
Spatial	Index	
Structures

Instructor:	Cyrus	Shahabi



Outline
• Grid	File
• Z-ordering
• Hilbert	Curve
• Quad	Tree
– PM
– PR
• R	Tree	(next	session)
– R*	Tree
– R+	Tree



Grid	File

• Hashing	methods	for	multidimensional	points	
(extension	of	Extensible	hashing)

• Idea:	Use	a	grid	to	partition	the	spaceà each	cell	
is	associated	with	one	page

• Two	disk	access	principle	(exact	match)



Grid	File

• Start	with	one	bucket	
for	the	whole	space.

• Select	dividers	along	
each	dimension.	
Partition	space	into	cells	

• Dividers	cut	all	the	way.



Grid	File

• Each	cell	corresponds	to	1	
disk	page.

• Many	cells	can	point	to	
the	same	page.

• Cell	directory	potentially	
exponential	in	the	
number	of	dimensions



Grid	File	Implementation

• Dynamic	structure	using	a	grid	directory
– Grid	array:	a	2	dimensional	array	with	pointers	to	
buckets	(this	array	can	be	large,	disk	resident)	
G(0,…,	nx-1,	0,	…,	ny-1)

– Linear	scales:	Two	1	dimensional	arrays	that	used	
to	access	the	grid	array	(main	memory)	X(0,	…,	
nx-1),	Y(0,	…,	ny-1)



Example

Linear scale   X 

Linear scale

Y 

Grid Directory

Buckets/Disk Blocks



Grid	File	Search
• Exact	Match	Search:	at	most	2	I/Os assuming	linear	scales	fit	

in	memory.
– First	use	liner	scales	to	determine	the	index	into	the	cell	
directory

– access	the	cell	directory	to	retrieve	the	bucket	address	
(may	cause	1	I/O	if	cell	directory	does	not	fit	in	memory)

– access	the	appropriate	bucket	(1	I/O)
– E.g.,	X=(0,	1000,	1500,	1750,	1875,	2000)	;	Y=(a,	f,	k,	p,	z)		
--- search	for	[1980,w]

• Range	Queries:
– use	linear	scales	to	determine	the	index	into	the	cell	
directory.

– Access	the	cell	directory	to	retrieve	the	bucket	addresses	
of	buckets	to	visit.

– Access	the	buckets.



Grid	File	Insertions

• Determine	the	bucket	into	which	insertion	must	occur.
• If	space	in	bucket,	insert.
• Else,	split	bucket

– how	to	choose	a	good	dimension	to	split?
– ans:	create	convex	regions	for	buckets.

• If	bucket	split	causes	a	cell	directory	to	split	do	so	and	
adjust	linear	scales.

• insertion	of	these	new	entries	potentially	requires	a	
complete	reorganization	of	the	cell	directory---
expensive!!!



Grid	File	Deletions

• Deletions	may	decrease	the	space	utilization.	
Merge	buckets

• We	need	to	decide	which	cells	to	merge	and	a	
merging	threshold

• Buddy	system	and	neighbor	system
– A	bucket	can	merge	with	only	one	buddy in	each	
dimension

– Merge	adjacent	regions	if	the	result	is	a	rectangle



Z-ordering

• Basic	assumption:	Finite	precision	in	the	
representation	of	each	coordinate,	K	bits	(2K values)

• The	address	space	is	a	square	(image)	and	
represented	as	a	2K x	2K array

• Each	element	is	called	a	pixel



Z-ordering

• Impose	a	linear	ordering	on	the	pixels	of	the	
image	à 1	dimensional	problem
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ZA = shuffle(xA, yA) = shuffle(“01”, “11”)

= 0111 = (7)10

ZB = shuffle(“01”, “01”) = 0011



Z-ordering

• Given	a	point	(x,	y)	and	the	precision	K	find	
the	pixel	for	the	point	and	then	compute	the	
z-value

• Given	a	set	of	points,	use	a	B+-tree	to	index	
the	z-values

• A	range	(rectangular)	query	in	2-d	is	mapped	
to	a	set	of	ranges	in	1-d



Queries

• Find	the	z-values	that	contained	in	the	query	
and	then	the	ranges	
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Hilbert	Curve

• We	want	points	that	are	close	in	2d	to	be	
close	in	the	1d

• Note	that	in	2d	there	are	4	neighbors	for	
each	point	where	in	1d	only	2.

• Z-curve	has	some	“jumps”	that	we	would	
like	to	avoid

• Hilbert	curve	avoids	the	jumps	:	recursive	
definition



Hilbert	Curve- example

• It	has	been	shown	that	in	general	Hilbert	is	better	than	
the	other	space	filling	curves	for	retrieval	*

• Hi (order-i)	Hilbert	curve	for	2ix2i array

H1
H2

... H(n+1)

* H. V. Jagadish: Linear Clustering of Objects with Multiple Atributes. ACM SIGMOD Conference 1990: 332-342



Quad	Trees

• Region	Quadtree
– The	blocks	are	required	to	be	disjoint
– Have	standard	sizes	(squares	whose	sides	are	power	of	
two)

– At	standard	locations
– Based	on	successive	subdivision	of	image	array																				
into	four	equal-size	quadrants

– If	the	region	does	not	cover	the	entire	array,	subdivide	into	
quadrants,	sub-quadrants,	etc.

– A	variable	resolution	data	structure



Example	of	Region	Quadtree
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PR	Quadtree
• PR	(Point-Region) quadtree
• Regular	decomposition	(similar	to	Region	quadtree)
• Independent	of	the	order	in	which	data	points	are	inserted	

into	it
• L:	if	two	points	are	very	close,	decomposition	can	be	very	

deep



Example	of	PR	Quadtree
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Subdivide into quadrants until the two 
points are located in different regions



PM	Quadtree
• PM	(Polygonal-Map) quadtree	family

– PM1	quadtree,	PM2	quadtree,	PM3	quadtree,	PMR	
quadtree,	…	etc.

• PM1	quadtree
– Based	on	regular	decomposition	of	space
– Vertex-based	implementation
– Criteria

• At	most	one	vertex	can	lie	in	a	region	represented	by	a	quadtree	leaf
• If	a	region	contains	a	vertex,	it	can	contain	no	partial-edge	that	does	not	

include	that	vertex
• If	a	region	contains	no	vertices,	it	can	contain	at	most	one	partial-edge



PM	Quadtree
PM1	quadtree

PM2	quadtree

PM3	quadtree
• Each	node	in	a	PM	quadtree

is	a	collection	of	partial	
edges	(and	a	vertex)

• Each	point	record	has	two	
field	(x,y)

• Each	partial	edge	has	four	
field	(starting_point,	
ending_point,	left	region,	
right	region)



Example	of	PM1	Quadtree

(0,0) (100,0)

(100,100)(0,100)
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