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Spatial Crowdsourcing (SC)

[*] http://www.gartner.com/newsroom/id/2665715, 2014

Spatial crowdsourcing (SC): requires workers 
to physically travel to task's location

Crowdsourcing: outsourcing a set of tasks to a 
set of workers

Ubiquity of 
mobile 
users

6.5 billion mobile 
subscriptions, 93.5% of 
the world population [*]

Technology 
advances on 

mobiles

Smartphone's sensors. 
e.g., video cameras

Network 
bandwidth 

improvements

From 2.5G (384Kbps) to 
3G (14.7Mbps) and 
recently 4G (100 Mbps)

Task: request a ride

Introduction



4

Server
(e.g., Uber)t1t2t7

Requesters
(e.g., request 
a ride)

Task Assignment in SC

Server chooses best workers for a task based on task-worker 
proximity

Server knows locations of workers and tasks L

e.g., [Kazemi’12, Pournajaf ’14, To’17]

Workers
(e.g., drivers)

Introduction
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Risks of Location Leaks

Location leaks sensitive information, 
e.g., religious view, health status

Attacks based on locations:

'God View': Uber Allegedly Stalked Users
“Uber treated guests to Creepy Stalker View, showing them 
the whereabouts and movements of 30 Uber users in New 
York in real time.”

Introduction
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Related work

Anonymity based (e.g., cloaking)
• Pseudonymity [Pfitzmann et al. 2010]
• K-anonymity/Cloaking [Sweeney’02]

Encryption-Based
• Private information retrieval [Ghinita et al. SIGMOD 2008]
• Space transformation [Khoshgozaran & Shahabi SSTD 2007]

Perturbation (e.g., differential privacy)
• Geo-indistinguishability [Andrés et al CCS 2013]
• δ-location set-based differential privacy [Xiao & Xiong CCS 2015]

Location Privacy

Apple and Google adapted differential privacy to discover 
usage patterns from a large number of users

• Google Chrome web browser [1]

• Apple QuickType/Emoji [2] suggestions.

[1] Erlingsson et. al. Rappor: Randomized aggregatable privacy-preserving 
ordinal response. ACM SIGSAC 2014.
[2] Learning with Privacy at Scale. 
https://machinelearning.apple.com/2017/12/06/learning-with-privacy-at-scale.html
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Privacy-Preserving Task Assignment
Papers Privacy Techniques Protection Trusted Server

Cloak Encrypt Perturb Worker Task Yes No
[Pournajaf et al. 2014] x x x
[Sun et al. 2017] x x x
[Pham et al. 2017] x x x x
[Hu et al. 2015] x x x
[Shen et al. 2016] x x x
[Liu et al. 2017] x x x x
[To et al. 2014] x x x
[Gong et al. 2015] x x x
[Zhang et al. 2015] x x x
[To et al. 2016] x x x

Related work

Existing work that use perturbation technique protect worker location only and 
assume trusted server L

L
L
L
L

L
L
L
L
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Notations

Task 𝑡 is reachable from worker 𝑤 if 𝑑 𝑤, 𝑡 ≤ 𝑅'

𝑤
𝑡

𝑅'
𝑑 𝑤, 𝑡𝑅' Reachable distance 

of worker 𝑤

Notation Description

𝑑(𝑤, 𝑡) Euclidean distance 
between 𝑤 and 𝑡

𝑤*, 𝑡′ Perturbed locations

𝑤, 𝑡 Actual locations of a 
worker, a task

Background

d can be non-Euclidean & Rw can be complex shapes like polygon



10

Online Task Assignment

Worker set is known, each task arrives one-by-one

[*] Karp et al. An optimal algorithm for on-line 
bipartite matching, STC’90

𝑤/

𝑤0

𝑤1

𝑡/𝑡0

𝑡0

𝑤/

𝑤1

𝑤0

𝑡1
𝑡1

Assign as many tasks as possible to workers
Ranking algorithm[*] is optimal, competitive ratio 0.63
• Permutes workers and assigns a random rank to them
• Each task is matched to a reachable worker of the highest rank

𝑡/

Background

Pick w1 at random

w1 is no longer not available
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(𝜖, 𝑟) Geo-indistinguishability[*]

The goal: An adversary cannot distinguish locations 
which are at most r distance away
Approach: Any two locations at distance at most 𝑟
produce “similar” observations (bounded by 𝜖), 

[*] Andrés et al. Geo-indistinguishability: differential 
privacy for location-based systems, CCS’13

Background

More formally:
Mechanism 𝐴 satisfies (𝜖, 𝑟)-Geo-I iff for all 𝑥, 𝑦 such that 
𝑑 𝑥, 𝑦 ≤ 𝑟:

𝑑7 𝐴 𝑥 , 𝐴 𝑦 ≤ 𝜖𝑑 𝑥, 𝑦 ≤ 𝜖𝑟
•𝑑 𝑥, 𝑦 : Euclidean distance between 𝑥, 𝑦
•𝑑7(,): multiplicative distance between two distributions
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(𝜖, 𝑟) Geo-indistinguishability[*]

𝝐= log 6
𝑟=1 km

Better privacy: 𝝐= log 2
𝑟=1 km

achieve privacy by injecting planar Laplace noise

[*] Andrés et al. Geo-indistinguishability: differential 
privacy for location-based systems, CCS’13

Background

True locations

Perturbed locations

it is sufficient to achieve (𝜖, 𝑟)-Geo-I by generating random point 
z (from actual point x ∈ X) according to planar Laplace distribution.

𝑟 (in meters) is the radius within which privacy is guaranteed
𝜖 tunes how much privacy, smaller 𝜖 means higher privacy
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Challenges with Perturbed Locations
Reachable worker-task pair is observed as unreachable, 
and vice versa

Ground truthThey add noises locally to protect their true locations

Alice

Bob Carol

Alice is not assigned to Bob (not reachable) L
Alice’s location is disclosed to Carol unnecessarily L

Background
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Three-Phase Framework

Alice          requests           for a ride

Finds the most likely reachable driver: Bob
Alice does not know any driver’s location (works in perturbed 
space for drivers but knows her own location)

Reveals her location to Bob

Bob        checks if Alice        is reachable
Reachable à accepts (happy case)
Not reachable à rejects

Finds candidate drivers for Alice: Bob        Carol         Dave
Server does not know anyone’s location (works in perturbed space 
for both riders and drivers)

Sends perturbed locations of drivers to Alice

Proposed Approach

Repeat until either task is assigned
or no candidate worker left

System Overhead

Location Disclosure
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Baseline Approach

“Oblivious” algorithm
• assumes perturbed locations as actual ones
• Direct adaptation of Ranking algorithm[*] to our framework

• Consider both random rank and distance-based rank
Core idea:

• to use underlying distributions of noisy locations to 
estimate real locations

[*] Karp et al. An optimal algorithm for on-line 
bipartite matching, STC’90

System Overhead: size of the worker candidate set, captures 
communication and computational overhead
Location Disclosure (false hit): privacy leak occurs when Alice estimates 
an unreachable worker as reachable & reveals her location
Utility: number of assigned tasks
Worker Travel Cost: captures travel cost or assignment quality

Proposed Approach
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Worker-Task Reachability
Compute the reachability probability of a worker-task 
pair given their observed distance

: Pr 𝑑 𝑤, 𝑡 ≤ 𝑅' 𝑑(𝑤′, 𝑡′))
: Pr 𝑑 𝑤, 𝑡 ≤ 𝑅' 𝑑(𝑤′, 𝑡))

I. Analytical approach, based on estimating the 
reachability probability

• Derive PDF of 𝑑 𝑤, 𝑡 , given 𝑤′, 𝑡′
Subsequently, the reachability probability can be computed efficiently

• Planar Laplace distribution is difficult to analyze so we 
approximate it by bivariate normal distribution (BND)

II. Empirical approach, based on synthetic or historical 
data

Proposed Approach



18

Bivariate Normal Distribution (BND)

(𝜖, 𝑟)-Geo-Indistinguishability uses planar 
Laplace distribution (PLD) to inject noise
• PLD is difficult to analyze

Approximate PLD by a circular BND with same 

mean (𝑤B, 𝑤C) & covariance matrix 
1DE

FE 1DE

FE

• BND is made up of two random variables 𝑥 and 𝑦; 
both normally distributed

• PLD is symmetric to its center à approximated BND 
should be symmetric to the same center

𝑤′ is known à 𝑤 follows circular BND 
centering at 𝑤′:   circular 𝐵𝑁𝐷(𝑤′, Σ)

[*] Andrés et al. Geo-indistinguishability: differential 
privacy for location-based systems, CCS’13

𝑤

𝑤′

Proposed Approach
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Wikipedia

derives PDF of 𝑑 𝑤, 𝑡
Given true location of Alice 𝑡 and perturbed 
location of Bob       𝑤′

estimates PDF of 𝑑 𝑤, 𝑡

𝑑
𝑤
, 𝑡

𝑦

𝑥

Rice dist.

𝑑(𝑤 *, 𝑡)
Observed

[*] Stüber. Principles of mobile communicadon, 
volume 2. Springer, 2001

𝑤′

𝑡

𝑤

𝑑 𝑤, 𝑡 follows 𝑅𝑖𝑐𝑒(𝜈, 𝜎)
distribution[*]

• 𝜈 = 𝑑(𝑤*, 𝑡): scale 
parameter

• 𝜎 = 2 DF: standard deviation 
of circular 𝐵𝑁𝐷

How         estimates PDF of d w, t can be found in the paper

Proposed Approach

In the 2D plane, pick a fixed 
point at distance ν from the 
origin. Generate a distribution 
of 2D points centered around 
that point, where the x and y 
coordinates are chosen 
independently from a gaussian 
distribution with standard 
deviation σ (blue region). If R is 
the distance from these points 
to the origin, then R has a Rice 
distribution.   

Rice distribu8on is 
the magnitude of a 
circular BND with a 
non-zero mean

https://en.wikipedia.org/wiki/Gaussian_distribution
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Probability-based Solution

finds candidate drivers 𝑁U based on reachability 
threshold 𝛼

𝑁U= 𝑤W ∶ Pr 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑤′W, 𝑡′U) ≥ 𝛼
The smaller α, the higher the overhead, but less chance of missing 
a reachable worker

reveals her location to highly likely reachable drivers
𝑅𝑎𝑛𝑘'` = Pr(𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑤′W, 𝑡U))

Heuristic:
can reduces disclosure of her location based on 
reachability threshold 𝛽 (𝛽 > 𝛼)
e.g., if 𝑅𝑎𝑛𝑘'` < 𝛽, cancel this task 

Proposed Approach

The key idea is to use the probabilistic model (either the analytical or the empirical 
approach), for quantifying reachability between a worker and a task.
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• GPS-equipped taxis dataset [1]

– Workers’ locations are the most recent drop-off locations
– Tasks’ locations at the pick-up locations
– 500 tasks and 500 workers were randomly sampled

• Performance metrics
– Utility: number of assigned tasks
– Worker Travel Cost: captures travel cost or assignment quality
– System Overhead: size of the worker candidate set, captures 

communication and computational overhead
– Location Disclosure (false hit): privacy leak occurs when requester 

estimates an unreachable worker as reachable

#Passengers #Drivers Area

T-Drive 100,000+ 9,019 Beijing City

Experimental Evaluation

[1] Yuan et al. T-drive: driving directions based on taxi 
trajectories. SIGSPATIAL 2010

Evaluation
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Utility

#Assigned 
tasks

GroundTruth Has access to exact locations (distance-based rank)

Oblivious Assumes perturbed locations as actual ones (distance-based rank)

Probabilistic Estimates worker-task reachability (probability-based rank)

0

100

200

300

400

𝝐=0.1 𝝐=0.4 𝝐=0.7 𝝐=1

GroundTruth-RN
Oblivious-RN
Probabilistic-Model

Probabilistic obtains much higher
utility than Oblivious (by 300%)

Utility and Travel Cost

Travel cost 
(meters)

0

500

1000

1500

𝝐=0.1 𝝐=0.4 𝝐=0.7 𝝐=1

GroundTruth-RN
Oblivious-RN
Probabilistic-Model

Probabilistic obtains significantly lower
travel cost than Oblivious (by 30%)

Evaluation
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System Overhead and Privacy Leak

#false hits (disclosure)

0

500

1000

1500

𝝐=0.1 𝝐=0.4 𝝐=0.7 𝝐=1

Oblivious-NN

Probabilistic-Model

0

200

400

600

𝝐=0.1 𝝐=0.4 𝝐=0.7 𝝐=1

Oblivious-NN

Probabilistic-Model

#workers (overhead)

Although the overhead of Probabilistic is slightly higher than Oblivious’s, 
Probabilistic has much smaller false hits
Average #false hits before a task can be assigned: 23 workers vs 1.05 workers

Oblivious Assumes perturbed locations as actual ones (distance-based rank)

Probabilistic Estimates worker-task reachability (probability-based rank)

Evaluation
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Conclusions and Future Work
• Protected locations of both workers and tasks

– Introduced privacy-aware framework with untrusted server
– Proposed models for quantifying worker-task pair reachability
– Proposed algorithms, heuristics for effective online tasking

• Confirmed the cost of privacy is practical
– Low cost and low overhead without compromising utility

• Future directions
– Consider malicious adversaries: requesters send fake tasks to estimate 

workers’ locations, server colludes with workers (driverless cars)
– Consider protection for dynamic workers and task: workers’ traces and 

task locations of individual requesters can follow a specific pattern
– Consider tasks that may require redundant assignment: taking pictures 

of a particular location, reporting how crowded a restaurant is
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Motivation: Geo-social Privacy

Prior Work: Inferring Social Behaviors

Current Efforts: Protecting against social inferences
• But allow location disclosure

Open Problem: Protecting against location disclosure
• But allow social inferences

Outline
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Motivation

Location Data is necessary for service but social connectivity is sensitive.

Enable LBS to provide recommendation, advertisement, and other services.

Motivation
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Motivation: Geo-social Privacy

Prior Work: Inferring Social Behaviors

Current Efforts: Protecting against social inferences
• But allow location disclosure

Open Problem: Protecting against location disclosure
• But allow social inferences

Outline
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Privacy Twist

Inferring Social 
Relationships
• Marketing

• Recommendation

Inferring Social 
Relationships

• Privacy attack

walk2friends: Inferring Social Links from Mobility Profiles 
[CCS, Nov ‘17] Backes M, Humbert M, Pang J, Zhang Y.
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• Can we do better in very dense datasets ?

• Feature learning method – Unsupervised 
– As opposed to EBM’s supervised linear regression.
– Claims to exploit followship in addition to EBM’s co-occurrence

• Inspired by Deep Learning in NLP – word2vec
– Skip-gram Model 

(Tomas Mikolov et. al., at Google Research, 2013 )

walk2friends: Inferring Social Links from Mobility Profiles 
[CCS, Nov ‘17] Backes M, Humbert M, Pang J, Zhang Y.
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Goal: Given a specific word in a sentence, tell us the probability for every word in 
our vocabulary of being the “nearby word” to the one we chose.

Corpus 
training (NN)

A glance at the Skip-Gram Model

Discard Output Layer!
Keep weights of Hidden Layer

i.e. word to vector! 
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Input                       User’s mobility neighbors           Mobility Feature Vector         Social Strength 

ü Captures frequented locations.

ü Performs~10-15% percent better than EBM on relatively dense datasets.

ü Captures indirect neighbors.

û 3-5% worse on sparse datasets.

walk2friends: Extending to locations based networks.

If two nodes share similar neighbors, 
then their vectors will be similar.

Use vector 
similarity metrics.

Similar to corpus sentences 
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Motivation: Geo-social Privacy

Prior Work: Inferring Social Behaviors

Current Efforts: Protecting against social inferences
• But allow location disclosure

Open Problem: Protecting against location disclosure
• But allow social inferences

Outline
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1. NSA PRISM (began 2007): 
Mass surveillance of location data
from Google, FB, Microsoft.

2. NSA’s Co-Traveler program (exposed 2013):
Identifies unknown associates of a 
known target. 

3. Domestic prosecution facilitated by co-location information as 
evidence of wrongdoing. [United States v. Jones, 132 S.Ct. 945 (2012)]

[Source: Washington 
Post]

Co-Location Privacy Risks



11/2/19 45
45

We quantify ‘roughly’ based on 
parameters Δsand Δt .

In running example,

Δsand Δt are application specific.

Co-Location: Two people at roughly the same geographic locale at 
roughly the same time. 

Target Co-locations
The building blocks for social inference techniques.
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System Model

𝑐fW : 𝑖th check-in of user 𝑢 𝑀𝐴𝑋j,MAXn : normalizing constants. 𝛼 ∶weighting factor

Spatial Displacement Temporal Distortion

Perturbed location co-ordinate Perturbed timestamp

Service Quality Loss

1. Obtains the published noisy data
2. Assume the privacy mechanism is 

known
3. Background knowledge:
• The mobility patterns of users. (e.g. 

frequented locations)
• The co-location patterns of users. 

(e.g. frequented co-locating 
partners)

Execute Bayesian Inference to 
reconstruct as accurate as possible 
representation of the original co-
locations.
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Method: 1. For every co-location.
2. Translate coordinates with 2d-gaussian 

noise.
3. Translate timestamp with 1d-gaussian 

noise

Popular method in statistical data privacy and location privacy.

Krumm, [PerCom’07] 

Method 1: Gaussian Perturbation (Naïve)
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𝑆𝑇qWjr = 0.1 = (100𝑚,40𝑚𝑖𝑛)

1. Skewed nature of the distribution of the closest neighbor: 
many have NN very close, and some have NN very far.

Shortcomings of Gaussian Perturbation

2.    Any fixed magnitude of noise will leave co-locations with
• Low Privacy: Under-protected in sparse areas 
• Low Utility: Over-protected In dense areas inhibiting quality of LBSs. 

Excessive 
distortion.

Insufficient Protection.
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Method: 1. For every check-in in a co-location pair
2. Chose a point 𝑝 uniformly over the set of 

(i) the 𝑘 nearest neighbors, 
(ii) together with the current location.

3. Move to 𝑝.

Use the presence of spatio-temporal nearest neighbors as an estimate for density.

Method 2: Adaptive Perturbation

*𝑆𝑇qWjr(𝑐, 𝑐’) =	sum	of	normalized	spatial	and	temporal	distances
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08:00 AM

01:30 PM

Method: For every co-location pair
Move an ”h”	number	of closest check-ins to form a group.

Method 3: Co-Location Masking
Definition: A co-location is 𝑏-masked if it is spatio-temporally                

indistinguishable to 𝑏 − 1 other co-locations.

E.g. Co-location component is 2-masked

The co-Location between 
Alice-Bob is now 3-masked.

On seeing any co-location the adversary 
can only tell it’s truthfulness with a 

chance of 3/6 (𝑖. 𝑒. 1/𝑏).
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Gaussian Perturbation exposes a 
significant portion of the population 
to highly accurate inferences.

Attack Accuracy on Privacy Mechanisms

Dense
Sparse Adaptive Perturbation and Masking provide consistent 

protection (i.e. with low variance) against an adversary.

Over-protect dense 
at the  expense of
those in sparse.

Increasing level of distortion.

G
P

A
P

Maskin
g

Masking guarantees privacy according to definition.
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vGaussian offers better average privacy but completely exposes those in sparse areas.

Analysis of Quality Loss

Sudden bursts in noise due to pairwise nature of co-locations.

At a fixed Quality loss, 
Adaptive and Masking 
perform similarly.

vCo-location masking offers limited flexibility in calibrating noise.

Hi
gh

 P
riv

ac
y

Lo
w

 
Pr

iv
ac

y 
   

   
   

   
   

   

vLocation privacy methods such as 𝜖−𝐺𝑒𝑜𝐼𝑛𝑑 obliterate data utility.
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Impact on Range Queries

vAdaptive Perturbation distorts to the NNs, hence is ideal for location-based advertising. 

At a given level of total 
displacement, 
adaptive performs 
best.

Spatial range queries emulate real-world 
workload.
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Evaluation of Friendship Discovery

Area Under the ROC 
Curve (AUC) ranges 
from [0.5, 1], where 
0.5 is equivalent to 
random guessing, and 
1 is perfect guessing. 

the original graph G

obfuscated to G ‘
reconstructed graph RG

GeoInd is not effective 
in protecting against 
friendship discovery 
due to spatial-only 
noise.

Masking leaves the underlying co-
locations unperturbed. In 
longitudinal dataset, repeat co-
location exposures reveal the 
friendship correlation.

W2f is less affected due to
the random-walk processin
building mobility features 
being more resilient to the 
nature of AP.
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Motivation: Geo-social Privacy

Prior Work: Inferring Social Behaviors

Current Efforts: Protecting against social inferences
• But allow location disclosure

Open Problem: Protecting against location disclosure
• But allow social inferences

Outline



11/2/19 56
56

Two Sides of the Coin

Protecting against 
social inferences
* But allow for LBS

Protecting against 
location disclosure
* But allow for 
Social Inference
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Criminology  
identify the new or unknown members of a criminal gang or a terrorist cell

Epidemiology 
spread of diseases through human contacts

Policy 
induce local influence in electing a tribal representative

Privacy-Preserving Social Inferecne
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Backup
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1. How to quantify the protection against social inferences?  

2. A privacy mechanism may result in 
insufficient protection 

OR
over-protection

at the cost of utility if only social inferences need to be protected.

3. How to account for the background knowledge of a potential adversary ?

Challenges
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Modelling the Adversary

1. After the adversary obtains the published noisy data.
2. Assume the privacy mechanism is known to the adversary. 

3. Supply the adversary with background knowledge on
• The mobility patterns of users. (e.g. frequented locations)
• The co-location patterns of users. (e.g. frequented co-locating 

partners)

4. Execute Bayesian Inference to reconstruct as accurate as possible 
representation of the original graph and co-locations.

Objective: A conservative estimate of co-location privacy of users after adding noise.

(Posterior)

(Prior)

(Evidence)
(Evidence)

The inferred posterior may still not 
be the true co-location 
distribution.
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Inference Attack
1. Disciplined in the Bayesian technique of reasoning about privacy.

i. Obtain the posterior distribution over all possible co-locations of a user’s check-in.
ii. Move the check-in to its most probable co-location.

2. Privacy is defined as the error in the adversary’s inference attack.

3. Utility of the privacy mechanism = the total noise added to the original data.
For a single check-in :

𝐶𝐿: Original set of co-locations. 𝑅𝐶𝐿: Reconstructed set of co-locations.

𝑐fW : 𝑖th check-in of user 𝑢 𝑀𝐴𝑋j,MAXn : normalizing constants. 𝛼 ∶weighting factor

Spatial Displacement Temporal Distortion

Perturbed location co-ordinate Perturbed timestamp

Service Quality Loss
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