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Motivation

e Ubiquity of mobile users -
— 6 billion mobile subscriptions by the end of 2011
= 87% of the world population!t!
 Technology advances on mobile phones (e.g., Cameras)
» Network bandwidth improvements SN
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Spatial Crowdsourcing acveis12)

Crowdsourcing: outsourcing a set pf tasks to a
set of workers. @amazon mechanicalturk™

Artificial Artificial Intelligence

Spatial crowdsourcing (SC): requires
workers to physically travel at the task's
location in order to execute the task.

&5

taskrabbit

frapster
() FAVOR o
Xreumar

o _.
task “d

- ' V /

WeatherSignal

WeGo o, ngwalb

SC Applications

- : From 2.5G (up to
Ubiquity a9 il elols LU Smartphone's Network 384Kbps) to 3G

of mobile subscriptions, advances sensors. e.g., bandwidth (up to 14.7Mbps)
TEEG 93.5% of the world on mobiles improvements and recently 4G

o population [1] (up to 100 Mbps)
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IMSC « Worker
GeoCrowd
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e Task Assignment




Problem Definition

* |Input: Given m spatial task sets and k workers

e Qutput: assign spatial task sets to workers and
provide schedules of workers

* Objective: that minimize the total cost (or
maximize the number of assigned tasks) under

time / order constraints.

e Challenges: An OR problem with: scale (DB),
online (Algo), dynamism (Control), spatial (Geo),
etc.




Preliminaries

Spatial task t<d, |, s, 6>: Task t with description d to be answered at
location /, asked at time s and will be expired at time s+6.

Spatial Crowdsourced Query (SC-Query) <t,t,,..>: A set of spatial
tasks issued by a requester to the SC-server for crowdsourcing.

* Task Inquiry TI<R,maxT>: Request SC-Query,<ty,t,,...> // Z \;
that a worker w sends to the SC- ﬁ\
server when ready to work with SC-Queryy<ty b, > N o ﬁ
constraints: SC- Server /ZV? @ d
* R: A spatial region (e.g., ‘7§ “Ms . P
rectangle) in which w accepts _— 5@,_/\ \*’34\\\\ I;{\equest/ejrs
tasks « X & h
e maxT: Maximum number of e Wo Y
tasks w can perform @,
@ v - -
- -’ -’ s
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Problem Definition
* Task Assignment Instance Set |,

— W, ={w,, w,, ...} : Set of workers at time s;
— T, ={t,t,, ...} : Set of available tasks at time s;

— |, = {<w,t>|we W, te T;}: a spatial task t is assigned
to a worker w, while satisfying the workers’
constraints.

 Maximum Task Assignment (MTA)
—¢={s, s, ..., 5.} Atime interval

— MTA: Maximizing the total number of assigned tasks
during ¢ while satisfying the workers’ constraints

* Maximizing ) _|1
i=1




Related Work

Crowdsourcing

— Services/Markets/App
* Amazon’s Mechanical Turk (MTurk)
* CrowdFlower, oDesk, Waze
— Research
* Databases [MIT, Stanford, Berkeley]
* Data Analytics [Liu et al. and Wang et al., PVLDB’12]
* Image search [Yan et al., MobiSys’10]
* Natural language annotations [Snow et al., EMNLP’08]
* Social games [Guy et al., CHI'11]
* Search [Alonso et al., SIGIR"11] —

Spatial Crowdsourcing . : .
_ [Altetal, NordiCHI'10] ——> Worker Selected Spatial Crowdsourcing (application)

— [Bulut et al., PerCom Workshops'11] > Non-spatial tasks
Participatory Sensing: An instance of spatial crowdsourcing in WhICh there is only one requester

— Non-Spatial

(i.e., campaign) and tasks are only sensing tasks
— CENS L _ _
— [Hull et al., SenSys'06] v'Not focused on task assignment [ ¥ Focuson single campaign
— [Mohan et al., SenSys’08] v Not a general framework

— [Cornelius et al., MobiSys’08] -
— [Shirani-mehr et al., GIS’09]
Volunteered Geographic Information (VGI) : Create geographic information provided voluntarily by
individuals
— StreetMap
— Google Map Maker
— WikiMapia

v’ Users unsolicited participation
by randomly contributing data



Related Work (Task Assignment)

e Classic Matching problems — matching tasks w workers

e Real-time matching — [Kalyanasundaram and Pruhs, 1993 & 2000]

— Spatial characteristic of tasks and workers
* Adding spatial feature as a metrics increase complexity (not scalable)

e Spatial matching — [wong, Tao, Fu and Xiao, 2007][U, Yiu, Mouratidis
and Mamoulis, 2008]

— Dynamism of tasks and workers (i.e., tasks and workers come and go without our
knowledge),
e The challenge is to perform the task assignment at a given instance of time with the
goal of global optimization across all times
— Workers need to travel to task locations causes the landscape of the problem to
change constantly

e This will add another layer of dynamism to spatial crowdsourcing that makes it a
unique problem

USC

School of Engineering




Assignment Protocol

* Future knowledge = Optimal assighment = Solving MTA
* Challenge

— Current knowledge at every time instance = Local optimization

Goal

— Optimizing the task assignment locally by utilizing the spatial
information that workers share during their task inquiries

* Approaches

— Greedy (GR) Strategy
— Least Location Entropy Priority (LLEP) Strategy

— Nearest Neighbor Priority (NNP) Strategy




Greedy (GR) Strategy

Goal = Maximizing the assignment at every instance of time s; =
solving Maximum Task Assignment Instance (MTAI)

MTAI. is equivalent to max-flow problem

Apply any of the max-flow algorithms tasks
o
— Ford-Fulkerson workers . Va
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Least Location Entropy ... &, = P

3 i o .
% .—; -%/0’ .
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° ° '““ 11 L ws | ‘{ \| @®:° ‘
Priority Strategy (LLEP)* o # +a =g 7|
s .v.rn.'v ‘% t Warns £ st ; ‘ . d ‘
e AR T M R R Q
— Exploiting the spatial characteristics of the — :i:i;;:;g CaPHL-

environment to maximize the overall task
assignment -

Intuition
— A task is more likely to be completed when located in areas with higher
worker densities Low High

Heuristic entropy entropy
— Assigning higher priority to tasks which are located in worker-sparse areas

Location Entropy: Measuring the total number of workers in a location
as well as the relative proportion of their visits to that location

— [ : location

— 0O, : Set of visits to location /

— W, : Set of distinct workers that visited /

— 0, : Set of visits that worker w has made to the location /

— Pfw) = /Ow,l /] O] Enl‘ropyﬂ = _

Pi(w) xlog Pi(w)
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Major Observations

* Experiments on both real and synthetic data
demonstrated

— The superiority of LLEP in comparison with GR in
terms of the number of assigned tasks by up to
36%
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Spatial Crowdsourcing

* Challenges:
— Task Assignment

* Approach
— | Server Assigned Tasks (SAT)| V.S Worker Selected Tasks (WST)

Requester
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Example

e Tasks with location and deadlines
— E.g. task D needs to be finished in 25 minutes
e Suppose travel time for one grid is one minute

— Consider Manhattan distance
— E.g., cost(w, D) =10 + 2 = 12 minutes

7 M B(1,7).8 Ci4.k).20
j w6 5) 7/ 10+2= EZ.

4

A9 . 813211 /| ™

’ m | D(16)3))25
! El(14,2))18

/2 3 4 5 6 7 8§ 9 10 11 12 13 14 15 16 17 18




Problem Definition

e Maximum Task Scheduling (MTS)

— Given a worker w and a set of n tasks T with
locations and deadlines

— Find a maximal task sequence R

7 BB (17),8 C(14,6),20

6 A I

5 w (6,3) A 5

4 a

350 4(4,3),9M 1 M

2 I W D(163),25
I El(14,2),18

/2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18




Problem Complexity

 The MTS problem is NP-hard by reduction
from Traveling Salesman Problem (TSP)

e Brute force takes O(n!) time




Outline

 Problem Definition
e Exact Algorithms

— Dynamic Programming

— Branch-and-Bound Algorithm

e Approximation Algorithms




Dynamic Programming

e Let’s schedule task set {A, C, E}s.t. itendsw C

— Schedule {A, E} ends with E 2 3
— Or schedule {A, E} ends with A = 1
— Choose the best among them

7 MBS |13 C (14.6),20
6 i

5 k w(6.5)

: | 1

50404.3.9m 1 -

5 17 D(16,3))25
I ” El(14,2))18

/2 3 4 5 6 7 8§ 9 10 11 12 13 14 15 16 17 18




Dynamic Programming

* Define opt(S, j) as the optimum number by
scheduling all the jobsin S, ends with j

— Task i is the second-to-last finished task before j

opi(S, j) = max(opt(S = {j},i) +0;)

S,i=]j

1 if job j can be finished after job i

5i.=<
" 10 else




Dynamic Programming
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e Subsets needs to be explored

O(n2%e2")

DP O(ne2")
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 Problem Definition
e Exact Algorithms

— Dynamic Programming

— Branch-and-Bound Algorithm

e Approximation Algorithms




Branch-and-Bound

Search Tree
— Depth-first or best-first search

Level O

Level 1

Level 2

Level 3




Example of B&B

(W)
ub=4
O)GQGG

ub=3 ub=3 ub =
ub=4

©/ (©Ox @y

ub=3 ub=3
ub=4

(o) [(e)%
ub=3

Q curMax =4




Candidate Task Set

e Suppose we are at (C, D), do we still need to
try A, B at level 3?

Level O

L leaas) o]
g E—— | Level 1

Level 2

Level 3




Candidate Task Set (cand)

* A candidate task set maintains the promising tasks to be
expanded at the next level:
— e.g.cand(C)={D,E}  cand(C, D) = {E}

Level O

Level 2

Level 3

* Property: A node’s candidate tasks set is the subset of its
parent’s candidate task set




Bound of Branch

Level O

 Ris current path from w
 Upper-bound of R

— ub(R) = |R| + |cand_R|
— E.g.,ub(C)=1+2=3

Level 1

Level 2

Level 3

e Lower-bound of R

— Minimum number of tasks that can be completed
by following this branch




Branch-and-Bound

* Complexity
DP O(ne2") O(nZ%e2") Worst case
B&B O(n?) O(n!)

* |n reality, n is the number of tasks in the
vicinity of the worker, it might be very large!
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 Problem Definition
* Exact Algorithms

— Dynamic Programming

— Branch-and-Bound Algorithm

* Approximation Algorithms




Limitation of Exact algorithms

e Restriction of Mobile platform
— Limited CPU and memory resources

— Interactive environment for the user

e Response in milliseconds level

* Exact algorithms cannot scale

— Exponential running time and/or huge memory
consumption




Least Expiration Heuristics (LEH)

* Greedily choose the task with least expiration time

7 WSBTST T C14.6).20

6 N

5 w(6,))

4116 98
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Nearest Neighbor Heuristics (NNH)

* Greedily choose the task nearest to the worker

7 M B(1,7).8 C(14,6),20
6 B
5 C\w(6,3) Ok 5

T
4 | )
35040439 i
2 | . w|D(163),25
I El14,2)/18

/2 3 4 5 6 7 8§ 9 10 11 12 13 14 15 16 17 18

Task sequence: (A, E, D)




Most Promising Heuristic (MPH)

* Greedily choose the task with highest upper-bound

@
ub=4
07 (O GG (&)

ub3ub3 ub=\4 ub=

ub=4
OYROMOX :
. ’ ub=3 ub=3 DP O(ne2") 0(n2e2")
e Q B&B /O(nz) O(n!)
ub=3 LEH |/ O(1) O(nelog(n))

H/ 0(1) O(n?)
Task sequence: (A, E, C) MPH | O(n) 0(n2)




Progressive algorithms

* Approximation algorithm + Exact algorithm

— NNH to choose the first task
— Branch and Bound for the remaining 4 tasks

7|\ B1,7).8 C(l4,6),20

6 H

5 (6,3)

4

31A4(4,3),9 u

2 m D(16|3),25
)i E\(14,2),18

9 10 11 12 13 14 15 16 17 18




Progressive Algorithms

* Pros
— Quick response time

— Near-optimum results

e Cons

— Preemption of other workers

— Worker may prefer the whole plan
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Problem definition

Input: Given a set of workers Wand a set of tasks S

e worker: spatial and capacity constrain

e task: expiration time constraint




Problem definition

Input: Given a set of workers Wand a set of tasks S
Goal: find a for each worker:

1. Maximize the number of completed tasks
(primary goal)

2. Minimize the average travel cost per task (secondary goal)

NP-hard Problem




Outline

» Global Assignment and Local
Scheduling (GALS)

* Local Assignment and Local Scheduling
(LALS)

* Experiments




Baseline

Initial A nment:

W1: S1

Reassignment and

rescheduling?

W4: S6 IMSC
USC WS5: S5, S7, S8 hdiod

Media Systems
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Global assignment and local
scheduling (GALS)

Iterate back

Global e Scheduling for Update
Assignment each worker assignment

matching + scheduling iteratively




Example of GALS

Insert s7 into wa’s existing schedule

USC IMSC

Media Systems

School of Engineering Center 4




Property of GALS

l‘ High quality

* Global assighment maintains the
connectivity information

« The iterative refining process further improves
the quality




Bottleneck of GALS

4 Not efficient

/ - \
/ \\
// 2 .\_\‘ \'-__
/ L
\ - O 7 dest O (n ‘ E ‘ )
\ S

For an instance with 25k tasks and 500k edges




Outline

* Global Assignment and Local Scheduling
(GALS)

* Local Assignment and Local

Scheduling (LALS)

— Naive LALS
— Bisection-based LALS

* Experiments




Naive LALS

Reeitiali mvoghkensrkad taséstasks

0 700 200 300 400 500

Break global assignment into a set of local assighments and local MSC

scheduling (LALS) Koo Systems

nter 5




Naive LALS

‘ Faster than GALS
4 Sacrifice the solution quality




Problems

* Partitions with large number of - Large remaining flow
edges network
500 . .
: s uly ...
400 - -
soom Tt v [
[ ] - ’ 5 .I _ ] ]
200 . LR
. a o .
.' . =5 " Bgs .
100 . LY. .
0 , A , . 0 — R I T !
0 100 200 300 400 500 0 100 200 300 400 500

x Balanced workload at each -
Small remaining workloads

partition




Outline

* Global Assignment and Local Scheduling
(GALS)

* Local Assignment and Local Scheduling

(LALS)

— Naive LALS
— Bisection-based LALS

* Experiments




Bisection-based LALS

Top-down Bisection
partitioning

Bottom up merging

Combine remaining
workers and tasks




Outline

* Global Assignment and Local Scheduling
(GALS)

* Local Assignment and Local Scheduling

(LALS)

— Naive LALS
— Bisection-based LALS

 Experiments




Experiment

e Dataset

— Synthetic: SYN-SKEW, SYN-UNI from 500 * 500 grid
— Real dataset from Gowalla and Yelp

* Algorithms

— Baseline, GALS
— Naive LALS (NLALS), Bisection LALS(BLALS)




* No. of scheduled task

Varying |S| on SYN-SKEW

USC

cho

baseline GALS NLALS BLALS
5K 3379 3986 3911 3896
10K 7075 8263 8201 8093
25K 19049 21849 21717 21473
50K 35614 43653 43368 42095
100K 56511 68505 66275 63937




Running time on SYN-SKEW

Baseline AGALS

BLALS is orders of magnitude faster
than GALS and NLALS

5k 10k 25k 50k 100k
Number of tasks
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Background:
Dial-A-Ride Problem (OR)

* Given m vehicles at the depot and n requests
with pickup and delivery time window

* Find m routes which minimizes the total
routing cost

* Assumptions

— Vehicles and request are known a priori
— Off-line scheduling

USCViterbi

School of Engineering

Integrated Media Systems Center



Real-Time Ride-Matching at Scale

New Businesses

nOw

amazé"n | UberRUSH
Google Shopping Expres
S—fresh.
Dynamism Response-Time
Our Solution: Auction-based framework "reat:g
(time-dependent) update its route/schedule

USCViterbi

School of Engineering
Integrated Media Systems Center




Auction-Based Framework
[SIGSPATIAL 16]
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Auction-Based Framework

New request for LA Convention center

USCViterbi
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Auction-Based Framework

Send request to nearby drivers
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Auction-Based Framework

@Il - Each driver has a current schedule
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Auction-Based Framework

- Each driver has a current schedule
- Each driver computes a best potential

schedule
- detour = diff(best potential, current)
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Auction-Based Framework

- Each driver has a current schedule
- Each driver computes a best potential

schedule
- detour = diff(best potential, current)

- bid = profit(request, detour,
/ user_networth,
driver_fare)
$ X

_/ /

15 ik _ ~ User Networth Driver Fare
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Auction-Based Framework

A bid can be thought of as the “profit for
Uber to add this ride”

- [ XL Server receives bids from nearby drivers
e . e, ... andassigns request to highest bidder.
8
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Real-Time Ride-Matching at Scale

Our Solution: Auction-based framework

Dynamism Response-Time

Bidding is triggered per In order of milliseconds
rider’s arrival (<300ms, interactive) per our

Local time-dependent . .
. : preliminary experiments
routing per driver
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Research Challenges in Spatial Crowdsourcing

Task assignment (or worker selection)

Process of identifying which tasks should be assigned to which workers

To et al. TSAS ’15
Alfarrarjeh et al. MDM ’15

e Asghari et al. SIGSPATIAL 2016
e Bessai and Charoy ISCRAM ‘16

* Hassan and Curry ESA’16 * Fonteles et al. MOMM ‘15
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 Liuetal. UbiComp ‘16  Dang et al. iiWAS ‘13

* Guoetal. THMS’16  Kazemi and Shahabi. SIGSPATIAL ‘12

e Toetal. PerCom’16



Research Challenges in Spatial Crowdsourcing

Privacy-preserving task
assignment

Task scheduling
Path planning for workers to perform

Toetal. TMC’16

Zhang et al. CN ‘16

Zhang et al. ATIS ‘15

Shen et al. GLOBECOM ‘15

Gong et al. loT’15

Gong et al. TETC’15
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Kazemi and Shahabi SIGKDD ’11

tasks

Wang et al. 2016
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Mrazovic et al. ICDMW ‘15

Chen et al. IJCAI ‘15

Chen et al. AAMAS ‘15

Hadano et al. HCOMP 15

Deng et al. SIGSPATIAL ’15

Chen et al. HCOMP ‘14

Deng and Shahabi. SIGSPATIAL ’13
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Research Challenges in Spatial Crowdsourcing

Trust and Quality Incentive mechanism
Consider quality of the report data or Incentivize workers to perform spatial
trustworthiness of workers tasks

* Liu et al. Sensor’16 * Zhangetal. TVT'16

e Zhangetal. TETC’16 * Kandappu et al. CSCW ‘16

e Miao et al. DSS’16 * Kandappu et al. UbiComp ‘16

e Micholia et al. JHCS ’16
* To et al. GeoRich’16
e Liand Cao TMC ‘16

e Fanetal. SOSE’15
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e Zhao et al. MDM ’15 * Rula et al. HotMobile ‘14

* Wang et al. UbiComp ’15 * Musthag et al. CHI"13
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Research Challenges in Spatial Crowdsourcing

Generic frameworks

Discuss components, architecture,
programming framework of SC apps

To et al. CROWDBENCH ’16
Fonteles et al. RCIS ‘16

Peng et al. ASE '16

Kucherbaev et al. SIGCHI '16
Sakamoto et al. COMPSAC ’16
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Ra et al. MobiSys ‘12
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Related surveys
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Zhao and Han 2016

Christin JSS '15

Appllcatlons
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 Fan and Tseng MOBIS ‘15
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* Harburgetal. CHI '15
* Chenetal. SenSys ‘15
 Kim CHI ‘15
* Aubry et al. CROWDSENSING ’14
e Chenetal. VLDB'14
 Kim et al. MMSys’14
* Benouaret et al. IEEE IC’13
* Coric and Gruteser DCOSS ’13
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