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Motivation
• Ubiquity of mobile users
– 6 billion mobile subscriptions by the end of 2011 
≡ 87% of the world population[1]

• Technology advances on mobile phones (e.g., Cameras)
• Network bandwidth improvements

[1] http://mobithinking.com/mobile-marketing-tools/latest-mobile-stats
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Spatial Crowdsourcing [ACMGIS’12]

5
[1]
http://www.gartner.com/newsroom/id/2665715

Spatial crowdsourcing (SC): requires 
workers to physically travel at the task's 
location in order to execute the task.

Crowdsourcing: outsourcing a set of tasks to a 
set of workers.

SC Applications

Ubiquity 
of mobile 

users

6.5 billion mobile 
subscriptions, 
93.5% of the world 
population [1]

Technology 
advances 

on mobiles

Smartphone's 
sensors. e.g., 
video cameras

Network 
bandwidth 

improvements

From 2.5G (up to 
384Kbps) to 3G 
(up to 14.7Mbps) 
and recently 4G
(up to 100 Mbps)

task
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Requester

Spatial Crowdsourcing
Server (SC-server)

WorkerIMSC
GeoCrowd

In Collaboration w Prof. 
Zimmermann, NUS
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Problem Definition
• Input: Given m spatial task sets and k workers
• Output: assign spatial task sets to workers and 

provide schedules of workers 
• Objective: that minimize the total cost (or 

maximize the number of assigned tasks) under 
time / order constraints.

• Challenges: An OR problem with: scale (DB), 
online (Algo), dynamism (Control), spatial (Geo), 
etc.

8
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Preliminaries
• Spatial task t<d, l, s, δ>: Task t with description d to be answered at 

location l, asked at time s and will be expired at time s+δ.

• Spatial Crowdsourced Query (SC-Query) <t1,t2,..>: A set of spatial 
tasks issued by a requester to the SC-server for crowdsourcing.

• Task Inquiry TI<R,maxT>: Request 
that a worker w sends to the SC-
server when ready to work  with 
constraints: 

• R: A spatial region (e.g., 
rectangle) in which w accepts 
tasks 
•maxT: Maximum number of 
tasks w can perform

SC-Querya<t1,t2,…>

SC-Queryb<t1,t2,…>
TI3 <R

3 ,m
axT

3 >

TI4 <R
4 ,maxT

4 >
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Problem Definition
• Task Assignment Instance Set Ii
– Wi = {w1, w2 , ...} : Set of workers at time si

– Ti = {t1,t2, ...} : Set of available tasks at time si

– Ii = {<w,t>|w∈ Wi , t∈ Ti}: a spatial task t is assigned 
to a worker w, while satisfying the workers’ 
constraints.

• Maximum Task Assignment (MTA)
– ϕ = {s1, s2, ..., sn} : A time interval 
– MTA: Maximizing the total number of assigned tasks 

during ϕ while satisfying the workers’ constraints
• Maximizing å

=

n

i
i||I

1
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• Crowdsourcing
– Services/Markets/App

• Amazon’s Mechanical Turk (MTurk) 
• CrowdFlower, oDesk, Waze

– Research
• Databases [MIT, Stanford, Berkeley]
• Data Analytics [Liu et al. and Wang et al., PVLDB’12]
• Image search [Yan et al.,  MobiSys’10]
• Natural language annotations [Snow et al., EMNLP’08] 
• Social games [Guy et al., CHI’11]
• Search [Alonso et al., SIGIR’11]

• Spatial Crowdsourcing
– [Alt et al., NordiCHI’10]
– [Bulut et al., PerCom Workshops’11]

• Participatory Sensing:  An instance of spatial crowdsourcing in which there is only one requester 
(i.e., campaign)  and tasks are only sensing tasks
– CENS 
– [Hull et al., SenSys’06]
– [Mohan et al., SenSys’08]
– [Cornelius et al., MobiSys’08]
– [Shirani-mehr et al., GIS’09]

• Volunteered Geographic Information (VGI) :  Create geographic information provided voluntarily by 
individuals
– StreetMap
– Google Map Maker
– WikiMapia

Related Work

Non-Spatial

Worker Selected Spatial Crowdsourcing (application)
Non-spatial tasks

ü Focus on  single campaign
ü Not a general framework

ü Users unsolicited participation
by randomly  contributing data

üNot focused on task assignment
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Related Work (Task Assignment)
• Classic Matching problems – matching tasks w workers
• Real-time matching – [Kalyanasundaram and Pruhs, 1993 & 2000] 

– Spatial characteristic of tasks and workers
• Adding spatial feature as a metrics increase complexity (not scalable)

• Spatial matching – [Wong, Tao, Fu and Xiao, 2007][U, Yiu, Mouratidis
and Mamoulis, 2008] 
– Dynamism of tasks and workers (i.e., tasks and workers come and go without our 

knowledge),
• The challenge is to perform the task assignment at a given instance of time with the 

goal of global optimization across all times
– Workers need to travel to task locations causes the landscape of the problem to 

change constantly
• This will add another layer of dynamism to spatial crowdsourcing that makes it a 

unique problem
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Assignment Protocol
• Future knowledge à Optimal assignment à Solving MTA
• Challenge 
– Current knowledge at every time instance à Local optimization

• Goal
– Optimizing the task assignment locally by utilizing the spatial 

information that workers share during their task inquiries

• Approaches
– Greedy (GR) Strategy
– Least Location Entropy Priority (LLEP) Strategy
– Nearest Neighbor Priority (NNP) Strategy
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Greedy (GR) Strategy
• Goal à Maximizing the assignment at every instance of time si à

solving Maximum Task Assignment Instance (MTAIi)
• MTAIi is equivalent to max-flow problem
• Apply any of the max-flow algorithms

– Ford-Fulkerson

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

dstsrc
2

3

4

1

1

1

1
1

1
1

1

1

1

1

workers

tasks
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Least Location Entropy
Priority Strategy (LLEP)

• Goal
– Exploiting the spatial characteristics of the 

environment to maximize the overall task 
assignment

• Intuition
– A task is more likely to be completed when located in areas with higher 

worker densities
• Heuristic

– Assigning higher priority to tasks which are located in worker-sparse areas
• Location Entropy:  Measuring the total number of workers in a location 

as well as the relative proportion of their visits to that location
– l : location
– Ol : Set of visits to location l
– Wl : Set of distinct workers that visited l
– Ow,l : Set of visits that worker w has made to the location l
– Pl(w) = |Ow,l |/| Ol |    å Î

´
lWw

ll (w)P(w) P = -Entropy(l) log

Task

High 
entropy

Low 
entropy
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Major Observations

• Experiments on both real and synthetic data 
demonstrated  
– The superiority of LLEP in comparison with GR in 

terms of the number of assigned tasks by up to 
36% 
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Spatial Crowdsourcing
• Challenges: 

– Task Assignment
• Approach

– Server Assigned Tasks (SAT)    V.S  Worker Selected Tasks (WST) 

Worker

Requester

Server
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Example
• Tasks with location and deadlines
– E.g. task D needs to be finished in 25 minutes

• Suppose travel time for one grid is one minute
– Consider Manhattan distance
– E.g., cost(w, D) = 10 + 2 = 12 minutes

10+2 = 12

8+ 3 = 11
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Problem Definition
• Maximum Task Scheduling (MTS)
– Given a worker w and a set of n tasks T with 

locations and deadlines
– Find a maximal task sequence R

Maximal Task sequence: (A, E, C, D)

4

11

4
5



21

Problem Complexity

• The MTS problem is NP-hard by reduction 
from Traveling Salesman Problem (TSP)

• Brute force takes O(n!) time
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Outline

• Problem Definition
• Exact Algorithms
– Dynamic Programming
– Branch-and-Bound Algorithm

• Approximation Algorithms
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Dynamic Programming
• Let’s schedule task set {A, C, E} s.t. it ends w C
– Schedule {A, E} ends with E à 3
– Or schedule {A, E} ends with A à 1
– Choose the best among them

11/2/19 23

4

11

4

7

11

13
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Dynamic Programming

• Define opt(S, j) as the optimum number by 
scheduling all the jobs in S, ends with j
– Task i is the second-to-last finished task before j

11/2/19 24

opt(S, j) = max
i∈S,i≠ j

(opt(S −{ j}, i)+δij )

δij =
1     if job j  can be finished after job i
0    else
$
%
&
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Dynamic Programming
• Subsets needs to be explored

subsets in total 

n
1
!

"
#
$

%
&+

n
2
!

"
#
$

%
&+...+

n
n
!

"
#
$

%
&= 2n

Space Cost Time Cost
DP O(n•2n) O(n2•2n)
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Outline

• Problem Definition
• Exact Algorithms
– Dynamic Programming
– Branch-and-Bound Algorithm

• Approximation Algorithms
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Branch-and-Bound 

• Search Tree
– Depth-first or best-first search 
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Example of B&B

11/2/19 31
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Candidate Task Set

• Suppose we are at (C, D), do we still need to 
try A, B at level 3?
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Candidate Task Set (cand)
• A candidate task set maintains the promising tasks to be 

expanded at the next level:
– e.g. cand(C) = {D,E}       cand(C, D) = {E}

• Property: A node’s candidate tasks set is the subset of its 
parent’s candidate task set
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Bound of Branch

• R is current path from w
• Upper-bound of R 
– ub(R) = |R| + |cand_R|
– E.g., ub(C) = 1 + 2 = 3

• Lower-bound of R
– Minimum number of tasks that can be completed 

by following this branch

11/2/19 34
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Branch-and-Bound

• Complexity

• In reality, n is the number of tasks in the 
vicinity of the worker, it might be very large!

Space Cost Time Cost
DP O(n•2n) O(n2•2n)
B&B O(n2) O(n!)

Worst case
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Outline

• Problem Definition
• Exact Algorithms
– Dynamic Programming
– Branch-and-Bound Algorithm

• Approximation Algorithms
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Limitation of Exact algorithms

• Restriction of Mobile platform
– Limited CPU and memory resources
– Interactive environment for the user
• Response in milliseconds level

• Exact algorithms cannot scale
– Exponential running time and/or huge memory 

consumption
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Least Expiration Heuristics (LEH)

• Greedily choose the task with least expiration time

Task Sequence: <B>

6

7
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Nearest Neighbor Heuristics (NNH)

• Greedily choose the task nearest to the worker

11/2/19 39

Task sequence: (A, E, D)

4
3

11

5
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Most Promising Heuristic (MPH)
• Greedily choose the task with highest upper-bound 

Task sequence: (A, E, C)

Space Cost Time Cost

DP O(n•2n) O(n2•2n)

B&B O(n2) O(n!)

LEH O(1) O(n•log(n))

NNH O(1) O(n2)

MPH O(n) O(n2)
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Progressive algorithms

• Approximation algorithm + Exact algorithm
– NNH to choose the first task
– Branch and Bound for the remaining 4 tasks



42

Progressive Algorithms

• Pros 
– Quick response time
– Near-optimum results

• Cons
– Preemption of other workers
– Worker may prefer the whole plan

11/2/19 42
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Problem definition

4
4

2 pm

3 pm2 pm 2 pm

2 pm

• worker: spatial and capacity constrain

• task: expiration time constraint

Input: Given a set of workers W and a set of tasks S
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Problem definition
Input: Given a set of workers W and a set of tasks S 
Goal: find a scheduling plan for each worker:

1. Maximize the number of completed tasks 
(primary goal)

2. Minimize  the average travel cost per task (secondary goal)

4
5

NP-hard Problem

One potential plan
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Outline

• Global Assignment and Local 
Scheduling (GALS)

• Local Assignment and Local Scheduling 
(LALS)

• Experiments

4
6
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Baseline

4
7

Initial Assignment:

w1: s1

w2: s2,s3

w3: s4

w4: s6

w5: s5, s7, s8

1. Assignment via max-flow 
[Kazami’GIS12]

2. Schedule for each worker [Deng’GIS13] Reassignment and 
rescheduling?
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Global assignment and local 
scheduling (GALS)

4
8

1 2 3
Global 
Assignment

Scheduling for 
each worker

Update 
assignment

Iterate back

matching + scheduling iteratively

S

W
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Example of GALS

4
9

1. Assignment via max-flow 
[Kazami’GIS12]

2. Schedule for each worker 
[Deng’GIS13]

3. Build remaining flow network and 
update scheduling

Insert s7 into w4’s existing schedule

w5

w4

s7
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Property of GALS

• Global assignment maintains the 
connectivity information

5
0

• The iterative refining process further improves 
the quality

High quality
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Bottleneck of GALS

5
1

GALS takes more than 1000 seconds

For an instance with 25k tasks and 500k edges

Suffers from the large number of edges in the flow network

|E|

Not efficient
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Outline

• Global Assignment and Local Scheduling 
(GALS)

• Local Assignment and Local 
Scheduling (LALS)
– Naive LALS
– Bisection-based LALS

• Experiments

5
2
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Naive LALS

5
3

1. Generate partitions

2. Schedule for each partition 
GALS

3. Combine the remaining 
workers and tasks

GALS

GALS

GALS

GALS

GA
LS

Break global assignment into a set of local assignments and local 
scheduling (LALS)

GALS

Initial workers and tasksRemaining workers and tasks
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Naive LALS

5
4

Sacrifice the solution quality

Faster than GALS 
?
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Problems

• Partitions with large number of 
edges

5
5

• Large remaining flow 
network

Balanced workload at each 
partition Small remaining workloads
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Outline

• Global Assignment and Local Scheduling 
(GALS)

• Local Assignment and Local Scheduling 
(LALS)
– Naive LALS
– Bisection-based LALS

• Experiments

5
6
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Bisection-based LALS

5
7

Top-down Bisection 
partitioning

Bottom up merging

Combine remaining 
workers and tasks
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Outline
• Global Assignment and Local Scheduling 

(GALS)
• Local Assignment and Local Scheduling 

(LALS)
– Naive LALS
– Bisection-based LALS

• Experiments

5
8
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Experiment

• Dataset
– Synthetic: SYN-SKEW, SYN-UNI from 500 * 500 grid
– Real dataset from Gowalla and Yelp

• Algorithms
– Baseline, GALS
– Naive LALS (NLALS), Bisection LALS(BLALS)

5
9
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Varying |S| on SYN-SKEW
• No. of scheduled task 

6
0

GALS outperforms baseline up to 30%BLALS sacrifices only less than 5% of the schedule quality

baseline GALS NLALS BLALS

5K 3379 3986 3911 3896

10K 7075 8263 8201 8093

25K 19049 21849 21717 21473

50K 35614 43653 43368 42095

100K 56511 68505 66275 63937
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Running time on SYN-SKEW

6
1
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Baseline GALS

BLALS is orders of magnitude faster 
than GALS and NLALS
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Ride Sharing

Rider sends 
request

Match rider to driver

Drop off at Staples
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Drop off 1

Initial Route

Drop off at Staples

Initial route of the matched driver 

Ride Sharing
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Drop off 
1

Pick up 2

Drop off 2

Updated Route

Updated route of the matched driver

Ride Sharing



66

Background:
Dial-A-Ride Problem (OR)

• Given m vehicles at the depot and n requests 
with pickup and delivery time window

• Find m routes which minimizes the total 
routing cost

• Assumptions
– Vehicles and request are known a priori
– Off-line scheduling 
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Real-Time Ride-Matching at Scale
New Businesses

Response-Time
Efficiently determine the 
best matched driver and 
update its route/schedule

Dynamism
Riders and drivers come & go
Graph edges changes in time 
(time-dependent)

Scale
Large number of 
riders & drivers
Large network
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Auction-Based Framework 
[SIGSPATIAL’16]
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Auction-Based Framework

New request for LA Convention center
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Auction-Based Framework

Send request to nearby drivers
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- Each driver has a current schedule

Auction-Based Framework
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- Each driver computes a best potential
schedule
- detour = diff(best potential, current)

Auction-Based Framework

- Each driver has a current schedule
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$5

- bid = profit(request, detour,
user_networth,
driver_fare)

Auction-Based Framework

- Each driver computes a best potential
schedule
- detour = diff(best potential, current)

- Each driver has a current schedule

t

$

User Networth
t

$

Driver Fare
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$
5

$2

A bid can be thought of as the “profit for 
Uber to add this ride” 

Server receives bids from nearby drivers 
and assigns request to highest bidder.

Auction-Based Framework
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Real-Time Ride-Matching at Scale

Response-Time
Efficiently determine the 
best matched driver and 
update its route/schedule

Dynamism
Riders and drivers come & go
Graph edges changes in time 
(time-dependent)

Scale
Large number of 
riders & drivers
Large network

1. Local scheduling of 
a small number of 
riders per driver

2. Simple ranking 
across bids by the 
server

1. Bidding is triggered per 
rider’s arrival

2. Local time-dependent 
routing per driver

In order of milliseconds 
(<300ms, interactive) per our 
preliminary experiments
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MediaQ Demohttp://mediaq.usc.edu/



Research Challenges in Spatial Crowdsourcing

• Asghari et al. SIGSPATIAL 2016
• Bessai and Charoy ISCRAM ‘16
• Hassan and Curry ESA’16
• Zhang et al. TVT ’16
• Gao et al. WAIM ’16
• Cheng et al. TKDE ‘16
• Tong et al. VLDB ‘16
• Liu et al. DASFAA ‘16
• Hu et al. ICDE ’16
• Tong et al. ICDE’16
• Zhang et al. WCMC ‘16
• Liu et al. UbiComp ‘16
• Guo et al. THMS ’16
• To et al. PerCom ’16
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• To et al. TSAS ’15
• Alfarrarjeh et al. MDM ’15
• Fonteles et al. MoMM ‘15
• Hassan and Curry. SIGSPATIAL ’15
• Xiao et al. INFOCOM ’15
• Xiong et al. PerCom ‘15
• Pournajaf et al. ICCS ‘14
• Hassan and Curry. UCI’14
• He et al. INFOCOM ’14
• Fonteles et al. SIGSPATIAL ‘14
• Zhang et al. UbiComp ’14
• Dang et al. iiWAS ‘13
• Kazemi and Shahabi. SIGSPATIAL ‘12

Task assignment (or worker selection)
Process of identifying which tasks should be assigned to which workers



Research Challenges in Spatial Crowdsourcing
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Privacy-preserving task 
assignment

• To et al. TMC ’16
• Zhang et al. CN ‘16
• Zhang et al. ATIS ‘15
• Shen et al. GLOBECOM ‘15
• Gong et al. IoT’15
• Gong et al. TETC’15
• Hu et al. APWeb ’15
• Pournajaf et al. MDM’14, 

SIGSPATIAL’15
• To et al. VLDB ’14, ICDE ’15
• Boutsis and Kalogeraki PerCom ‘13
• Vu et al. INFOCOM ‘12
• Kazemi and Shahabi SIGKDD ’11

Task scheduling
Path planning for workers to perform 
tasks

• Wang et al. 2016
• Fonteles et al. JLBS ‘16
• Deng et al. GeoInformatica ’16
• Mrazovic et al. ICDMW ‘15
• Chen et al. IJCAI ‘15
• Chen et al. AAMAS ‘15
• Hadano et al. HCOMP ’15
• Deng et al. SIGSPATIAL ’15
• Chen et al. HCOMP ‘14
• Deng and Shahabi. SIGSPATIAL ’13



Research Challenges in Spatial Crowdsourcing

Trust and Quality
Consider quality of the report data or 
trustworthiness of workers

• Liu et al. Sensor ’16
• Zhang et al. TETC ’16
• Miao et al. DSS ’16
• Fan et al. SOSE ’15
• Shah-Mansouri et al. ICC ’15
• An et al. HPCC ’15
• Kang et al. MASS ’15
• Cheng et al. VLDB ’15
• Zhao et al. MDM ’15
• Wang et al. UbiComp ’15
• Song et al. TVT ’14
• Boutsis et al. ICDCS ’14
• Feng et al. INFOCOM ’14
• Kazemi et al. SIGSPATIAL ’13
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Incentive mechanism
Incentivize workers to perform spatial 
tasks

• Zhang et al. TVT ’16
• Kandappu et al. CSCW ‘16
• Kandappu et al. UbiComp ‘16
• Micholia et al. IJHCS ’16
• To et al. GeoRich ’16
• Li and Cao TMC ‘16
• Thebault-Spieker et al. CSCW ’15
• Jin et al. MobiHoc ’15
• Teodoro et al. CSCW ’14
• Rula et al. HotMobile ‘14
• Musthag et al. CHI ’13
• Heimerl et al. CHI ’12
• Jainmes et al. PerCom ‘12
• Yang et al. MobiCom ‘12
• Lee and Hoh PMC ‘10
• Alt et al. NordiCHI ‘10



Research Challenges in Spatial Crowdsourcing

Applications
• Konomi and Sasao Urb-IoT ‘16
• Jaiman et al. UbiComp/ISWC ’16
• Fan and Tseng MOBIS ‘15
• Konomi and Sasao UbiComp/ISWC ’15
• Harburg et al. CHI ’15
• Chen et al. SenSys ‘15
• Kim CHI ‘15
• Aubry et al. CROWDSENSING ’14
• Chen et al. VLDB ’14
• Kim et al. MMSys’14
• Benouaret et al. IEEE IC ’13
• Coric and Gruteser DCOSS ’13
• Koukoumidis et al. MobiSys ‘11
• Goodchild and Glennon IJDE ‘10
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Generic frameworks
Discuss components, architecture, 
programming framework of SC apps

• To et al. CROWDBENCH ’16
• Fonteles et al. RCIS ‘16
• Peng et al. ASE ’16
• Kucherbaev et al. SIGCHI ’16
• Sakamoto et al. COMPSAC ’16
• Fernando et al. MOBIQUITOUS ’13
• Tamilin et al. UbiComp ‘12
• Ra et al. MobiSys ‘12
• Yan et al. SenSys ‘09

Related surveys
• Pournajaf et al. SIGMOD ‘15
• Guo et al. Comp Survey ‘15
• Zhao and Han 2016
• Christin JSS ’15


