
1

Cyrus Shahabi, Ph.D.

Professor of Computer Science & Electrical Engineering

Director, Integrated Media Systems Center (IMSC)

Viterbi School of Engineering

University of Southern California
Los Angeles, CA 900890781

shahabi@usc.edu

Spatial Crowdsourcing: Task
Assignment & Scheduling

mailto:shahabi@usc.edu

2

OUTLINE

• Motivation

• Task Assignment

• Task Scheduling

• Task Assignment & Scheduling

• Example Application

3

OUTLINE

• Motivation

• Task Assignment

• Task Scheduling

• Task Assignment & Scheduling

• Example Application

4

Motivation

• Ubiquity of mobile users

– 6 billion mobile subscriptions by the end of 2011

 ≡ 87% of the world population[1]

• Technology advances on mobile phones (e.g., Cameras)

• Network bandwidth improvements

[1] http://mobithinking.com/mobile-marketing-tools/latest-mobile-stats

5

Spatial Crowdsourcing [ACMGIS’12]

5

[1]
http://www.gartner.com/newsroom/id/2665715

Spatial crowdsourcing (SC): requires
workers to physically travel at the task's
location in order to execute the task.

Crowdsourcing: outsourcing a set of tasks to a
set of workers.

SC Applications

Ubiquity
of mobile

users

6.5 billion mobile
subscriptions,
93.5% of the world
population [1]

Technology
advances

on mobiles

Smartphone's
sensors. e.g.,
video cameras

Network
bandwidth

improvements

From 2.5G (up to
384Kbps) to 3G
(up to 14.7Mbps)
and recently 4G
(up to 100 Mbps)

task

6

Requester

Spatial Crowdsourcing
Server (SC-server)

WorkerIMSC
GeoCrowd

In Collaboration w Prof.
Zimmermann, NUS

7

MediaQ Demohttp://mediaq.usc.edu/

8

OUTLINE

• Motivation

• Task Assignment

• Task Scheduling

• Task Assignment & Scheduling

• Example Application

9

Problem Definition

• Input: Given m spatial task sets and k workers

• Output: assign spatial task sets to workers and
provide schedules of workers

• Objective: that minimize the total cost (or
maximize the number of assigned tasks) under
time / order constraints.

• Challenges: An OR problem with: scale (DB),
online (Algo), dynamism (Control), spatial (Geo),
etc.

9

10

Preliminaries

• Spatial task t<d, l, s, δ>: Task t with description d to be answered at
location l, asked at time s and will be expired at time s+δ.

• Spatial Crowdsourced Query (SC-Query) <t1,t2,..>: A set of spatial
tasks issued by a requester to the SC-server for crowdsourcing.

• Task Inquiry TI<R,maxT>: Request
that a worker w sends to the SC-
server when ready to work with
constraints:

• R: A spatial region (e.g.,
rectangle) in which w accepts
tasks
• maxT: Maximum number of
tasks w can perform

SC-Querya<t1,t2,…>

SC-Queryb<t1,t2,…>

11

Problem Definition
• Task Assignment Instance Set Ii

– Wi = {w1, w2 , ...} : Set of workers at time si

– Ti = {t1,t2, ...} : Set of available tasks at time si

– Ii = {<w,t>|w∈ Wi , t∈ Ti}: a spatial task t is assigned
to a worker w, while satisfying the workers’
constraints.

• Maximum Task Assignment (MTA)
– ϕ = {s1, s2, ..., sn} : A time interval

– MTA: Maximizing the total number of assigned tasks
during ϕ while satisfying the workers’ constraints
• Maximizing 

=

n

i

i||I
1

12

• Crowdsourcing
– Services/Markets/App

• Amazon’s Mechanical Turk (MTurk)
• CrowdFlower, oDesk, Waze

– Research
• Databases [MIT, Stanford, Berkeley]
• Data Analytics [Liu et al. and Wang et al., PVLDB’12]
• Image search [Yan et al., MobiSys’10]
• Natural language annotations [Snow et al., EMNLP’08]
• Social games [Guy et al., CHI’11]
• Search [Alonso et al., SIGIR’11]

• Spatial Crowdsourcing
– [Alt et al., NordiCHI’10]
– [Bulut et al., PerCom Workshops’11]

• Participatory Sensing: An instance of spatial crowdsourcing in which there is only one requester
(i.e., campaign) and tasks are only sensing tasks
– CENS
– [Hull et al., SenSys’06]
– [Mohan et al., SenSys’08]
– [Cornelius et al., MobiSys’08]
– [Shirani-mehr et al., GIS’09]

• Volunteered Geographic Information (VGI) : Create geographic information provided voluntarily by
individuals
– StreetMap
– Google Map Maker
– WikiMapia

Related Work

Non-Spatial

Worker Selected Spatial Crowdsourcing (application)

Non-spatial tasks

✓ Focus on single campaign
✓ Not a general framework

✓ Users unsolicited participation
 by randomly contributing data

✓Not focused on task assignment

13

Related Work (Task Assignment)
• Classic Matching problems – matching tasks w workers

• Real-time matching – [Kalyanasundaram and Pruhs, 1993 & 2000]

– Spatial characteristic of tasks and workers
• Adding spatial feature as a metrics increase complexity (not scalable)

• Spatial matching – [Wong, Tao, Fu and Xiao, 2007][U, Yiu, Mouratidis
and Mamoulis, 2008]
– Dynamism of tasks and workers (i.e., tasks and workers come and go without our

knowledge),
• The challenge is to perform the task assignment at a given instance of time with the

goal of global optimization across all times

– Workers need to travel to task locations causes the landscape of the problem to
change constantly
• This will add another layer of dynamism to spatial crowdsourcing that makes it a

unique problem

14

Assignment Protocol
• Future knowledge → Optimal assignment → Solving MTA

• Challenge

– Current knowledge at every time instance → Local optimization

• Goal

– Optimizing the task assignment locally by utilizing the spatial
information that workers share during their task inquiries

• Approaches

– Greedy (GR) Strategy

– Least Location Entropy Priority (LLEP) Strategy

– Nearest Neighbor Priority (NNP) Strategy

15

Greedy (GR) Strategy
• Goal → Maximizing the assignment at every instance of time si →

solving Maximum Task Assignment Instance (MTAIi)

• MTAIi is equivalent to max-flow problem

• Apply any of the max-flow algorithms

– Ford-Fulkerson

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

dstsrc

2

3

4

1

1

1

1

1

1

1

1

1

1

1

workers

tasks

16

Least Location Entropy
 Priority Strategy (LLEP)

• Goal
– Exploiting the spatial characteristics of the
 environment to maximize the overall task
 assignment

• Intuition
– A task is more likely to be completed when located in areas with higher

worker densities

• Heuristic
– Assigning higher priority to tasks which are located in worker-sparse areas

• Location Entropy: Measuring the total number of workers in a location
as well as the relative proportion of their visits to that location
– l : location
– Ol : Set of visits to location l
– Wl : Set of distinct workers that visited l
– Ow,l : Set of visits that worker w has made to the location l
– Pl(w) = |Ow,l |/| Ol |  


lWw

ll (w)P(w) P = -Entropy(l) log

Task

High
entropy

Low
entropy

17

Major Observations

• Experiments on both real and synthetic data
demonstrated

– The superiority of LLEP in comparison with GR in
terms of the number of assigned tasks by up to
36%

18

OUTLINE

• Motivation

• Task Assignment

• Task Scheduling

• Task Assignment & Scheduling

• Example Application

19

Spatial Crowdsourcing
• Challenges:

– Task Assignment

• Approach
– Server Assigned Tasks (SAT) V.S Worker Selected Tasks (WST)

Worker

Requester

Server

20

Example
• Tasks with location and deadlines

– E.g. task D needs to be finished in 25 minutes

• Suppose travel time for one grid is one minute

– Consider Manhattan distance

– E.g., cost(w, D) = 10 + 2 = 12 minutes

10+2 = 12

8+ 3 = 11

21

Problem Definition
• Maximum Task Scheduling (MTS)

– Given a worker w and a set of n tasks T with
locations and deadlines

– Find a maximal task sequence R

Maximal Task sequence: (A, E, C, D)

4

11

4
5

22

Problem Complexity

• The MTS problem is NP-hard by reduction
from Traveling Salesman Problem (TSP)

• Brute force takes O(n!) time

23

Outline

• Problem Definition

• Exact Algorithms

– Dynamic Programming

– Branch-and-Bound Algorithm

• Approximation Algorithms

24

Dynamic Programming
• Let’s schedule task set {A, C, E} s.t. it ends w C

– Schedule {A, E} ends with E → 3

– Or schedule {A, E} ends with A → 1

– Choose the best among them

11/3/2024 24

4

11

4

7

11

13

25

Dynamic Programming

• Define opt(S, j) as the optimum number by
scheduling all the jobs in S, ends with j

– Task i is the second-to-last finished task before j

11/3/2024 25

opt(S, j) = max
iÎS,i¹ j

(opt(S -{ j}, i)+dij)

dij =
1 if job j can be finished after job i

0 else

ì
í
î

26

Dynamic Programming
• Subsets needs to be explored

subsets in total

n

1

æ

è
ç

ö

ø
÷+

n

2

æ

è
ç

ö

ø
÷+...+

n

n

æ

è
ç

ö

ø
÷ = 2n

Space Cost Time Cost

DP O(n•2n) O(n2•2n)

30

Outline

• Problem Definition

• Exact Algorithms

– Dynamic Programming

– Branch-and-Bound Algorithm

• Approximation Algorithms

31

Branch-and-Bound

• Search Tree
– Depth-first or best-first search

32

Example of B&B

11/3/2024 32

33

Candidate Task Set

• Suppose we are at (C, D), do we still need to
try A, B at level 3?

34

Candidate Task Set (cand)
• A candidate task set maintains the promising tasks to be

expanded at the next level:

– e.g. cand(C) = {D,E} cand(C, D) = {E}

• Property: A node’s candidate tasks set is the subset of its
parent’s candidate task set

35

Bound of Branch

• R is current path from w

• Upper-bound of R
maxi # of tasks that can be finished

by following the corresponding branch.

– ub(R) = |R| + |cand_R|
– E.g., ub(C) = 1 + 2 = 3

• Lower-bound of R
– Minimum number of tasks that can be completed

by following this branch

11/3/2024 35

36

Branch-and-Bound

• Complexity

• In reality, n is the number of tasks in the
vicinity of the worker, it might be very large!

Space Cost Time Cost

DP O(n•2n) O(n2•2n)

B&B O(n2) O(n!)

Worst case

37

Outline

• Problem Definition

• Exact Algorithms

– Dynamic Programming

– Branch-and-Bound Algorithm

• Approximation Algorithms

38

Limitation of Exact algorithms

• Restriction of Mobile platform

– Limited CPU and memory resources

– Interactive environment for the user

• Response in milliseconds level

• Exact algorithms cannot scale

– Exponential running time and/or huge memory
consumption

39

Least Expiration Heuristics (LEH)

• Greedily choose the task with least expiration time

Task Sequence:

6

7

40

Nearest Neighbor Heuristics (NNH)

• Greedily choose the task nearest to the worker

11/3/2024 40

Task sequence: (A, E, D)

4
3

11

5

41

Most Promising Heuristic (MPH)

• Greedily choose the task with highest upper-bound

Task sequence: (A, E, C)

Space Cost Time Cost

DP O(n•2n) O(n2•2n)

B&B O(n2) O(n!)

LEH O(1) O(n•log(n))

NNH O(1) O(n2)

MPH O(n) O(n2)

42

Progressive algorithms

• Approximation algorithm + Exact algorithm

– NNH to choose the first task

– Branch and Bound for the remaining 4 tasks

43

Progressive Algorithms

• Pros

– Quick response time

– Near-optimum results

• Cons

– Preemption of other workers

– Worker may prefer the whole plan

11/3/2024 43

44

OUTLINE

• Motivation

• Task Assignment

• Task Scheduling

• Task Assignment & Scheduling

• Example Application

45

Problem definition

4
5

2 pm

3 pm2 pm 2 pm

2 pm

• worker: spatial and capacity constrain

• task: expiration time constraint

Input: Given a set of workers W and a set of tasks S

46

Problem definition

Input: Given a set of workers W and a set of tasks S

Goal: find a scheduling plan for each worker:

1. Maximize the number of completed tasks
(primary goal)

2. Minimize the average travel cost per task (secondary goal)

4
6

NP-hard Problem

One potential plan

47

Outline

• Global Assignment and Local

Scheduling (GALS)

• Local Assignment and Local Scheduling
(LALS)

• Experiments

4
7

48

Baseline

4
8

Initial Assignment:

w1: s1

w2: s2,s3

w3: s4

w4: s6

w5: s5, s7, s8

1. Assignment via max-flow
[Kazami’GIS12]

2. Schedule for each worker [Deng’GIS13] Reassignment and

rescheduling?

49

Global assignment and local

scheduling (GALS)

4
9

1 2 3
Global

Assignment

Scheduling for

each worker

Update

assignment

Iterate back

matching + scheduling iteratively

S

W

50

Example of GALS

5
0

1. Assignment via max-flow
[Kazami’GIS12]

2. Schedule for each worker
[Deng’GIS13]

3. Build remaining flow network and
update scheduling

Insert s7 into w4’s existing schedule

w5

w4

s7

51

Property of GALS

• Global assignment maintains the
connectivity information

5
1

• The iterative refining process further improves
the quality

High quality

52

Bottleneck of GALS

5
2

GALS takes more than 1000 seconds

For an instance with 25k tasks and 500k edges

Suffers from the large number of edges in the flow network

|E|

Not efficient

53

Outline

• Global Assignment and Local Scheduling
(GALS)

• Local Assignment and Local

Scheduling (LALS)
– Naive LALS

– Bisection-based LALS

• Experiments

5
3

54

Naive LALS

5
4

1. Generate partitions

2. Schedule for each partition

GALS

3. Combine the remaining

workers and tasks

GALS

GALS

GALS

GALS

GA

LS

Break global assignment into a set of local assignments and local

scheduling (LALS)

GALS

Initial workers and tasksRemaining workers and tasks

55

Naive LALS

5
5

Sacrifice the solution quality

Faster than GALS

?

56

Problems

• Partitions with large number of
edges

5
6

• Large remaining flow
network

Balanced workload at each

partition
Small remaining workloads

57

Outline

• Global Assignment and Local Scheduling
(GALS)

• Local Assignment and Local Scheduling
(LALS)
– Naive LALS

– Bisection-based LALS

• Experiments

5
7

58

Bisection-based LALS

5
8

Top-down Bisection

partitioning

Bottom up merging

Combine remaining

workers and tasks

59

Outline

• Global Assignment and Local Scheduling
(GALS)

• Local Assignment and Local Scheduling
(LALS)
– Naive LALS

– Bisection-based LALS

• Experiments

5
9

60

Experiment

• Dataset
– Synthetic: SYN-SKEW, SYN-UNI from 500 * 500 grid

– Real dataset from Gowalla and Yelp

• Algorithms
– Baseline, GALS

– Naive LALS (NLALS), Bisection LALS(BLALS)

6
0

61

Varying |S| on SYN-SKEW

• No. of scheduled task

6
1

GALS outperforms baseline up to 30%BLALS sacrifices only less than 5% of the schedule quality

baseline GALS NLALS BLALS

5K 3379 3986 3911 3896

10K 7075 8263 8201 8093

25K 19049 21849 21717 21473

50K 35614 43653 43368 42095

100K 56511 68505 66275 63937

62

Running time on SYN-SKEW

6
2

0.1

1

10

100

1000

10000

100000

5k 10k 25k 50k 100k

R
u

n
n

in
g

 t
im

e

(s
e
c
o

n
d

s)

Number of tasks

Baseline GALS

BLALS is orders of magnitude faster

than GALS and NLALS

63

OUTLINE

• Motivation

• Task Assignment

• Task Scheduling

• Task Assignment & Scheduling

• Example Application

64

Ride Sharing

Rider sends
request

Match rider to driver

Drop off at Staples

65

Drop off 1

Initial Route

Drop off at Staples

Initial route of the matched driver

Ride Sharing

66

Drop off
1

Pick up 2

Drop off 2

Updated Route

Updated route of the matched driver

Ride Sharing

67

Background:
Dial-A-Ride Problem (OR)

• Given m vehicles at the depot and n requests
with pickup and delivery time window

• Find m routes which minimizes the total
routing cost

• Assumptions

– Vehicles and request are known a priori

– Off-line scheduling

68

Real-Time Ride-Matching at Scale

New Businesses

Response-Time
Efficiently determine the
best matched driver and
update its route/schedule

Dynamism
Riders and drivers come & go

Graph edges changes in time
(time-dependent)

Scale
Large number of
riders & drivers

Large network

69

Auction-Based Framework
[SIGSPATIAL’16]

70

Auction-Based Framework

New request for LA Convention center

71

Auction-Based Framework

Send request to nearby drivers

72

- Each driver has a current schedule

Auction-Based Framework

73

- Each driver computes a best potential
schedule
- detour = diff(best potential, current)

Auction-Based Framework

- Each driver has a current schedule

74

$5

- bid = profit(request, detour,
 user_networth,
 driver_fare)

Auction-Based Framework

- Each driver computes a best potential
schedule
- detour = diff(best potential, current)

- Each driver has a current schedule

t

$

User Networth
t

$

Driver Fare

75

$
5

$2

A bid can be thought of as the “profit for
Uber to add this ride”

Server receives bids from nearby drivers
and assigns request to highest bidder.

Auction-Based Framework

76

Real-Time Ride-Matching at Scale

Response-Time
Efficiently determine the
best matched driver and
update its route/schedule

Dynamism
Riders and drivers come & go

Graph edges changes in time
(time-dependent)

Scale
Large number of
riders & drivers

Large network

1. Local scheduling of
a small number of
riders per driver

2. Simple ranking
across bids by the
server

1. Bidding is triggered per
rider’s arrival

2. Local time-dependent
routing per driver

In order of milliseconds
(<300ms, interactive) per our
preliminary experiments

Research Challenges in Spatial Crowdsourcing

• Asghari et al. SIGSPATIAL 2016
• Bessai and Charoy ISCRAM ‘16
• Hassan and Curry ESA’16
• Zhang et al. TVT ’16
• Gao et al. WAIM ’16
• Cheng et al. TKDE ‘16
• Tong et al. VLDB ‘16
• Liu et al. DASFAA ‘16
• Hu et al. ICDE ’16
• Tong et al. ICDE’16
• Zhang et al. WCMC ‘16
• Liu et al. UbiComp ‘16
• Guo et al. THMS ’16
• To et al. PerCom ’16

77

• To et al. TSAS ’15
• Alfarrarjeh et al. MDM ’15
• Fonteles et al. MoMM ‘15
• Hassan and Curry. SIGSPATIAL ’15
• Xiao et al. INFOCOM ’15
• Xiong et al. PerCom ‘15
• Pournajaf et al. ICCS ‘14
• Hassan and Curry. UCI’14
• He et al. INFOCOM ’14
• Fonteles et al. SIGSPATIAL ‘14
• Zhang et al. UbiComp ’14
• Dang et al. iiWAS ‘13
• Kazemi and Shahabi. SIGSPATIAL ‘12

Task assignment (or worker selection)

Process of identifying which tasks should be assigned to which workers

Research Challenges in Spatial Crowdsourcing

78

Privacy-preserving task
assignment

• To et al. TMC ’16
• Zhang et al. CN ‘16
• Zhang et al. ATIS ‘15
• Shen et al. GLOBECOM ‘15
• Gong et al. IoT’15
• Gong et al. TETC’15
• Hu et al. APWeb ’15
• Pournajaf et al. MDM’14,

SIGSPATIAL’15
• To et al. VLDB ’14, ICDE ’15
• Boutsis and Kalogeraki PerCom ‘13
• Vu et al. INFOCOM ‘12
• Kazemi and Shahabi SIGKDD ’11

Task scheduling
Path planning for workers to perform
tasks

• Wang et al. 2016
• Fonteles et al. JLBS ‘16
• Deng et al. GeoInformatica ’16
• Mrazovic et al. ICDMW ‘15
• Chen et al. IJCAI ‘15
• Chen et al. AAMAS ‘15
• Hadano et al. HCOMP ’15
• Deng et al. SIGSPATIAL ’15
• Chen et al. HCOMP ‘14
• Deng and Shahabi. SIGSPATIAL ’13

Research Challenges in Spatial Crowdsourcing

Trust and Quality
Consider quality of the report data or
trustworthiness of workers

• Liu et al. Sensor ’16
• Zhang et al. TETC ’16
• Miao et al. DSS ’16
• Fan et al. SOSE ’15
• Shah-Mansouri et al. ICC ’15
• An et al. HPCC ’15
• Kang et al. MASS ’15
• Cheng et al. VLDB ’15
• Zhao et al. MDM ’15
• Wang et al. UbiComp ’15
• Song et al. TVT ’14
• Boutsis et al. ICDCS ’14
• Feng et al. INFOCOM ’14
• Kazemi et al. SIGSPATIAL ’13

79

Incentive mechanism
Incentivize workers to perform spatial
tasks

• Zhang et al. TVT ’16

• Kandappu et al. CSCW ‘16
• Kandappu et al. UbiComp ‘16
• Micholia et al. IJHCS ’16
• To et al. GeoRich ’16
• Li and Cao TMC ‘16
• Thebault-Spieker et al. CSCW ’15
• Jin et al. MobiHoc ’15
• Teodoro et al. CSCW ’14
• Rula et al. HotMobile ‘14
• Musthag et al. CHI ’13
• Heimerl et al. CHI ’12
• Jainmes et al. PerCom ‘12
• Yang et al. MobiCom ‘12
• Lee and Hoh PMC ‘10
• Alt et al. NordiCHI ‘10

Research Challenges in Spatial Crowdsourcing

Applications
• Konomi and Sasao Urb-IoT ‘16
• Jaiman et al. UbiComp/ISWC ’16
• Fan and Tseng MOBIS ‘15
• Konomi and Sasao UbiComp/ISWC ’15
• Harburg et al. CHI ’15
• Chen et al. SenSys ‘15
• Kim CHI ‘15
• Aubry et al. CROWDSENSING ’14
• Chen et al. VLDB ’14
• Kim et al. MMSys’14
• Benouaret et al. IEEE IC ’13
• Coric and Gruteser DCOSS ’13
• Koukoumidis et al. MobiSys ‘11
• Goodchild and Glennon IJDE ‘10

80

Generic frameworks
Discuss components, architecture,
programming framework of SC apps

• To et al. CROWDBENCH ’16
• Fonteles et al. RCIS ‘16
• Peng et al. ASE ’16
• Kucherbaev et al. SIGCHI ’16
• Sakamoto et al. COMPSAC ’16
• Fernando et al. MOBIQUITOUS ’13
• Tamilin et al. UbiComp ‘12
• Ra et al. MobiSys ‘12
• Yan et al. SenSys ‘09

Related surveys
• Pournajaf et al. SIGMOD ‘15
• Guo et al. Comp Survey ‘15
• Zhao and Han 2016
• Christin JSS ’15

	Slide 1
	Slide 2: OUTLINE
	Slide 3: OUTLINE
	Slide 4: Motivation
	Slide 5: Spatial Crowdsourcing [ACMGIS’12]
	Slide 6: IMSC GeoCrowd
	Slide 7: MediaQ Demo
	Slide 8: OUTLINE
	Slide 9: Problem Definition
	Slide 10: Preliminaries
	Slide 11: Problem Definition
	Slide 12: Related Work
	Slide 13: Related Work (Task Assignment)
	Slide 14: Assignment Protocol
	Slide 15: Greedy (GR) Strategy
	Slide 16: Least Location Entropy Priority Strategy (LLEP)
	Slide 17: Major Observations
	Slide 18: OUTLINE
	Slide 19: Spatial Crowdsourcing
	Slide 20: Example
	Slide 21: Problem Definition
	Slide 22: Problem Complexity
	Slide 23: Outline
	Slide 24: Dynamic Programming
	Slide 25: Dynamic Programming
	Slide 26: Dynamic Programming
	Slide 30: Outline
	Slide 31: Branch-and-Bound
	Slide 32: Example of B&B
	Slide 33: Candidate Task Set
	Slide 34: Candidate Task Set (cand)
	Slide 35: Bound of Branch
	Slide 36: Branch-and-Bound
	Slide 37: Outline
	Slide 38: Limitation of Exact algorithms
	Slide 39: Least Expiration Heuristics (LEH)
	Slide 40: Nearest Neighbor Heuristics (NNH)
	Slide 41: Most Promising Heuristic (MPH)
	Slide 42: Progressive algorithms
	Slide 43: Progressive Algorithms
	Slide 44: OUTLINE
	Slide 45: Problem definition
	Slide 46: Problem definition
	Slide 47: Outline
	Slide 48: Baseline
	Slide 49: Global assignment and local scheduling (GALS)
	Slide 50: Example of GALS
	Slide 51: Property of GALS
	Slide 52: Bottleneck of GALS
	Slide 53: Outline
	Slide 54: Naive LALS
	Slide 55: Naive LALS
	Slide 56: Problems
	Slide 57: Outline
	Slide 58: Bisection-based LALS
	Slide 59: Outline
	Slide 60: Experiment
	Slide 61: Varying |S| on SYN-SKEW
	Slide 62: Running time on SYN-SKEW
	Slide 63: OUTLINE
	Slide 64: Ride Sharing
	Slide 65
	Slide 66
	Slide 67: Background: Dial-A-Ride Problem (OR)
	Slide 68: Real-Time Ride-Matching at Scale
	Slide 69: Auction-Based Framework [SIGSPATIAL’16]
	Slide 70: Auction-Based Framework
	Slide 71: Auction-Based Framework
	Slide 72: Auction-Based Framework
	Slide 73: Auction-Based Framework
	Slide 74: Auction-Based Framework
	Slide 75: Auction-Based Framework
	Slide 76: Real-Time Ride-Matching at Scale
	Slide 77: Research Challenges in Spatial Crowdsourcing
	Slide 78: Research Challenges in Spatial Crowdsourcing
	Slide 79: Research Challenges in Spatial Crowdsourcing
	Slide 80: Research Challenges in Spatial Crowdsourcing

