
Spatial	Index	
Structures

Instructor:	Cyrus	Shahabi

Outline
• Grid	File
• Z-ordering
• Hilbert	Curve
• Quad	Tree
– PM
– PR
• R	Tree	(next	session)
– R*	Tree
– R+	Tree

Grid	File

• Hashing	methods	for	multidimensional	points	
(extension	of	Extensible	hashing)

• Idea:	Use	a	grid	to	partition	the	spaceà each	cell	
is	associated	with	one	page

• Two	disk	access	principle	(exact	match)

Grid	File

• Start	with	one	bucket	
for	the	whole	space.

• Select	dividers	along	
each	dimension.	
Partition	space	into	cells	

• Dividers	cut	all	the	way.

Grid	File

• Each	cell	corresponds	to	1	
disk	page.

• Many	cells	can	point	to	
the	same	page.

• Cell	directory	potentially	
exponential	in	the	
number	of	dimensions

Grid	File	Implementation

• Dynamic	structure	using	a	grid	directory
– Grid	array:	a	2	dimensional	array	with	pointers	to	
buckets	(this	array	can	be	large,	disk	resident)	
G(0,…,	nx-1,	0,	…,	ny-1)

– Linear	scales:	Two	1	dimensional	arrays	that	used	
to	access	the	grid	array	(main	memory)	X(0,	…,	
nx-1),	Y(0,	…,	ny-1)

Example

Linear scale X

Linear scale

Y

Grid Directory

Buckets/Disk Blocks

Grid	File	Search
• Exact	Match	Search:	at	most	2	I/Os assuming	linear	scales	fit	

in	memory.
– First	use	liner	scales	to	determine	the	index	into	the	cell	
directory

– access	the	cell	directory	to	retrieve	the	bucket	address	
(may	cause	1	I/O	if	cell	directory	does	not	fit	in	memory)

– access	the	appropriate	bucket	(1	I/O)
– E.g.,	X=(0,	1000,	1500,	1750,	1875,	2000)	;	Y=(a,	f,	k,	p,	z)		
--- search	for	[1980,w]

• Range	Queries:
– use	linear	scales	to	determine	the	index	into	the	cell	
directory.

– Access	the	cell	directory	to	retrieve	the	bucket	addresses	
of	buckets	to	visit.

– Access	the	buckets.

Grid	File	Insertions

• Determine	the	bucket	into	which	insertion	must	occur.
• If	space	in	bucket,	insert.
• Else,	split	bucket

– how	to	choose	a	good	dimension	to	split?
– ans:	create	convex	regions	for	buckets.

• If	bucket	split	causes	a	cell	directory	to	split	do	so	and	
adjust	linear	scales.

• insertion	of	these	new	entries	potentially	requires	a	
complete	reorganization	of	the	cell	directory---
expensive!!!

Grid	File	Deletions

• Deletions	may	decrease	the	space	utilization.	
Merge	buckets

• We	need	to	decide	which	cells	to	merge	and	a	
merging	threshold

• Buddy	system	and	neighbor	system
– A	bucket	can	merge	with	only	one	buddy in	each	
dimension

– Merge	adjacent	regions	if	the	result	is	a	rectangle

Z-ordering

• Basic	assumption:	Finite	precision	in	the	
representation	of	each	coordinate,	K	bits	(2K values)

• The	address	space	is	a	square	(image)	and	
represented	as	a	2K x	2K array

• Each	element	is	called	a	pixel

Z-ordering

• Impose	a	linear	ordering	on	the	pixels	of	the	
image	à 1	dimensional	problem

00 01 10 11
00

01

10

11

A

B

ZA = shuffle(xA, yA) = shuffle(“01”, “11”)

= 0111 = (7)10

ZB = shuffle(“01”, “01”) = 0011

Z-ordering

• Given	a	point	(x,	y)	and	the	precision	K	find	
the	pixel	for	the	point	and	then	compute	the	
z-value

• Given	a	set	of	points,	use	a	B+-tree	to	index	
the	z-values

• A	range	(rectangular)	query	in	2-d	is	mapped	
to	a	set	of	ranges	in	1-d

Queries

• Find	the	z-values	that	contained	in	the	query	
and	then	the	ranges	

00 01 10 11
00

01

10

11
QA à range [4, 7]QA

QB

QB à ranges [2,3] and [8,9]

Hilbert	Curve

• We	want	points	that	are	close	in	2d	to	be	
close	in	the	1d

• Note	that	in	2d	there	are	4	neighbors	for	
each	point	where	in	1d	only	2.

• Z-curve	has	some	“jumps”	that	we	would	
like	to	avoid

• Hilbert	curve	avoids	the	jumps	:	recursive	
definition

Hilbert	Curve- example

• It	has	been	shown	that	in	general	Hilbert	is	better	than	
the	other	space	filling	curves	for	retrieval	*

• Hi (order-i)	Hilbert	curve	for	2ix2i array

H1
H2

... H(n+1)

* H. V. Jagadish: Linear Clustering of Objects with Multiple Atributes. ACM SIGMOD Conference 1990: 332-342

Quad	Trees

• Region	Quadtree
– The	blocks	are	required	to	be	disjoint
– Have	standard	sizes	(squares	whose	sides	are	power	of	
two)

– At	standard	locations
– Based	on	successive	subdivision	of	image	array																				
into	four	equal-size	quadrants

– If	the	region	does	not	cover	the	entire	array,	subdivide	into	
quadrants,	sub-quadrants,	etc.

– A	variable	resolution	data	structure

Example	of	Region	Quadtree

1
2 3

4 5

6
7 8

9 10

11 12

13 14

15 16

17 18
19

A

B C E

2

1

3 4 5 6 11 12D 13 14 19F

15 16 17 187 8 9 10

NW NE SW SE

3 11

11

3

PR	Quadtree
• PR	(Point-Region) quadtree
• Regular	decomposition	(similar	to	Region	quadtree)
• Independent	of	the	order	in	which	data	points	are	inserted	

into	it
• L:	if	two	points	are	very	close,	decomposition	can	be	very	

deep

Example	of	PR	Quadtree

(0,0) (100,0)

(100,100)(0,100)

Seattle
(1,55)

Toronto
(62,77)

Buffalo
(82,65)

Denver
(5,45)

Chicago
(35,42)

Omaha
(27,35) Mobile

(52,10)

Atlanta
(85,15)

Miami
(90,5)

A

Seattle
(1,55)

Toronto
(62,77)

Buffalo
(82,65)

Denver
(5,45)

Chicago
(35,42)

Omaha
(27,35)

Mobile
(52,10)

Atlanta
(85,15)

Miami
(90,5)

B C E

D F

Subdivide into quadrants until the two
points are located in different regions

PM	Quadtree
• PM	(Polygonal-Map) quadtree	family

– PM1	quadtree,	PM2	quadtree,	PM3	quadtree,	PMR	
quadtree,	…	etc.

• PM1	quadtree
– Based	on	regular	decomposition	of	space
– Vertex-based	implementation
– Criteria

• At	most	one	vertex	can	lie	in	a	region	represented	by	a	quadtree	leaf
• If	a	region	contains	a	vertex,	it	can	contain	no	partial-edge	that	does	not	

include	that	vertex
• If	a	region	contains	no	vertices,	it	can	contain	at	most	one	partial-edge

PM	Quadtree
PM1	quadtree

PM2	quadtree

PM3	quadtree
• Each	node	in	a	PM	quadtree

is	a	collection	of	partial	
edges	(and	a	vertex)

• Each	point	record	has	two	
field	(x,y)

• Each	partial	edge	has	four	
field	(starting_point,	
ending_point,	left	region,	
right	region)

Example	of	PM1	Quadtree

(0,0) (100,0)

(100,100)(0,100)

References

• National	Technical	University	of	Athens	,	Theoretical	
Computer	Science	II:	Advanced	Data	Structures

• Jürg Nievergelt,	Hans	Hinterberger,	Kenneth	C.	
Sevcik:	The	Grid	File:	An	Adaptable,	Symmetric	
Multikey File	Structure.	ACM	Trans.	Database	Syst.	
9(1):	38-71	(1984)	

• H.	V.	Jagadish:	Linear	Clustering	of	Objects	with	
Multiple	Atributes.	ACM	SIGMOD	Conference	1990:	
332-342	

