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OUTLINE
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Motivation

Mobility Behavior

COVID 19 

User Profiling

Recommendations

Ads targeting

Insurance

Threats Detection

Mobility behavior: 

the travel activity that 

describes a user’s 

movements, e.g., work 

commute, shopping, 

school commute, 

dining
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Idea: Trajectory Data →Mobility Behavior

Trajectories Mobility Behavior
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Idea: Trajectory Data →Mobility Behavior

Trajectories Clusters Mobility Behavior
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Idea

Trajectories Clusters Mobility Behavior
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Trajectory Clustering Techniques

● Raw spatio temporal features [AIR’17]

● Sequence distance measurement

○ Dynamic Time Warping (DTW), Longest Common SubSequence

(LCSS), Symmetrized Segment-Path Distance (SSPD)[ITS’16]

● Clustering based on the distances

○ kMeans-DBA[ICDM’14], DBSCAN[CVPR’09], Hierarchical Clustering
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Challenge:  Multi-scale Trajectories

● Different temporal and 

spatial scales may represent 

the same mobility behavior

● 50 minutes work commute:

● 14 miles, 44 miles, 8 miles

● 14 miles work commute

● 20 min, 50 min, 1.5 hour
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Limitations of Traditional Trajectory Clustering 

Prone to scales & noises

No activity context information

Pre-defined similarity vs. data-driven
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From trajectories to sequences of contexts

Intuition
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OUTLINE
● Approach: DETECT

● Convert trajectories to sequences of contexts

● Compact fixed-size representation with RNN

● Clustering with RNN

● Experiments
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Approach

Sequence DynamicsContext-awareAll-scale

DETECT [BigData 19]
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All-scale: Stay Point Extraction

Stay points [SIGSPATIAL’08] are 
representative points that:

1. the user travels within a range 
of space 

2. the user stays in this range for 
some time
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All-scale: Stay Point Extraction

Stay points [SIGSPATIAL’08] are 
representative points that:

1. the user travels within a range 
of space 

2. the user stays in this range for 
some time
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Context-aware: Geographical Augmentation
For each extracted stay point          :

1. create a spatial buffer

2. Search a gazetteer for POI’s in 
the buffer

3. count POIs in the buffer

4. generate a normalized vector

Normalized number of POI categories, 

e.g. business area
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OUTLINE
● Approach: DETECT

● Convert trajectories to sequences of contexts

● Compact fixed-size representation with RNN

● Clustering with RNN

● Experiments



19

Sequence Dynamics: RNN-AE + Clustering

Phase I:

Phase II:
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Phase I: RNN Autoencoder

RNN RNN RNN

Reconstructed Feature

Input feature

Input Output

Trajectory Representation

RNN RNN RNN

Intuition: Last hidden states of RNN → Sequence dynamics 

Encoder Decoder
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Phase II: Refine for clean clusters

Non-discriminative Discriminative

RNN-AE (Phase I）

Reconstruction

Cluster-aware

Clustering layer (Phase II)
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Phase II: Cluster layer

Auxiliary Distribution P(q): hardened 

probability, trust high-confidence points

μ1

μ2



23

Repeat:

1. Update z (encoder) and μ 

based on loss: 

1. After a few batches, update 

Q and P. Stop if the 

assignment converges.

Phase II: Unsupervised optimization

Input feature

Input

Trajectory 
Representation

RNN RNN RNN
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OUTLINE
● Approach: DETECT

● Convert trajectories to sequences of contexts

● Compact fixed-size representation with RNN

● Clustering with RNN

● Experiments
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Experimental settings

● Dataset: GeoLife

○ 17,621 trajectories (601 labeled).
○ 6 labels: “dining activities”, “working commutes”, etc.
○ 14,000 POIs in Beijing

● Evaluation Metrics

○ With label: Rand Index (RI), Mutual Information (MI), Purity 
Fowlkes-Mallows Index (FMI)

○ Without label: Silhouette Score, Dunn index, Within-like 
Criterion, Between-like Criterion
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With-label: quantitative results

Distance Clustering

DTW K-Means

LCSS DBSCAN

SSPD Hierarchical 

clustering

Method RI MI Purity FMI

KM-DBA 0.33 0.64 0.58 0.58

DB-LCSS 0.22 0.55 0.51 0.56

RNN-AE 0.39 0.46 0.56 0.53

SSPD-HCA 0.52 0.93 0.66 0.67

KM-DBA* 0.51 0.91 0.74 0.63

DB-LCSS* 0.5 0.95 0.64 0.66

DETECT Phase I 0.65 1.06 0.84 0.73

DETECT 0.76 1.26 0.89 0.81
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With-label: quantitative results

Raw trajectories

Augmented trajectories

Method RI MI Purity FMI

KM-DBA 0.33 0.64 0.58 0.58

DB-LCSS 0.22 0.55 0.51 0.56

RNN-AE 0.39 0.46 0.56 0.53

SSPD-HCA 0.52 0.93 0.66 0.67

KM-DBA* 0.51 0.91 0.74 0.63

DB-LCSS* 0.5 0.95 0.64 0.66

DETECT Phase I 0.65 1.06 0.84 0.73

DETECT 0.76 1.26 0.89 0.81
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With-label: qualitative results

Ground Truth Our Results
Note: Different colors indicate different clusters.
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With-label: qualitative results

Embedding after Phase I Embedding after Phase II
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Without-label: qualitative results

Embedding of full dataset Recreation Activities
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Two-phase: sub-optimal since the first phase is not aware of clustering.

Shortcoming:  Separate Embedding from Clustering

Phase I: embedding Phase II: Clustering
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Solution: A single phase  

Assume the pre-existence of clusters in the latent space and 

jointly learn the hidden representation for reconstruction and 

cluster formation.
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VAE: Variational AutoEncoders

y

z x’x

y: discrete(onehot) variable indicating cluster

z: continuous variable denoting embedding

x: input context sequences

x’: reconstructed context sequences
Mixture of Gaussian

VAE-based (1 phase) for images VaDE [IJCAI 17], GMVAE [ArXiv

16], JointVAE [NIPS 18]

The hidden space z will be restricted by a cluster variable y which try to 

regularize the hidden space to be a mixture of gaussian
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Two-phase: sensitive since the first phase is not aware of clustering.

One-phase: produce trivial solutions as the model could ignore the 

cluster involvement. 

Challenge:  Sensitive Training of Clustering

Embedding + Clustering



36

Two-phase: sensitive since the first phase is not aware of clustering.

One-phase: produce trivial solutions as the model could ignore the 

cluster involvement. 

Challenge:  Sensitive Training of Clustering

Embedding + Clustering
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VAMBC: A Variational Approach for Mobility Behavior 
Clustering  

y

zb

x’

x

zc

z

Context Sequences

Reconstructed Context 
Sequences

Cluster Assignments

Embedding

○ Increase the 
involvement of cluster 
assignments y.

○ Encourage the cluster 
separation

○ Improve the cohesion 
within each cluster

Mingxuan Yue, Yao-Yi Chiang, Cyrus Shahabi:

VAMBC: A Variational Approach for Mobility Behavior Clustering. ECML/PKDD (4) 2021: 453-469
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VAMBC 

y

zb

x’

x

zc

z

LNE LKL

Lrecon

LNE: Negative Entropy

● Bring randomness to y
● Allow cluster adjustment
● Share zc

Gumbel-Softmax
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VAMBC 

y

zb

x’

x

zc

z

LKL: KL loss

● A regularizer limits zb.
● zb only carries unique 

information of x.

0

LNE LKL

Lrecon
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VAMBC 

y

zb

x’

x

zc

z

Lrecon: Reconstruction

● Supervise the entire 
model

● learn the embedding z

LNE LKL

Lrecon
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VAMBC 

y

zb

x’

x

zc

z

Lcenter: Center loss

● Force zc meaningful
● More involvement of y   

xc

L = LNE + LKL +  Lrecon + Lcenter
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VAMBC Architecture 

Loss = LNE + LKL +  Lrecon + Lcenter
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Experiment: setting 

● Dataset: 
○ GeoLife trajectories and POI data
○ DMCL trajectories and POI data

● Baselines:
○ Classical TS: KM-DTW, KM-GAK, kShape, DB-LCSS
○ Autoencoder-based: DTC, DETECT, IDEC*, DCN*
○ VAE-based: VaDE*, GMVAE*, JointVAE*
○ Discrete Sequence Clustering: SGT, MHMM

● Metrics:
- NMI: Normalized Mutual 

Information
- ARI: Adjusted Rand Index
- Accuracy
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Experiment: result
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Conclusion

● Proposed a novel variational model VAMBC that clusters the 
context sequences in a single phase

● The VAMBC model decomposes the hidden embedding into 
individualized embedding and cluster embedding with a novel 
design. 

● The VAMBC model achieves significantly better robustness and 
improved accuracy than existing approaches. 
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Synthetic Trajectory Generation – Why?

• Scale-up: The input set is small and we need more realistic trajectories for the 
downstream task or when 

• Privacy preservation: The privacy of the input set must be preserved 
• Diversification: To generate trajectories for one geographical area (e.g., city, 

neighborhood) from the training set of trajectories belonging to a different 
geographical area

Learning 
Algorithm 

Generated DataReal Data
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Background

Computational algorithms  
• Moving-object generators (e.g., Brinkhoff)

• Travel surveys and Handcraft-rules 

• Micro  agent simulators
• Lots of parameter setting

Data-Driven algorithms
• Learn directly from the Real data distribution 

Limitation: Require human labor and domain knowledge to convert real-
world data into the parameters/rules of the closed (artificial) environment.
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Discretize

1 2 3 4

5 76 8

9 10 11 12Latitude, longitude, timestamp

[1 , 3 , 7, 8 ， 8]

8:00, 8:05, 8:10, 8:15, 8:20…

Mobility Trajectory

• Discrete Trajectory in space and time 
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Generative AI Idea 

Model human movements as 

state transitions and formulate 

trajectory generations as a 

decision-making process 

Follow a generator-discriminator 

structure to learn the 

underlying mechanism (e.g., 

policy) behind the state 

transitions.
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Background: Seq Generative Adversarial Network

Compete with each other in a zero-sum 
game framework.

L. Yu, W. Zhang, J. Wang, and Y. Yu, “Seqgan: Sequence generative

adversarial nets with policy gradient,” in Proceedings of the AAAI

conference on artificial intelligence, vol. 31, no. 1, 2017.

Discriminator

Initial distribution Generator

Real Trajectory

Generated Trajectory

Rewards
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Name Methods Dataset

Non Deep Learning Model TimeGeo [PNAS16] Statistics modeling CDR(Boston)

DNN Methods TrajGAN [IJCAI18] GAN Nokia Lausanne location

MoveSim [KDD 20] GAN GeoLife (Beijing)

TrajGAIL [ICDM20] GAIL Taxi data (Shenzhen)

DeltaGAN [ICLR 21] GAN GeoLife (Beijing)

NEXTGAIL 

[SIGSPATIAL21]

GAIL Taxi data (Shenzhen)

ActSTD [KDD 21] GAIL Mobile Network (Beijing)

Foursquare

FVAE [SIGSPATIAL22] VAE Taxi data (Porto)

Gowalla

GAIL -- Generative Adversarial Imitation Learning

GAN -- Generative Adversarial Networks

VAE – Variational Auto Encoder

Limitations: Cannot control the generation process to generate trajectories with 

specific semantics (e.g., different modality / moving behavior )

Related Work
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Our Main Hypothesis

While common mobility regularity and transition 
patterns are shared across transportation 
modalities and moving behaviors, there are also 
modality/behavior-specific characteristics and 
patterns. 

E.g., different speeds, distances traveled, 
number of distinct visits, and transition patterns 
(e.g., transitions on walkways vs. bikeways vs. 
roads).

By including modality/behavior, the generated 
trajectories will be

Diverse and representative of different modalities
Realistic, corresponding to the real-world

modalities

Walking Biking Driving
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CSGAN: 

Clustering-based Sequence Generative Adversarial Network

M. Zhang, H. Lin, S. Takagi, Y. Cao, C. Shahabi, L. Xiong:

CSGAN: Modality-Aware Trajectory Generation via Clustering-based Sequence GAN.
MDM 2023: 148-157

• Classify the 

trajectory into k + 1 

classes

• Rewards of the 

generator is the 

summation of any 

real modalities
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Datasets

• GeoLife
• Collected by Microsoft Research Asia from 182 

users
• PeopleFlow

• Tokyo Metropolitan Area 
• Transportation mode for each visit is available

PeopleFlow has more diverse 
speeds due to mix-modalities
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Evaluation Metrics

Geographical density-based statistics

Probability of visiting location 

r, probability of visiting 

location r at time t
Individual trajectory-level statistics

Distance traveled P(d), 

number of distinct visits P(v)

Jensen-Shannon Divergence (JSD) between the probability 
distribution of the real trajectories and the generated 
trajectories for each distribution.
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Our Newly Proposed Evaluation Metrics

Transition statistics 
Probability of transitioning from location r1 to r2

Modality level statistics 
PC0: The proportion of trajectories within the 

correct cluster (clustering based on centroids 
of real trajectories)

PC1: Clustering separately (for both real and 
generated trajectories) and performing 
centroid matching and JSD of the two 
distributions is reported.

C: Given the vector of k centroids from real 
trajectories and generated trajectories, we 
compute the minimum total pair-wise distance 
among all permutations (closest match). The 
lower the value, the better the generated 
trajectories preserve the modality 
representatives.

Frobenius norm of the difference between 
the two transition matrices

Generated Traj Cluster of Real Traj.

PC0
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Learning Global Patterns: 
More realistic trajectories, 
per traditional metrics

Much better 
transition (e.g., 
walking vs driving)

More diverse & 
representative 
trajectories

SeqGAN on 
each cluster

Cluster SeqGAN: Not enough data per cluster to learn global mobility patterns. It 
outperforms  SeqGAN with PeopleFlow bc the modality is more diverse (vs GeoLife) and 
hence it is more important to learn modality-specific patterns within each cluster.

Discriminator’s 
Spatial & temporal 
regularities check
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Density 

Visualization

Real (GeoLife) CSGAN (GeoLife)

Real (PeopleFlow) CSGAN (PeopleFlow)

The population density --

The aggregate density from 

6:00 am to 8:00 pm
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Motivation

Mobility Behavior

COVID 19 

User Profiling

Recommendations

Ads targeting

Insurance

Threats Detection

Mobility behavior: 

the travel activity that 

describes a user’s 

movements, e.g., work 

commute, shopping, 

school commute, 

dining

Mingxuan Yue, Yaguang Li, Haoze Yang, Ritesh Ahuja, Yao-Yi Chiang, Cyrus Shahabi:

DETECT: Deep Trajectory Clustering for Mobility-Behavior Analysis.
IEEE BigData 2019: 988-997
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1 2 3 4

5 76 8

9 10 11 12Latitude, longitude, timestamp

[1 , 3 , 7, 8 ， 8]Mobility Trajectory

• Discretizing mobility

trajectory

by grid/time Partition 

• Augment location with context

- Industry, Commercial Area, Entertainment, Education 

Services, Utilities, Health Care, Residential Areas, and 

Others 
• Similar Moving Behavior has similar context

Home, Residential 

Coffee 

shop

Context Trajectory

Context Trajectory

- Decide by the number of Point of Interests (POIs)
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Preliminaries & Overview

GAIL : Generative Adversarial Imitation Learning

• Goal : modeling human agent decision-making process from real-data 

- policy: the underlying strategy to generate the trajectory

- reward: ways to evaluate the generated trajectory

Problem : Given a set of real-world trajectories and their moving behavior 

labels, how to generate synthetic trajectories while retaining moving behavior 

properties

Reward Func

Input distribution Policy net

Real Trajectory

Generated Trajectory

Rewards
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Preliminaries & Overview

Problem : Given a set of real-world trajectories and their moving behavior 

labels, how to generate synthetic trajectories while retaining moving behavior 

properties
• State: the history of the generated trajectory until the last step

• Action: which location to go next

• State transition: update the mobility trajectory with the chosen location

• Policy network: characterizes how to choose the following action, given the

moving behavior

• Reward: evaluate the decision of chosen action based on the current state  
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MBP-GAIL Framework

Haowen Lin, Sina Shaham, Yao-Yi Chiang and Cyrus Shahabi 

Generating Realistic and Representative Trajectories with Mobility Behavior Clustering
SIGSPATIAL 2023
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Context Trajectory Encoder:

predict the next context type based on the 

history with temperature

Map to each location 

MBP-GAIL Framework

As we set the temperature higher, 

the context has less influence on our 

final generation 
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Mobility Trajectory Encoder:
predict the next location based on the 

history 

MBP-GAIL Framework
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Spatial dynamic enforcer

trajectory should be physically feasible 

fixed constraint due to variety transportation mode 
Lower probability

Higher probability

MBP-GAIL Framework
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Fusion 
element wise multiplication 

MBP-GAIL Framework
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a discriminator differentiates 

real/fake trajectory 

a classifier evaluates moving 

behavior pattern

Reward from

moving

behavior

Reward from

discriminator

MBP-GAIL Framework
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Experimental Evaluation 

• For realistic evaluation (utility compared with original trajectory), MBP-GAIL outperforms almost all 

the JSD metrics evaluation, especially for the distance over the best baseline.

Much better in distance-related metrics
due to spatial dynamic enforcer

Much better 
transition due to

context clustering modeling
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Experimental Evaluation 

● RQ2: Can MBP-GAIL preserve the moving behavior patterns in its generation?

MBP-GAIL preserves the mobility trajectory patterns and achieves the lowest 

gap compared with real-data

• Compare with movesim / seqggan which also knows the moving behavior information 

• Clustering on the generated context trajectories 
• Closer  to the real-world data distribution,  the better 

Gap is small
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Thank you!
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