Spatial Index Structures

Instructor: Cyrus Shahabi

Outline

- Grid File
- Z-ordering
- Hilbert Curve
- Quad Tree
- PM
- PR
- R Tree (next session)
- R* Tree
- R+ Tree

Grid File

- Hashing methods for multidimensional points (extension of Extensible hashing)
- Idea: Use a grid to partition the space \rightarrow each cell is associated with one page
- Two disk access principle (exact match)

Grid File

- Start with one bucket for the whole space.
- Select dividers along each dimension. Partition space into cells
- Dividers cut all the way.

Grid File

- Each cell corresponds to 1 disk page.

- Many cells can point to the same page.
- Cell directory potentially exponential in the number of dimensions

Grid File Implementation

- Dynamic structure using a grid directory
- Grid array: a 2 dimensional array with pointers to buckets (this array can be large, disk resident) G(0,..., nx-1, $0, \ldots, n y-1$)
- Linear scales: Two 1 dimensional arrays that used to access the grid array (main memory) $X(0, \ldots$, $n x-1), Y(0, \ldots, n y-1)$

Example

Linear scale
Y

Grid File Search

- Exact Match Search: at most 2 I/Os assuming linear scales fit in memory.
- First use liner scales to determine the index into the cell directory
- access the cell directory to retrieve the bucket address (may cause $1 \mathrm{I} / \mathrm{O}$ if cell directory does not fit in memory)
- access the appropriate bucket (1 I/O)
- E.g., $X=(0,1000,1500,1750,1875,2000) ; Y=(a, f, k, p, z)$ --- search for [1980,w]
- Range Queries:
- use linear scales to determine the index into the cell directory.
- Access the cell directory to retrieve the bucket addresses of buckets to visit.
- Access the buckets.

Grid File Insertions

- Determine the bucket into which insertion must occur.
- If space in bucket, insert.
- Else, split bucket
- how to choose a good dimension to split?
- ans: create convex regions for buckets.
- If bucket split causes a cell directory to split do so and adjust linear scales.
- insertion of these new entries potentially requires a complete reorganization of the cell directory--expensive!!!

Grid File Deletions

- Deletions may decrease the space utilization. Merge buckets
- We need to decide which cells to merge and a merging threshold
- Buddy system and neighbor system
- A bucket can merge with only one buddy in each dimension
- Merge adjacent regions if the result is a rectangle

Z-ordering

- Basic assumption: Finite precision in the representation of each coordinate, K bits (2^{K} values)
- The address space is a square (image) and represented as a $2^{\mathrm{K}} \times 2^{\mathrm{K}}$ array
- Each element is called a pixel

Z-ordering

- Impose a linear ordering on the pixels of the image $\rightarrow 1$ dimensional problem

$$
\begin{aligned}
\mathrm{Z}_{\mathrm{A}} & =\operatorname{shuffle}\left(\mathrm{x}_{\mathrm{A}}, \mathrm{y}_{\mathrm{A}}\right)=\operatorname{shuffle}(" 01 ", " 11 ") \\
& =0111=(7)_{10} \\
Z_{B} & =\operatorname{shuffle}(" 01 ", " 01 ")=0011
\end{aligned}
$$

Z-ordering

- Given a point (x, y) and the precision K find the pixel for the point and then compute the z-value
- Given a set of points, use a B+-tree to index the z-values
- A range (rectangular) query in 2-d is mapped to a set of ranges in 1-d

Queries

- Find the z-values that contained in the query and then the ranges

$$
\begin{aligned}
& \mathrm{Q}_{\mathrm{A}} \rightarrow \text { range }[4,7] \\
& \mathrm{Q}_{\mathrm{B}} \rightarrow \text { ranges }[2,3] \text { and }[8,9]
\end{aligned}
$$

Hilbert Curve

- We want points that are close in 2d to be close in the 1d
- Note that in 2d there are 4 neighbors for each point where in 1d only 2.
- Z-curve has some "jumps" that we would like to avoid
- Hilbert curve avoids the jumps : recursive definition

Hilbert Curve- example

- It has been shown that in general Hilbert is better than the other space filling curves for retrieval *
- H_{i} (order-i) Hilbert curve for $2^{i x} 2^{i}$ array

H_{1}

H_{2}

$H_{(n+1)}$

Quad Trees

- Region Quadtree
- The blocks are required to be disjoint
- Have standard sizes (squares whose sides are power of two)
- At standard locations
- Based on successive subdivision of image array into four equal-size quadrants
- If the region does not cover the entire array, subdivide into quadrants, sub-quadrants, etc.
- A variable resolution data structure

USC Viterbi
School of Engineering

Example of Region Quadtree

1			2		3
				4	5
6	7	8	13		14
	9	10			
11	12		15	16	19
			17	18	

PR Quadtree

- PR (Point-Region) quadtree
- Regular decomposition (similar to Region quadtree)
- Independent of the order in which data points are inserted into it
- :): if two points are very close, decomposition can be very deep

Example of PR Quadtree

- PM (Polygonal-Map) quadtree family
- PM1 quadtree, PM2 quadtree, PM3 quadtree, PMR quadtree, ... etc.
- PM1 quadtree
- Based on regular decomposition of space
- Vertex-based implementation
- Criteria
- At most one vertex can lie in a region represented by a quadtree leaf
- If a region contains a vertex, it can contain no partial-edge that does not include that vertex
- If a region contains no vertices, it can contain at most one partial-edge

PM Quadtree

PM1 quadtree

PM2 quadtree

PM3 quadtree

- Each node in a PM quadtree is a collection of partial edges (and a vertex)
- Each point record has two field (x, y)
- Each partial edge has four field (starting_point, ending_point, left region, right region)

Example of PM1 Quadtree

References

- National Technical University of Athens , Theoretical Computer Science II: Advanced Data Structures
- Jürg Nievergelt, Hans Hinterberger, Kenneth C. Sevcik: The Grid File: An Adaptable, Symmetric Multikey File Structure. ACM Trans. Database Syst. 9(1): 38-71 (1984)
- H. V. Jagadish: Linear Clustering of Objects with Multiple Atributes. ACM SIGMOD Conference 1990: 332-342

