

Nearest Neighbor Queries

Instructor: Cyrus Shahabi

Nearest Neighbor Search

- Retrieve the nearest neighbor of query point Q
- Simple Strategy:
 - convert the nearest neighbor search to range search.
 - Guess a range around Q that contains at least one object say O
 - if the current guess does not include any answers, increase range size until an object found.
 - Compute distance d' between Q and O
 - re-execute the range query with the distance d' around Q.
 - Compute distance of Q from each retrieved object. The object at minimum distance is the nearest neighbor!!!

Naïve Approach

Issues: how to guess range?
The retrieval may be sub-optimal if incorrect range guessed.
Would be a problem in high dimensional spaces.

Given a query location q, find the nearest object.

- Depth First and Best-First Search using R-trees
- Goal: avoid visiting nodes that cannot contain results

Basic Pruning Metric: MINDIST

Minimum distance between q and an MBR.

- $mindist(E_1,q)$ is a lower bound of d(o,q) for every object o in E_1 .
- If we have found a candidate NN p, we can prune every MBR whose mindist > d(p, q).

MINDIST Property

• MINDIST is a lower bound of any k-NN distance

$$\forall o \in O, \text{MINDIST}(Q, R) \le ||(Q, o)||$$

Minimal
Euclidean
distance
from Q to
any points
on the
perimeter of
R. 6

<u>a</u>

Depth-First (DF) NN Algorithm Roussoulos et al., SIGMOD, 1995

DF Search – Visit E₁

DF Search - Find Candidate NN School of Engineering

C. Shaha<u>bi</u>

DF Search – Backtrack to Root and Visit E

DF Search – Find Actual NN School of Engineering

Optimality

- Question: Which is the minimal set of nodes that must be visited by any NN algorithm?
- Answer: The set of nodes whose MINDIST is smaller than or equal to the distance between q and its NN (e.g., E_1 , E_2 , E_6).

A Better Strategy for KNN search

- A sorted priority queue based on MINDIST;
- Nodes traversed in order;
- Stops when there is an object at the top of the queue; (1-NN found)
- k-NN can be computed incrementally;

I/O optimal

Priority Queue

CSCI-587 C. Shahabi

- Keep a heap H of index entries and objects, ordered by MINDIST.
- Initially, H contains the root.
- While $H \neq \phi$
 - Extract the element with minimum MINDIST
 - If it is an index entry, insert its children into H.
 - If it is an object, return it as NN.
- End while

USC Viterbi School of Engineering

BF Search – Visit root

BF Search – Visit E₁

BF Search – Visit E₂

USC Viterbi School of Engineering

BF Search – Visit E₆

USC Viterbi

BF Search - Find Actual NN School of Engineering

Generalizations

- Both DF and BF can be easily adapted to (i) extended (instead of point) objects and (ii) retrieval of k (>1) NN.
- BF can be made incremental; i.e., it can report the NN in increasing order of distance without a given value of *k*.
 - Example: find the 10 closest cities to HK with population more than 1 million. We may have to retrieve many (>>10) cities around Hong Kong in order to answer the query.

Generalize to k-NN

- Keep a sorted buffer of at most *k* current nearest neighbors
- Pruning is done according to the distance of the furthest nearest neighbor in this buffer
- Example:

CSCI-587

C. Shahabi Another filter idea based on MBR School Face Property

- MBR is an n-dimensional Minimal Bounding Rectangle used in R trees, which is the minimal bounding n-dimensional rectangle bounds its corresponding objects.
- MBR face property: Every face of any MBR contains at least one point of some object in the database.

MBR Face Property – 2D

MBR Face Property – 3D

Improving the KNN Algorithm

 While the MinDist based algorithm is I/O optimal, its performance may be further improved by pruning nodes from the priority queue.

Properties of MINMAXDIST

- **MINMAXDIST** is the **smallest possible upper bound** of distances from the point *P* to the rectangle *R*.
- *MINMAXDIST* guarantees there is an object within the R at a distance to P less than or equal to minmaxdist.

$$\exists o \in O, ||(Q, o)|| \leq MINMAXDIST(Q, R)$$

- MINMAXDIST is an upper bound of the 1-NN distance
- *MINMAXDIST(P,R)* is the minimum over all dimensions distances from *P* to the furthest point of the closest face of R.

MINDIST & MINMAXDIST

MINDIST(P,R) <= NN(P) <= MINMAXDIST(P,R)

MinDist & MinMaxDist – 3D

Pruning 1

• Downward pruning: An MBR R is discarded

If there exists another R' such that MINDIST(P,R)> MINMAXDIST(P,R')

Pruning 2

Downward pruning: An object O is discarded

If there exists an R such that Actual_dist(P,O) > MINMAXDIST(P,R)

Pruning 3

Upward pruning: An MBR R is discarded

If an object O is found such that MINDIST(P,R) > Actual_dist(P,O)

MINDIST vs MINMAXDIST Ordering

- MINDIST: optimistic (the box that is closer)
- MINMAXDIST: pessimistic (the box that has at least one object at that distance)

Example: MINDIST ordering finds the 1-NN first

MINDIST vs MINMAXDIST Ordering

• Example: MINMAXDIST ordering finds the 1-NN first

CSCI-587 C. Shahabi

NN-search Algorithm using the mentioned pruning rules (branch and bound)

- 1. Initialize the nearest distance as infinite distance
- 2. Traverse the tree depth-first starting from the root. At each Index node, sort all MBRs using an ordering metric and put them in an **Active Branch List (ABL).**
- 3. Apply pruning rules 1 and 2 to ABL
- 4. Visit the MBRs from the ABL following the order until it is empty
- 5. If Leaf node, compute actual distances, compare with the best NN so far, update if necessary.
- 6. At the return from the recursion, use pruning rule 3
- 7. When the ABL is empty, the NN search returns.

CSCI-587 C. Shahabi

- Best-First is the "optimal" algorithm in the sense that it visits all the necessary nodes and nothing more!
- But needs to store a large Priority Queue in main memory.
 If PQ becomes large, we have thrashing...
- BB uses small Lists for each node. Also uses MINMAXDIST to prune some entries

References

- N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries. In SIGMOD, pages 71-79, 1995
- G. R. Hjaltason and H. Samet, Distance browsing in spatial databases, ACM Transactions on Database Systems 24, 2 (June 1999), 265-318
- STDBM06 keynote slides by Dimitris Papadias "Novel Forms of Nearest Neighbor Search in Spatial and Spatiotemporal Databases"