

Mobility Behavior Representation & Clustering

Cyrus Shahabi, Ph.D. Helen N. and Emmett H. Jones Professor of Engineering Professor of Computer Science, Electrical & Computer Engineering, and Spatial Sciences Director, Integrated Media Systems Center (IMSC) Viterbi School of Engineering University of Southern California Los Angeles, CA 90089-0781 shahabi@usc.edu

OUTLINE

- Mobility Behavior Clustering
 - DETECT
 - VAMBC
- Synthetic Trajectory Generation
 - CSGAN
 - MPGAIL

Motivation

Mobility behavior: the travel activity that describes a user's movements, e.g., work commute, shopping, school commute, dining

Recommendations

Ads targeting

Insurance

Threats Detection

School of Engineering Integrated Media Systems Center

Idea: Trajectory Data \rightarrow Mobility Behavior

Trajectories

School of Engineering Integrated Media Systems Center 4

Idea: Trajectory Data \rightarrow Mobility Behavior

iterhi

School of Engineering

Integrated Media Systems Center

Trajectory Clustering Techniques

- Raw spatio temporal features [AIR'17]
- Sequence distance measurement
 - O Dynamic Time Warping (DTW), Longest Common SubSequence
 (LCSS), Symmetrized Segment-Path Distance (SSPD)[ITS'16]
- Clustering based on the distances

o kMeans-DBA[ICDM'14], DBSCAN[CVPR'09], Hierarchical Clustering

Challenge: Multi-scale Trajectories

School of Engineering

Integrated Media Systems Center

 Different temporal and spatial scales may represent the same mobility behavior

- 50 minutes work commute:
 - 14 miles, 44 miles, 8 miles
- 14 miles work commute
 - 20 min, 50 min, 1.5 hour

Pre-defined similarity vs. data-driven

Integrated Media Systems Center

Intuition

From trajectories to sequences of contexts

OUTLINE

- Mobility Behavior Clustering
 - DETECT
 - VAMBC
- Synthetic Trajectory Generation
 - CSGAN
 - MPGAIL

OUTLINE

- Approach: DETECT
 - Convert trajectories to sequences of contexts
 - Compact fixed-size representation with RNN
 - Clustering with RNN
- Experiments

School of Engineering Integrated Media Systems Center

All-scale: Stay Point Extraction

Stay points [SIGSPATIAL'08] are representative points that:

- 1. the user travels within a range of space
- 2. the user stays in this range for some time

All-scale: Stay Point Extraction

Stay points [SIGSPATIAL'08] are representative points that:

- 1. the user travels within a range of space
- 2. the user stays in this range for some time

All-scale: Stay Point Extraction

Stay points [SIGSPATIAL'08] are representative points that:

- 1. the user travels within a range of space
- 2. the user stays in this range for some time

Context-aware: Geographical Augmentation

For each extracted stay point $\dot{s}^{(t)}$:

- 1. create a spatial buffer $b(r_{poi}, \dot{s}^{(t)})$
- 2. Search a gazetteer for POI's in the buffer
- 3. count POIs in the buffer
- 4. generate a normalized vector $x^{(t)} = \{0.3, 0.09, ...0.55\}$

Normalized number of POI categories, e.g. business area

USCViterb

School of Engineering Integrated Media Systems Center

OUTLINE

- Approach: DETECT
 - Convert trajectories to sequences of contexts
 - Compact fixed-size representation with RNN
 - Clustering with RNN
- Experiments

Sequence Dynamics: RNN-AE + Clustering

19

Phase I: RNN Autoencoder

Intuition: Last hidden states of RNN \rightarrow Sequence dynamics

Integrated Media Systems Center

Phase II: Refine for clean clusters

Non-discriminative

Discriminative

Phase II: Cluster layer

Auxiliary Distribution P(q): hardened probability, trust high-confidence points

$$q_{ij} = rac{(1+||z_i-\mu_j||^2)^{-1}}{\sum_{j'} (1+||z_i-\mu_{j'}||^2)^{-1}}$$

School of Engineering

Integrated Media Systems Center

$$p_{ij} = rac{q_{ij}^2/\sum_{i'} q_{i'j}}{\sum_{j'} (q_{ij'}^2/\sum_{i'} q_{i'j'})}$$

Phase II: Unsupervised optimization

Repeat:

- 1. Update z (encoder) and μ based on loss: $\ell = KL(P||Q) = \sum_i \sum_j p_{ij} \log \frac{p_{ij}}{q_{ij}}$
- 1. After a few batches, update Q and P. Stop if the assignment converges.

OUTLINE

- Approach: DETECT
 - Convert trajectories to sequences of contexts
 - Compact fixed-size representation with RNN
 - Clustering with RNN
- Experiments

Experimental settings

- Dataset: GeoLife
 - 17,621 trajectories (601 labeled).
 - 6 labels: "dining activities", "working commutes", etc.
 - 14,000 POIs in Beijing
- Evaluation Metrics
 - With label: Rand Index (RI), Mutual Information (MI), Purity Fowlkes-Mallows Index (FMI)
 - Without label: Silhouette Score, Dunn index, Within-like Criterion, Between-like Criterion

With-label: quantitative results

Distance	Clustering	Method	RI	МІ	Purity	FMI
		KM-DBA	0.33	0.64	0.58	0.58
DTW	K-Means	DB-LCSS	0.22	0.55	0.51	0.56
		RNN-AE	0.39	0.46	0.56	0.53
LCSS	+ DBSCAN	SSPD-HCA	0.52	0.93	0.66	0.67
		KM-DBA*	0.51	0.91	0.74	0.63
SSPD	Hierarchical clustering	DB-LCSS*	0.5	0.95	0.64	0.66
		DETECT Phase I	0.65	1.06	0.84	0.73
		DETECT	0.76	1.26	0.89	0.81

Integrated Media Systems Center

With-label: quantitative results

	Method	RI	MI	Purity	FMI
	KM-DBA	0.33	0.64	0.58	0.58
	DB-LCSS	0.22	0.55	0.51	0.56
Raw trajectories	RNN-AE	0.39	0.46	0.56	0.53
,	SSPD-HCA	0.52	0.93	0.66	0.67
	KM-DBA*	0.51	0.91	0.74	0.63
Augmented trajectories	DB-LCSS*	0.5	0.95	0.64	0.66
	DETECT Phase I	0.65	1.06	0.84	0.73
	DETECT	0.76	1.26	0.89	0.81

Code

With-label: qualitative results

Ground Truth

Our Results

Note: Different colors indicate different clusters.

Integrated Media Systems Center

With-label: qualitative results

Embedding after Phase I

Embedding after Phase II

Without-label: qualitative results

Embedding of full dataset

Recreation Activities

Integrated Media Systems Center

OUTLINE

- Mobility Behavior Clustering
 - DETECT
 - VAMBC
- Synthetic Trajectory Generation
 - CSGAN
 - MPGAIL

Shortcoming: Separate Embedding from Clustering

Two-phase: sub-optimal since the first phase is not aware of clustering.

Solution: A single phase

Assume the pre-existence of clusters in the latent space and

jointly learn the hidden representation for reconstruction and

VAE: Variational AutoEncoders

VAE-based (1 phase) for images VaDE [IJCAI 17], GMVAE [ArXiv 16], JointVAE [NIPS 18]

 $y \sim Cat(1/K), z \sim \mathcal{N}(\mu_y, \sigma_y^2 I)$ $x \sim \mathcal{N}(\mu_x(z), \sigma_x^2(z)I)$

y: discrete(onehot) variable indicating cluster

z: continuous variable denoting embedding

x: input context sequences

x': reconstructed context sequences

USCViterbi

School of Engineering Integrated Media Systems Center The hidden space z will be restricted by a cluster variable y which try to regularize the hidden space to be a mixture of gaussian

Challenge: Sensitive Training of Clustering

Two-phase: sensitive since the first phase is not aware of clustering.

One-phase: produce trivial solutions as the model could ignore the

cluster involvement.

Embedding + Clustering

Challenge: Sensitive Training of Clustering

Two-phase: sensitive since the first phase is not aware of clustering.

One-phase: produce trivial solutions as the model could ignore the

cluster involvement.

Embedding + Clustering

VAMBC: A Variational Approach for Mobility Behavior Clustering

Context Sequences

$$L = L_{NE} + L_{KL} + L_{recor} + L_{center}$$

L_{center}: Center loss

- Force z^c meaningful
- More involvement of y

$$L_{center} = ||x - x^c||_2^2$$

VAMBC Architecture

Experiment: setting

• Dataset:

- O GeoLife trajectories and POI data
- o DMCL trajectories and POI data

• Baselines:

- Classical TS: KM-DTW, KM-GAK, kShape, DB-LCSS
- Autoencoder-based: DTC, DETECT, IDEC*, DCN*
- VAE-based: VaDE*, GMVAE*, JointVAE*
- Discrete Sequence Clustering: SGT, MHMM

- Metrics:
- NMI: Normalized Mutual Information
- ARI: Adjusted Rand Index
- Accuracy

Experiment: result

Method	NMI (aver)	NMI	NMI	ARI(aver)	ARI	ARI	ACC(aver)	ACC	ACC
		(best)	(worst)	(best)	(worst)	(best)	(worst)
KM-DTW	$0.610{\pm}0.021$	0.645	0.579	$0.635 {\pm} 0.019$	0.656	0.617	$0.742{\pm}0.031$	0.763	0.655
KM-GAK	$0.591{\pm}0.057$	0.657	0.507	$0.505 {\pm} 0.076$	0.573	0.392	$0.737 {\pm} 0.033$	0.770	0.688
K-Shape	$0.229 {\pm} 0.033$	0.272	0.174	$0.220{\pm}0.046$	0.271	0.102	$0.522 {\pm} 0.015$	0.551	0.495
DB-LCSS	0.547	0.547	0.547	0.412	0.412	0.412	0.697	0.697	0.697
SGT	$0.419{\pm}0.024$	0.454	0.371	$0.216{\pm}0.036$	0.277	0.149	$0.628 {\pm} 0.029$	0.694	0.579
MHMM	$0.530{\pm}0.047$	0.611	0.486	$0.403 {\pm} 0.057$	0.495	0.344	$0.627 {\pm} 0.017$	0.649	0.607
IDEC*	$0.605 {\pm} 0.035$	0.673	0.572	$0.465 {\pm} 0.097$	0.664	0.404	$0.67 {\pm} 0.08$	0.819	0.596
DCN^*	$0.646 {\pm} 0.051$	0.725	0.594	$0.635 {\pm} 0.065$	0.693	0.503	$0.782{\pm}0.061$	0.840	0.624
DTC	$0.500 {\pm} 0.027$	0.550	0.474	$0.483 {\pm} 0.028$	0.512	0.451	$0.682 {\pm} 0.032$	0.737	0.655
DETECT	$0.644 {\pm} 0.037$	0.691	0.589	$0.646 {\pm} 0.044$	0.688	0.582	$0.8 {\pm} 0.013$	0.822	0.780
GMVAE*	$0.132 {\pm} 0.267$	0.501	0.250	$0.098 {\pm} 0.128$	0.351	0.000	$0.411 {\pm} 0.079$	0.551	0.346
VaDE*	$0.631 {\pm} 0.053$	0.669	0.502	$0.603 {\pm} 0.078$	0.658	0.440	$0.783 {\pm} 0.037$	0.822	0.720
JointVAE*	$0.459{\pm}0.056$	0.556	0.408	$0.227{\pm}0.123$	0.442	0.161	$0.519 {\pm} 0.062$	0.597	0.473
VAMBC	$0.697{\pm}0.015$	0.699	0.692	$\boldsymbol{0.7{\pm}0.019}$	0.719	0.682	$0.825{\pm}0.01$	0.842	0.810

School of Engineering Integrated Media Systems Center

Conclusion

- Proposed a novel variational model VAMBC that clusters the context sequences in a single phase
- The VAMBC model decomposes the hidden embedding into individualized embedding and cluster embedding with a novel design.
- The VAMBC model achieves significantly better robustness and improved accuracy than existing approaches.

OUTLINE

- Mobility Behavior Clustering
 - DETECT
 - VAMBC
- Synthetic Trajectory Generation
 - CSGAN
 - MPGAIL

Real Data

Generated Data

- Scale-up: The input set is small and we need more realistic trajectories for the downstream task or when
- **Privacy preservation:** The privacy of the input set must be preserved
- **Diversification:** To generate trajectories for one geographical area (e.g., city, neighborhood) from the training set of trajectories belonging to a different geographical area

Background

Computational algorithms

- Moving-object generators (e.g., Brinkhoff)
 - Travel surveys and Handcraft-rules
- Micro agent simulators
 - Lots of parameter setting

Limitation: Require human labor and domain knowledge to convert realworld data into the parameters/rules of the closed (artificial) environment.

Data-Driven algorithms

• Learn directly from the Real data distribution

Discretize

Latitude, longitude, timestamp

Mobility Trajectory

8:00, 8:05, 8:10, 8:15, 8:20...

• Discrete Trajectory in space and time

Integrated Media Systems Center

Generative AI Idea

Model human movements as state transitions and formulate trajectory generations as a decision-making process Follow a generator-discriminator structure to learn the underlying mechanism (e.g., policy) behind the state transitions.

Background: Seq Generative Adversarial Network

USCViterbi

School of Engineering Integrated Media Systems Center L. Yu, W. Zhang, J. Wang, and Y. Yu, "Seqgan: Sequence generative adversarial nets with policy gradient," in Proceedings of the AAAI conference on artificial intelligence, vol. 31, no. 1, 2017.

Related Work

	Ş	Ŷ	
-	È	ġ	7

	Name	Methods	Dataset
Non Deep Learning Model	TimeGeo [PNAS16]	Statistics modeling	CDR(Boston)
DNN Methods	TrajGAN [IJCAI18]	GAN	Nokia Lausanne location
	MoveSim [KDD 20]	GAN	GeoLife (Beijing)
	TrajGAIL [ICDM20]	GAIL	Taxi data (Shenzhen)
	DeltaGAN [ICLR 21]	GAN	GeoLife (Beijing)
	NEXTGAIL [SIGSPATIAL21]	GAIL	Taxi data (Shenzhen)
	ActSTD [KDD 21]	GAIL	Mobile Network (Beijing) Foursquare
	FVAE [SIGSPATIAL22]	VAE	Taxi data (Porto) Gowalla

USC Viterbi School of Engineering Integrated Media Systems Co

Limitations: Cannot control the generation process to generate trajectories with specific semantics (e.g., different modality / moving behavior)

. . . .

53

Our Main Hypothesis

While common mobility regularity and transition patterns are shared across transportation modalities and moving behaviors, there are also modality/behavior-specific characteristics and patterns.

E.g., different speeds, distances traveled, number of distinct visits, and transition patterns (e.g., transitions on walkways vs. bikeways vs. roads).

By including modality/behavior, the generated trajectories will be

Diverse and representative of different modalities Realistic, corresponding to the real-world modalities

School of Engineering Integrated Media Systems Center

OUTLINE

- Mobility Behavior Clustering
 - DETECT
 - VAMBC
- Synthetic Trajectory Generation
 - CSGAN
 - MPGAIL

CSGAN:

School of Engineering

Integrated Media Systems Center

Clustering-based Sequence Generative Adversarial Network

- Classify the trajectory into k + 1 classes
- Rewards of the generator is the summation of any real modalities

 $R_D(\hat{Y}) = \sum_{c \in C_r} p_D^c(\hat{Y})$

M. Zhang, H. Lin, S. Takagi, Y. Cao, C. Shahabi, L. Xiong: CSGAN: Modality-Aware Trajectory Generation via Clustering-based Sequence GAN. MDM 2023: 148-157

Datasets

PeopleFlow has more diverse speeds due to mix-modalities

• <u>GeoLife</u>

- Collected by Microsoft Research Asia from 182 users
- <u>PeopleFlow</u>
 - Tokyo Metropolitan Area
 - Transportation mode for each visit is available

Characteristics	GeoLife	PeopleFlow
Number of Trajectories	2756	6183
Period	1 year (2008)	1 year (2008)
Visit Interval	every 15 minutes	every 15 minutes
Average Speed (km/h)	5.324 ± 5.744	13.592 ± 8.303
Average Accumulated Distance (km)	8.401 ± 9.340	27.662 ± 26.494
Average Distinct Visits	7.713 ± 4.558	7.123 ± 3.895

Evaluation Metrics

Geographical density-based statistics Probability of visiting location r, probability of visiting location r at time t Individual trajectory-level statistics Distance traveled P(d), number of distinct visits P(v)

$$JSD(P_{re}||P_{gen}) = H(\frac{P_{re} + P_{gen}}{2}) - \frac{H(P_{re}) + H(P_{gen})}{2}$$

Jensen-Shannon Divergence (JSD) between the probability distribution of the real trajectories and the generated trajectories for each distribution.

Transition statistics

Probability of transitioning from location r_1 to r_2 Modality level statistics

- PCÓ: The proportion of trajectories within the correct cluster (clustering based on centroids of real trajectories)
- **PC1:** Clustering separately (for both real and generated trajectories) and performing centroid matching and JSD of the two distributions is reported.
- **C:** Given the vector of k centroids from real trajectories and generated trajectories, we compute the minimum total pair-wise distance among all permutations (closest match). The lower the value, the better the generated trajectories preserve the modality representatives.

Frobenius norm of the difference between the two transition matrices

$$||P_r - P_g||_F = \sqrt{\sum_{r_1=1}^Q \sum_{r_2=1}^Q |P_r(r_1, r_2) - P_g(r_1, r_2)|^2}$$

Learning Global Patterns: More realistic trajectories, per traditional metrics

Much better transition (e.g., walking vs driving) More diverse & representative trajectories

TABLE II: Global comparison with baselines on GeoLife and PeopleFlow data with different clustering techniques. The table shows the average statistics of 5 experiments. The best performance is in boldface. The second-best is underlined.

	Geographic	al density-based statistics	Individua	GeoLife I trajectory level statistics	Transition statistics		Modality lev	el statistics
Methods	P(r)	P(r,t)	P(d)	P(v)	P(r, r2)	$\overline{\mathbf{P}(\mathbf{c}_i^0)}$	$P(c_i^1)$	С
SeqGAN-S	0.407	0.478	0.208	0.288	0.100	0.162	0.220	18.682
Cluster-wise SeqGAN-S	0.506	0.562	0.313	0.234	0.032	0.402	0.298	83.441
Movesim-S	0.522	0.579	0.263	0.390	0.116	0.303	0.209	7.934
CSGAN-S	0.319	0.439	0.195	0.258	0.047	0.147	0.058	17.128
				PeopleFlow				
SeqGAN-S	0.378	0.437	0.368	0.275	0.092	0.406	0.167	29.6 <mark>9</mark> 4
Cluster-wise SeqGAN-S	0.344	0.406	0.363	0.317	0.105	0.311	0.194	31.046
Movesim-S	0.344	0.396	0.524	0.602	0.100	0.289	0.151	23.420
CSGAN-S	0.284	0.376	0.218	0.215	0.050	0.146	0.070	13.1.36
Cluster SeaG		nough data per clu	ster to le	arn global mobility	natterns It		_	
Cluster Seyu		nough uata per tru		and global mobility	patterns. It			
		•			•)is criminator's

hence it is more important to learn modality-specific patterns within each cluster.

Discriminator's Spatial & temporal regularities check

School of Engineering Integrated Media Systems Center

TUCTUT

Real (GeoLife)

Density Mensity

CSGAN (PeopleFlow)

The population density --The aggregate density from 6:00 am to 8:00 pm

USCViterbi

School of Engineering Integrated Media Systems Center

OUTLINE

- Mobility Behavior Clustering
 - DETECT
 - VAMBC
- Synthetic Trajectory Generation
 - CSGAN

• MPGAIL

Motivation

Mobility behavior: the travel activity that describes a user's movements, e.g., work commute, shopping, school commute, dining

User Profiling

Recommendations

Ads targeting

Insurance

Mobility Behavior

Threats Detection

School of Engineering Integrated Media Systems Center Mingxuan Yue, Yaguang Li, Haoze Yang, Ritesh Ahuja, Yao-Yi Chiang, Cyrus Shahabi: DETECT: Deep Trajectory Clustering for Mobility-Behavior Analysis. IEEE BigData 2019: 988-997

Context Trajectory

 Discretizing mobility trajectory by grid/time Partition

Context Trajectory

- Augment location with context
 - Decide by the number of Point of Interests (POIs)

- Industry, Commercial Area, Entertainment, Education Services, Utilities, Health Care, Residential Areas, and Others

 Others Similar Moving Behavior has similar context

(a) The Context Type of Each Location Grid in Houston

(b) The Raw Map of Houston

School of Enginee

School of Engineering Integrated Media Systems Center

Preliminaries & Overview

Integrated Media Systems Center

Problem : Given a set of real-world trajectories and their moving behavior labels, how to generate synthetic trajectories while retaining moving behavior properties

- **GAIL** : Generative Adversarial Imitation Learning
- Goal : modeling human agent decision-making process from real-data
 - policy: the underlying strategy to generate the trajectory
 - reward: ways to evaluate the generated trajectory

Preliminaries & Overview

Problem : Given a set of real-world trajectories and their moving behavior labels, how to generate synthetic trajectories while retaining moving behavior properties

- State: the history of the generated trajectory until the last step
- Action: which location to go next
- State transition: update the mobility trajectory with the chosen location
- Policy network: characterizes how to choose the following action, given the moving behavior
- Reward: evaluate the decision of chosen action based on the current state

67

JSC Viterbi School of Engineering

Integrated Media Systems Center

Haowen Lin, Sina Shaham, Yao-Yi Chiang and Cyrus Shahabi Generating Realistic and Representative Trajectories with Mobility Behavior Clustering SIGSPATIAL 2023

Context Trajectory Encoder:

 $p_i^C = Softmax(\phi(W_h^C \times h_i^C + b_h^C), \gamma)$

predict the next context type based on the history with temperature γ Map to each location

 $\lambda_i^C = \Gamma^{\mathsf{T}} \times p_i^C$

As we set the temperature higher, the context has less influence on our final generation

3

Mobility Trajectory Encoder: predict the next location based on the history

Integrated Media Systems Center

69

School of Engineering

Integrated Media Systems Center

Viterbi

School of Engineering

Integrated Media Systems Center

Fusion element wise multiplication

71

a discriminator differentiates real/fake trajectory a classifier evaluates moving behavior pattern

 $r = (1 - v) * r_C + v * r_D$ $\uparrow \qquad \uparrow$

Reward from moving behavior

School of Engineering

Integrated Media Systems Center

Reward from discriminator

Experimental Evaluation

Much better in distance-related metrics due to spatial dynamic enforcer

Much better transition due to context clustering modeling

		Houston				Los Angeles					
	Distance	Radius	Duration	P(r)	$P(r_1,r_2)$	Distance	Radius	Duration	P(r)	$P(r_1,r_2)$	
Markov Model	0.5098	0.5032	0.4428	0.0028	0.3280	0.4086	0.4122	0.4332	0.0046	0.3073	
LSTM	0.4865	0.4050	0.3748	0.0023	0.0881	0.3855	0.3050	0.3830	0.0032	0.1044	
TransVAE	0.4662	0.3942	0.3276	0.0034	0.1537	0.3872	0.3443	0.3539	0.0042	0.1462	
SeqGAN	0.3318	0.2908	0.2160	0.0074	0.1055	0.2948	0.1913	<u>0.1490</u>	0.0025	<u>0.0910</u>	
MoveSim	0.2413	0.2402	0.1520	0.0025	0.0924	0.0922	0.1274	0.1617	0.0021	0.0932	
MBP-GAIL	0.0744	0.1215	0.1311	0.0024	0.0874	0.0667	<u>0.1305</u>	0.1452	0.0023	0.0891	

 For realistic evaluation (utility compared with original trajectory), MBP-GAIL outperforms almost all the JSD metrics evaluation, especially for the distance over the best baseline.

Experimental Evaluation

- RQ2: Can MBP-GAIL preserve the moving behavior patterns in its generation?
- Compare with movesim / seqggan which also knows the moving behavior information
- Clustering on the generated context trajectories
- Closer to the real-world data distribution, the better

MBP-GAIL preserves the mobility trajectory patterns and achieves the lowest gap compared with real-data

Thank you!

75