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Motivation

e Ubiquity of mobile users 223
— 6 billion mobile subscriptions by the end of 2011
= 87% of the world population!!]
* Technology advances on mobile phones (e.g., Cameras)
 Network bandwidth |mp,dements
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Spatial Crowdsourci NE [acvaGis'12]

Crowdsourcing: outsourcing a set pf tasks to a
set of workers. @amazon mechanicalturk™

Artificial Artificial Intelligence

Spatial crowdsourcing (SC): requires
workers to physically travel at the task's
location in order to execute the task.
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SC Applications

- : From 2.5G (up to
6.5 billion mobile NI Smartphone's Network 384Kbps) to 3G
subscriptions, advances sensors. e.g., bandwidth (up to 14.7Mbps)
93.5% of the world on mobiles TSI improvements and recently 4G

population [1] (up to 100 Mbps)
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Problem Definition

* Input: Given m spatial task sets and k workers

* Qutput: assign spatial task sets to workers and
provide schedules of workers

* Objective: that minimize the total cost (or
maximize the number of assigned tasks) under
time / order constraints.

* Challenges: An OR problem with: scale (DB),
online (Algo), dynamism (Control), spatial (Geo),
etc.
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Preliminaries

* Spatial task t<d, |, s, 6>: Task t with description d to be answered at
location /, asked at time s and will be expired at time s+6.

* Spatial Crowdsourced Query (SC-Query) <t,,t,,..>: A set of spatial
tasks issued by a requester to the SC-server for crowdsourcing.

 Task Inquiry TI<R,maxT>: Request SC-Query,<tyty,..> : o
that a worker w sends to the SC- ) S o ﬁF

- SC-Query,<ty,t,,
server when ready to work with Queryy<tyt,
constraints: SC- Server /ZV? \

: : >
* R: A spatial region (e.g., % %OQQ
rectangle) in which w accepts //-/”//9’@#/\ 3 Requesters
tasks N
: -
* maxT: Maximum number of Ws Y @
tasks w can perform Ww,
@ W - -
USC V1terb1 T ® @ -
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Problem Definition
* Task Assignment Instance Set |,

— W, ={w,, w,, ...} : Set of workers at time s;
— T, ={t,t,, ...} : Set of available tasks at time s;

— |, ={<w,t>|we W,, te T}: a spatial task t is assigned
to a worker w, while satisfying the workers’
constraints.

 Maximum Task Assignment (MTA)
—¢={s, s, ... s,}: Atime interval

— MTA: Maximizing the total number of assigned tasks
during ¢ while satisfying the workers’ constraints

* Maximizing ) _[li|
i=1
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Related Work

Crowdsourcing

— Services/Markets/App
* Amazon’s Mechanical Turk (MTurk)
* CrowdFlower, oDesk, Waze

— Research

* Databases [MIT, Stanford, Berkeley] — Non-Spatial
e Data Analytics [Liu et al. and Wang et al., PVLDB’12]
* Image search [Yan et al., MobiSys’10]
* Natural language annotations [Snow et al., EMINLP’08]
* Social games [Guy et al., CHI'11]
* Search [Alonso et al., SIGIR"11] -
Spatial Crowdsourcing _ _ o
_ [Altetal., NordiCHI10] ———> Worker Selected Spatial Crowdsourcing (application)
— [Bulut et al., PerCom Workshops’11] — Non-spatial tasks

Participatory Sensing: An instance of spat|al crowdsourcing in WhICh there is only one requester

(i.e., campaign) and tasks are only sensing tasks
— CENS ' _
— [Hullet al., SenSys'06] v'Not focused on task assignment | v Focus on single campaign
— [Mohan et al., SenSys’08] v Not a general framework

— [Cornelius et al., MobiSys’08] -
— [Shirani-mehr et al., GIS'09]
Volunteered Geographic Information (VGI) : Create geographic information provided voluntarily by
individuals
— StreetMap
— Google Map Maker
— WikiMapia

v’ Users unsolicited participation
by randomly contributing data



Related Work (Task Assignment)

* Classic Matching problems — matching tasks w workers

e Real-time matching — [Kalyanasundaram and Pruhs, 1993 & 2000]

— Spatial characteristic of tasks and workers
* Adding spatial feature as a metrics increase complexity (not scalable)

e Spatial matching — [Wong, Tao, Fu and Xiao, 2007][U, Yiu, Mouratidis

and Mamoulis, 2008]
— Dynamism of tasks and workers (i.e., tasks and workers come and go without our
knowledge),
* The challenge is to perform the task assignment at a given instance of time with the
goal of global optimization across all times
— Workers need to travel to task locations causes the landscape of the problem to
change constantly

e This will add another layer of dynamism to spatial crowdsourcing that makes it a
unique problem
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Assignment Protocol

* Future knowledge = Optimal assighnment = Solving MTA

e Challenge
— Current knowledge at every time instance = Local optimization

Goal

— Optimizing the task assignment locally by utilizing the spatial
information that workers share during their task inquiries

 Approaches
— Greedy (GR) Strategy
— Least Location Entropy Priority (LLEP) Strategy
— Nearest Neighbor Priority (NNP) Strategy

USC Vlterb1
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Greedy (GR) Strategy

Goal = Maximizing the assignment at every instance of time s, =2
solving Maximum Task Assignment Instance (MTAI)

MTAI is equivalent to max-flow problem

Apply any of the max-flow algorithms ta;ks
— Ford-Fulkerson workers . v
O o
Vi Vs
R1 maxT,=2 2 ) ® 1
t. | src Ve 1 dst
1
- { R3 vy 1 v 1
5 N ‘ .
tﬁ. Vg
Wo M O O 1
2 w V3 Vg
W3




Least Location Entropy ;:; do ]
Priority Strategy (LLEP) ?

Goal
— Exploiting the spatial characteristics of the
environment to maximize the overall task
assignment

Intuition B
— Atask is more likely to be completed when located in areas with higher
worker densities Low High

Heuristic entropy entropy
— Assigning higher priority to tasks which are located in worker-sparse areas

Location Entropy: Measuring the total number of workers in a location
as well as the relative proportion of their visits to that location

— | :location

— O, : Set of visits to location /

— W, : Set of distinct workers that visited /

— 0, : Set of visits that worker w has made to the location /

— P(w)=[0,,1/] O] Entropy(l) =-» . Pi(w) xlog Pi(w)
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Major Observations

* Experiments on both real and synthetic data
demonstrated
— The superiority of LLEP in comparison with GR in

terms of the number of assigned tasks by up to
36%
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Spatial Crowdsourcing

* Challenges:
— Task Assignment

* Approach
— | Server Assigned Tasks (SAT) | V.S Worker Selected Tasks (WS'I")/J

‘ Requester

v,
th St w 20t St @ 4 Cordova St ' ‘
£ 5 —
na mrw*—
Sl W 2300 St %b‘,,, f
T ‘ o,
3 w Sk
= .
n e Y &~
T—— W 27 St Sy
am s G n E3
Server #h St W g'wnm ot ’,1‘3' ‘pv
0\:'2591"“ s W a0h St 3 W 8t 2 “Sf&h a—?&d’foo
l s o > e ﬂa&
| W JalMtomon Bive ; w e W
- 3 *% "’3% Sr“*\ <
a 9
35tn B W ASHh P »
wasmst S \""”& f’&\? : & 5
e 3 o~
s 2 - W 36th P Umvmuy of e
37 St W aTh S5t qq"bhk “Southern 4 AN ':é\é
- W 37th & § @ 5 S Cali kxn =Y Ly "’63‘
N RN N S &
« Wo rke r v 5 %m &vd £ pwum o o
W 38th St o W 38th St l:Qs,,,&

USC Viterbi IMSC

Media Systems

School of Engineering Center




Example

e Tasks with location and deadlines
— E.g. task D needs to be finished in 25 minutes
* Suppose travel time for one grid is one minute

— Consider Manhattan distance
— E.g., cost(w, D) =10 + 2 = 12 minutes

7 mB(1,7).8 C(I: 0),20

f.' s Y 10¥2=12

4

514(4,3,9m Bl -

2 'm D(163),25
/ El142),18

/2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
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Problem Definition
 Maximum Task Scheduling (MTS)

— Given a worker w and a set of n tasks T with
locations and deadlines

— Find a maximal task sequence R

7 || B(1.7).8 C(14,6),20
6 4 I

5 W (6,5) ) >

p 4

314(4,3),9 M 1 M

2 I M D(16,3),25
] E|(14,2),18

/2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
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Problem Complexity

 The MTS problem is NP-hard by reduction
from Traveling Salesman Problem (TSP)

* Brute force takes O(n!) time
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Outline

 Problem Definition
* Exact Algorithms

— Dynamic Programming
— Branch-and-Bound Algorithm

e Approximation Algorithms
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Dynamic Programming

e Let’s schedule task set {A, C, E}s.t. itendsw C
— Schedule {A, E} ends with E 2 3
— Or schedule {A, E} ends with A =2 1
— Choose the best among them

7 M B(1.7).8 13 C(14,6),20
5 i

5 * C\Ww(6.)

4 | 1 ‘
514(4,3).90 1 -

2 ! | D(16,3))25
I El142),18

72 3 4 5 6 7 & 9 10 11 12 13 14 15 16 17 18
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Dynamic Programming

* Define opt(S, j) as the optimum number by
scheduling all the jobs in S, ends with j

— Task i is the second-to-last finished task before j

opt(S, j) = max(opt(S -{/},i)+ d;)

i8St
11 if job; can be finished after job i
g—
7 10 else
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Dynamic Programming

e Subsets needs to be explored

2n0 #®n0 210
¢, +t¢ ++..+t¢ +=2"
elg é2g eng

subsets in total

DP O(ne2") O(n?%e2")
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Outline

 Problem Definition
* Exact Algorithms

— Dynamic Programming
— Branch-and-Bound Algorithm

e Approximation Algorithms
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Branch-and-Bound

e Search Tree
— Depth-first or best-first search
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Example of B&B

(w)
ub=4
O)GQGG

Ub=3 Ub=3 ub=3 ubi=1
ub=4

&/ (©Ox @y

ub=3 ub=3
ub=4

©) O
ub=3
Q curMax =4
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Candidate Task Set

e Suppose we are at (C, D), do we still need to
try A, B at level 3?

Level O
 [WBILDX | ] " lcd46).30
a’/ \ o Y 1 Level 1
&
5 . w (6,3) | | | | _
1WA ) | | TN
I INL(4.9).9 | | | ~/- . Level 2
2 m D(16,3)25
f EHJ,\IQ;‘?_(/ |
I 2 3 & 3 6 7 & 9 M yp 1213 &4 Iy ie I7 I8
Level 3
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Candidate Task Set (cand)

* A candidate task set maintains the promising tasks to be
expanded at the next level:

— e.g.cand(C) ={D,E}  cand(C, D) = {E}

Level O
Level 1
Level 2

Level 3

* Property: A node’s candidate tasks set is the subset of its
parent’s candidate task set

USC Vlterb1
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Bound of Branch

Level O

 Ris current path from w
 Upper-bound of R

maxi # of tasks that can be finished
by following the corresponding branch.

— ub(R) = |[R| + |cand_R|
— Eg,ub(C)=1+2=3

Level 1

Level 2

Level 3

e Lower-bound of R

— Minimum number of tasks that can be completed
by following this branch

USC Vlterb1
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Branch-and-Bound

* Complexity
DP O(ne2") O(n?%e2") Worst case
B&B O(n?) O(n!)

* |n reality, nis the number of tasks in the
vicinity of the worker, it might be very large!
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Outline

 Problem Definition
* Exact Algorithms

— Dynamic Programming

— Branch-and-Bound Algorithm
* Approximation Algorithms
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Limitation of Exact algorithms

e Restriction of Mobile platform
— Limited CPU and memory resources

— Interactive environment for the user

e Response in milliseconds level

* Exact algorithms cannot scale

— Exponential running time and/or huge memory
consumption

USC Vlterb1
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Least Expiration Heuristics (LEH)

* Greedily choose the task with least expiration time

Al \i:xomiximm b, C(l14,6),20

6 B

5 W (6,5)

+11c 98

3\ ATZ379°; -

2 m D(16,3)25
] El14,2)18

/2 3 4 5 6 7 &8 9 10 11 12 13 14 15 16 17 18
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Nearest Neighbor Heuristics (NNH)

* Greedily choose the task nearest to the worker

7 M|B(17).8 C(14.6),20
6 H \
5 C\W(6,3) DB

il
4 ,
50A4(4.3),9 1 L
2 | . w D(16,3)25
; E(14,2)/18

/2 3 4 5 6 7 § 9 10 11 12 13 14 15 16 17 18

Task sequence: (A, E, D)
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Most Promising Heuristic (MPH)

* Greedily choose the task with highest upper-bound

ub=4

07 >< >< o ><

ub=3 ub=3 ub=\4 ub=1

ub=4
OyEOMO> :
b=3 =
y ub=3 DP  D(ne2)  O(n2e2")
b =3 ‘_
o o B&B /O(nz) O(n!)
ub =3 LEH |/ 0O(1) O(nelog(n))

H/A 0O(1) O(n?)
Task sequence: (A, E, C) MPH | O(n) 0(n2)

USC Vlterb1

School of Eng




Progressive algorithms

e Approximation algorithm + Exact algorithm

— NNH to choose the first task
— Branch and Bound for the remaining 4 tasks

7\ Bd.7).8 C(l4,6),20

6 |

5 w (6,3)

4

’ m

P m D(16|3),25
1

E(14,2)|18
9 10 11 12 13 14 15 16 17 18
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Progressive Algorithms

* Pros
— Quick response time

— Near-optimum results

e Cons

— Preemption of other workers
— Worker may prefer the whole plan
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Problem definition

Input: Given a set of workers W and a set of tasks S

e worker: spatial and capacity constrain

e task: expiration time constraint

ql-zl Q3=1 g4=2

B S W mS7,
Sl
Sol . '
[ E,
53
QZ = 2 (%Wz @WE
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Problem definition

Input: Given a set of workers W and a set of tasks S
Goal: find a for each worker:

1. Maximize the number of completed tasks
(primary goal)

2. Minimize the average travel cost per task (secondary goal)

NP-hard Problem

USC Vlterb1
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Outline

* Global Assignment and Local
Scheduling (GALYS)

* Local Assignment and Local Scheduling
(LALS)

* Experiments
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Baseline

Initial A‘nment:

Wi1: S1

Reassignment and

rescheduling?

W4 Se IMSC
USC\/j.terbi WS: SS, 57’ 58 Integrated

Media Systems

School of Engineering Center 4



Global assignment and local
scheduling (GALS)

Ilterate back

Global e Scheduling for Update
Assignment each worker assignment

matching + scheduling iteratively
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Example of GALS

W4Fl

Insert s7 into wa’s existing schedule

USC Viterbi IMSC

Media Systems

School of Engineering Center 5




Property of GALS

l‘ High quality

* Global assignment maintains the
connectivity information

« The iterative refining process further improves
the quality
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Bottleneck of GALS

4 Not efficient

O(n*|E|)

For an instance with 25k tasks and 500k edges
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Outline

* Global Assighment and Local Scheduling
(GALS)

* Local Assignment and Local
Scheduling (LALS)

— Naive LALS
— Bisection-based LALS

* Experiments

USC Vlterb1

School of Eng



Naive LALS

Reitnali mvoghkencsrkad taséstasks
500

Y 100 200 300 400 500

Break global assignment into a set of local assignments and local MS

scheduling (LALS)




Naive LALS

‘ Faster than GALS
q Sacrifice the solution quality

USC V1terb1
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Problems

e Partitions with large number of - Large remaining flow
edges network
500 . .
-. . ulig ..
400 . .
3I00m : " —_— : . u : . [
[ ] .y . .I . ] ]
200 . . L R
. I. n | |
.l s = 9 L8 ol |
100, . I S
. 0 " . L N l.-.
%0 100 200 a0 400 s00 0 100 200 300 400 500

< Balanced workload at each .
Small remaining workloads

partition




Outline

* Global Assighment and Local Scheduling
(GALS)

* Local Assignment and Local Scheduling

(LALS)

— Naive LALS
— Bisection-based LALS

* Experiments
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Bisection-based LALS

Top-down Bisection
partitioning

Bottom up merging

Combine remaining
workers and tasks

USC Vlterb1
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Outline

* Global Assighment and Local Scheduling
(GALS)

* Local Assignment and Local Scheduling

(LALS)

— Naive LALS
— Bisection-based LALS

* Experiments
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Experiment

e Dataset

— Synthetic: SYN-SKEW, SYN-UNI from 500 * 500 grid
— Real dataset from Gowalla and Yelp

e Algorithms

— Baseline, GALS
— Naive LALS (NLALS), Bisection LALS(BLALYS)

USC Vlterb1
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Varying |S| on SYN-SKEW

* No. of scheduled task

USCVi BLALS sacrifices only less than 5% of the schedule quality 0%

OL LAZLICCLLLL 8

baseline GALS NLALS BLALS
5K 3379 3986 3911 3896
10K 7075 8263 8201 8093
25K 19049 21849 21717 21473
50K 35614 43653 43368 42095
100K 56511 68505 66275 63937




Running time on SYN-SKEW

100000
@oooo

1@00
2 300
%@10
o
0.1

USC V1terb1

Baseline AGALS

BLALS is orders of magnitude faster
than GALS and NLALS

5k 10k 25k 50k 100k
Number of tasks
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OUTLINE

 Example Application
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Background:
Dial-A-Ride Problem (OR)

* Given m vehicles at the depot and n requests
with pickup and delivery time window

* Find m routes which minimizes the total
routing cost

* Assumptions

— Vehicles and request are known a priori
— Off-line scheduling
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Real-Time Ride-Matching at Scale

New Businesses

nOw
Google Shopping Express
\/ freS | |
Dynamism Respbonse-Time
Our Solution: Auction-based framework ”f;:i
(time-dependent) update its route/schedule
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School of Engineering
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Auction-Based Framework
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Auction-Based Framework
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Auction-Based Framework
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Auction-Based Framework
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Auction-Based Framework

Microsoft Theater =
ap]

v prevas

W
g,
5t

<
T owouar

- Each driver has a current schedule
- Each driver computes a best potential

schedule
- detour = diff(best potential, current)
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Auction-Based Framework

- Each driver has a current schedule

- Each driver computes a best potential
schedule

- detour = diff(best potential, current)

- bid = profit(request, detour,

/ user_networth,
driver_fare)
$ X

iy U
“.  User Networth Driver Fare
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Auction-Based Framework

LA

Microsoft Theater =
ap]

W
g,
5t

A bid can be thought of as the “profit for
Uber to add this ride”

STAPLES Center & 4]

Los Angeles

2. W Washington Blvd (Gonvertion Center

Server receives bids from nearby drivers
and assigns request to highest bidder.
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Real-Time Ride-Matching at Scale

Our Solution: Auction-based framework

Dynamism

Bidding is triggered per
rider’s arrival

Response-Time

In order of milliseconds
(<300ms, interactive) per our

Local time-dependent
routing per driver

preliminary experiments
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Research Challenges in Spatial Crowdsourcing

Task assignment (or worker selection)

Process of identifying which tasks should be assigned to which workers

To et al. TSAS’15
Alfarrarjeh et al. MDM ’15

e Asghari et al. SIGSPATIAL 2016
e Bessai and Charoy ISCRAM ‘16

* Hassan and Curry ESA’16 * Fonteles et al. MoMM ‘15

e Zhangetal TVT’16 * Hassan and Curry. SIGSPATIAL "15
* Gaoetal. WAIM 16 * Xiao etal. INFOCOM ’15

e Chengetal TKDE ‘16  Xiong et al. PerCom ‘15

« Tongetal. VLDB ‘16 * Pournajaf etal. ICCS ‘14

* Liuetal DASFAA ‘16  Hassan and Curry. UCI'14

* Huetal ICDE’16 * Heetal. INFOCOM ’14

e Tongetal. ICDE’16 * Fonteles et al. SIGSPATIAL ‘14
 Zhangetal. WCMC ‘16 e Zhang et al. UbiComp ’14
 Liuetal. UbiComp ‘16  Dangetal.iiWAS ‘13

* Guoetal. THMS 16 » Kazemi and Shahabi. SIGSPATIAL ‘12

e Toetal. PerCom’16



Research Challenges in Spatial Crowdsourcing

Privacy-preserving task
assignment

Task scheduling

Path planning for workers to perform

Toetal. TMC’16

Zhang et al. CN ‘16

Zhang et al. ATIS ‘15

Shen et al. GLOBECOM ‘15
Gonget al. loT’15

Gonget al. TETC'15

Hu et al. APWeb '15

Pournajaf et al. MDM’14,
SIGSPATIAL'15

To et al. VLDB '14, ICDE '15
Boutsis and Kalogeraki PerCom ‘13
Vu et al. INFOCOM ‘12

Kazemi and Shahabi SIGKDD ’11

tasks

Wang et al. 2016

Fonteles et al. JLBS ‘16

Deng et al. Geolnformatica ‘16
Mrazovic et al. ICDMW ‘15

Chen et al. IJCAI ‘15

Chen et al. AAMAS ‘15

Hadano et al. HCOMP 15

Deng et al. SIGSPATIAL 15

Chen et al. HCOMP ‘14

Deng and Shahabi. SIGSPATIAL’13
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Research Challenges in Spatial Crowdsourcing

Trust and Quality Incentive mechanism
Consider quality of the report data or Incentivize workers to perform spatial
trustworthiness of workers tasks
* Liuetal.Sensor’16 « Zhangetal. TVT'16
 Zhangetal. TETC’16 * Kandappu et al. CSCW ‘16
e Miao et al. DSS ’16  Kandappu et al. UbiComp ‘16

* Micholiaetal. JHCS 16

* To et al. GeoRich’16

* Liand Cao TMC ‘16

* Thebault-Spieker et al. CSCW 15

e Fanetal.SOSE 15
 Shah-Mansouri et al. ICC’15
e Anetal. HPCC’15

* Kangetal. MASS"15 * Jin et al. MobiHoc '15

* Chengetal. VLDB'15 * Teodoro etal. CSCW 14
 Zhaoetal. MDM ’15 * Rula et al. HotMobile ‘14
 Wangetal. UbiComp ’15 * Musthag etal. CHI’13

e Songetal. TVT’14 * Heimerl etal. CHI’12

e Boutsis et al. ICDCS ’14 * Jainmes et al. PerCom ‘12
» Feng et al. INFOCOM ’14 * Yangetal. MobiCom "12

e Lee and Hoh PMC ‘10

* Kazemi et al. SIGSPATIAL ’13 . Alt et al. NordiCHI ‘10



Research Challenges in Spatial Crowdsourcing

Generic frameworks
Discuss components, architecture,
programming framework of SC apps

To et al. CROWDBENCH 16
Fonteles et al. RCIS ‘16

Peng et al. ASE '16

Kucherbaev et al. SIGCHI ’16
Sakamoto et al. COMPSAC ’16
Fernando et al. MOBIQUITOUS ’13
Tamilin et al. UbiComp 12

Ra et al. MobiSys ‘12

Yan et al. SenSys ‘09

Related surveys

Pournajaf et al. SIGMOD ‘15
Guo et al. Comp Survey ‘15
Zhao and Han 2016

Christin JSS '15

Appllcatlons
Konomi and Sasao Urb-loT ‘16
e Jaiman et al. UbiComp/ISWC ’16
 Fanand Tseng MOBIS ‘15
* Konomi and Sasao UbiComp/ISWC 15
* Harburgetal. CHI’15
 Chen etal. SenSys ‘15
 Kim CHI ‘15
* Aubry et al. CROWDSENSING 14
e Chenetal. VLDB’14
 Kim et al. MMSys’14
* Benouaret etal. IEEE IC’13
e Coric and Gruteser DCOSS ’13
* Koukoumidis et al. MobiSys ‘11
* Goodchild and Glennon IJDE ‘10
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