025

What is Computational Geometry?

• Design, Analysis and Implementation of *efficient algorithms* for solving geometric problems, e.g., problems involving points, lines, segments, triangles, polygons

Many Applications

Computer Graphics

Integrated Media Systems Center

Many Applications

Fundamental Operations

● In computational geometry, the most primitive object is a point.

Fundamental Operations

- In computational geometry, the most primitive object is a point.
- Common Operations: *addition, subtraction*

Fundamental Operations

- In computational geometry, the most primitive object is a point.
- Common Operations: *addition, subtraction, dot product, cross product*

Line Side Test

● Decide whether a point *q* is on the left or right of a line segment

Line Side Test

- Decide whether a point *q* is on the left or right of a line segment
	- Construct vectors: $v_1 = p_2 p_1$ and $v_2 = q p_1$
	- \circ Compute the cross product v_1 and v_2
	- Compare value to 0

Convexity

A set of points **P** in a [Euclidean space](https://en.wikipedia.org/wiki/Euclidean_space) Convex Hull

A set of points **P** in a [Euclidean space](https://en.wikipedia.org/wiki/Euclidean_space) Convex Hull

A point set $P \subseteq R^d$ is convex if it is closed under convex combinations.

Convexity

A set of points **P** in a [Euclidean space](https://en.wikipedia.org/wiki/Euclidean_space) Concave

A set of points **P** in a [Euclidean space](https://en.wikipedia.org/wiki/Euclidean_space) Convex Hull

Definition: The convex hull of a set of points **P** is the boundary of the convex closure of **P** . That is, it is the *smallest convex polygon* that contains *all* of the points in **P** , either on its boundary or interior.

Claim: A directed segment between a pair of points p_i , p_j is <u>on</u> the convex hull if and only if all other points are to the left of the ray through \boldsymbol{p}_i and \boldsymbol{p}_j .

14

Brute Force Algorithm

- 1. Try every pair of points $p_{i'} p_{j}$
- 2. Perform Line Side Test on every other point p_k
- 3. If every \boldsymbol{p}_k is on the left:
	- a. Add \mathbf{p}_{i} → \mathbf{p}_{j} to the hull
- 4. Sort the final set of edges into *counterclockwise* order

Claim: A directed segment between a pair of points p_i , p_j is <u>on</u> the convex hull if and only if all other points are to the left of the ray through **p**_i and **p**_j.

Brute Force Algorithm Complexity?

- 1. Try every pair of points p_{i} , p_{j}
- 2. Perform Line Side Test on every other point **p**_k
- 3. If every \boldsymbol{p}_k is on the left:
	- a. Add \mathbf{p}_{i} → \mathbf{p}_{j} to the hull
- 4. Sort the final set of edges into counterclockwise order

Claim: A directed segment between a pair of points p_i , p_j is <u>on</u> the convex hull if and only if all other points are to the left of the ray through **p**_i and **p**_j.

Brute Force Algorithm \Longrightarrow O(N³)

- 1. Try every pair of points p_{i} , p_{j}
- 2. Perform Line Side Test on every other point p_k
- 3. If every \boldsymbol{p}_k is on the left:
	- a. Add \mathbf{p}_{i} → \mathbf{p}_{j} to the hull
- 4. Sort the final set of edges into counterclockwise order

Claim: A directed segment between a pair of points p_i , p_j is <u>on</u> the convex hull if and only if all other points are to the left of the ray through **p**_i and **p**_j.

A little bit faster Algorithm

- 1. Take the point with the lowest y-coordinate **p**_s
- 2. Measure the angle from p_s to all the other points p_k
- 3. Select the point with the *smallest angle*
	- a. Add $\mathbf{p}_{\mathbf{s}}$ \rightarrow $\mathbf{p}_{\mathbf{k}}$ to the hull
- 4. Find the point \mathbf{p}_{u} that has the smallest angle with respect to $(\mathbf{p}_{s}, \mathbf{p}_{k})$
- 5. Continue until all points are exhausted

A little bit faster Algorithm 1. Take the point with the lowest y-coordinate p_{s} 2. Measure the angle from p_s to all the other points p_k 3. Select the point with the *smallest angle* a. Add $\mathbf{p}_{\mathbf{s}}$ \rightarrow $\mathbf{p}_{\mathbf{k}}$ to the hull 4. Find the point \mathbf{p}_{u} that has the smallest angle with respect to $(\mathbf{p}_{s}, \mathbf{p}_{k})$ 5. Continue until all points are exhausted **O(N²)**

When do segments **AB** and **CD** *intersect*?

Intersections

● When do segments **AB** and **CD** *intersect*?

- We can take every point in one segment and test if it exists in the other.
- We can check if A and B are on opposite sides of **CD** segment.
	- *eg.* LineSideTest(CD, A) = RIGHT and LineSideTest(CD, B) is LEFT

Intersections

- What if we have **N** segments and want to detect **k** intersections?
	- We can perform the same checks for all possible pairs of segments.
	- **Complexity:** O(N²)

Currently exploring: a

Currently exploring: b, a

➔ b does not *intersect* with a

Currently exploring: b, c, a

➔ c does not *intersect* with b or a

Currently exploring: b, c, a, d

➔ d does not *intersect* with a

Currently exploring: b, c, a, d, e

➔ e does not *intersect* with d

Currently exploring: b, c, α , d, e

➔ c does not *intersect* with d !

- Currently exploring: b, c, d, e
- ➔ b *intersects* with d !

Currently exploring: b, d, e

➔ b *intersects* with d !

Currently exploring: f, b, d, e

➔ f does not *intersect* with b

Currently exploring: f, b, ϕ , e

➔ e *intersects* with b !

Note: Treat intersection point as endpoint

Currently exploring: f, b, d, e

➔ e *intersects* with b !

Note: Treat intersection point as endpoint

Currently exploring: f, b, d, e

41

Currently exploring: f, d, e

➔ f does not *intersect* with d

Currently exploring: f, e

➔ f does not *intersect* with e

Currently exploring: e

44

Currently exploring:

Plane Sweep Algorithm

- 1. Queue **EQ** = start and end of each segment *Si;* List **SL** = {}
- 2. For pi in **EQ**:
	- a. If pi is *start* point:
		- i. **SL**.add(pi); Intersects(Si, succ(Si)); Intersects(Si, predec(Si));
	- b. If pi is *end* point:
		- i. **SL**.delete(pi); Intersects(succ(Si), predec(Si));
	- c. If *cross event* for Si, Sj:
		- i. Remove Si from **SL**; Intersects(Sj, new neighbor);
		- ii. Remove Sj from **SL**; Intersects(Si, new neighbor);

- **Plane Sweep Algorithm O(NlogN)**
	- 1. Queue **EQ** = start and end of each segment *Si;* List **SL** = {}
	- 2. For pi in **EQ**:
		- a. If pi is *start* point:
			- i. **SL**.add(pi); Intersects(Si, succ(Si)); Intersects(Si, predec(Si));
		- b. If pi is *end* point:
			- i. **SL**.delete(pi); Intersects(succ(Si), predec(Si));
		- c. If *cross event* for Si, Sj:
			- i. Remove Si from **SL**; Intersects(Sj, new neighbor);
			- ii. Remove Sj from **SL**; Intersects(Si, new neighbor);

Triangulation

Convex Hull **Convex Hull** Convex Hull

Definition: A **triangulation** is the process of subdividing a complex object (e.g. convex hull) into a disjoint collection of "simpler" objects (e.g. triangles).

Triangulation

Convex Hull **Convex Hull** Convex Hull

We can again use the **Plane Sweep Algorithm**!

Intuition: Try to triangulate everything you can that is left from the sweep by *adding diagonals*.

How can we determine if a region is *un-triangulated*?

58

Lemma: For i≥2, after processing vertex v_i, **if** there are 2 x-monotone *chains*, a lower and an upper chain, and one has multiple edges, then this is an **untriangulated region**.

Triangulation: Delaunay Triangulation

Triangulation might not be **optimal!**

Triangulation: Delaunay Triangulation

Triangulation might not be **optimal!**

Delaunay Triangulation

School of Engineering **Integrated Media Systems Center**

- \rightarrow Use any triangulation algorithm to triangulate a polygon, e.g. plane sweep triangulation.
- ➔ **Fix** bad triangulations afterwards.
	- a. Triangle points should not be collinear.
	- b. The circumcircle of each triangle not contain any other vertices from the mesh except for the three vertices that define the triangle.

 \overline{q} q

Voronoi Diagrams

Voronoi Diagram of airports in the US

Definition: A **Voronoi diagram** is a [partition](https://en.wikipedia.org/wiki/Partition_of_a_set) of a [plane](https://en.wikipedia.org/wiki/Plane_(geometry)) into regions close to each a given set of objects.

School of Engineering **Integrated Media Systems Center**

Voronoi Diagrams

Which is the closest POI to **X** ?

Voronoi Diagrams

Dual with Delaunay Triangulation

Integrated Media Systems Center

References

- CMU Fall 2022 Lectures on *Fundamentals of Computational Geometry* [\(https://www.cs.cmu.edu/~15451-f22/lectures/lec21-geometry.pdf](https://www.cs.cmu.edu/~15451-f22/lectures/lec21-geometry.pdf))
- Duke Fall 2008 Lectures on Design and Analysis of Algorithms [\(https://courses.cs.duke.edu/fall08/cps230/Lectures/L-20.pdf](https://courses.cs.duke.edu/fall08/cps230/Lectures/L-20.pdf))
- UCR CS133 Lectures on Computational Geometry

[\(https://www.cs.ucr.edu/~eldawy/19SCS133/slides/CS133-05-Intersection.pdf](https://www.cs.ucr.edu/~eldawy/19SCS133/slides/CS133-05-Intersection.pdf))

