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* Retrieve the nearest neighbor of query point Q

* Simple Strategy:

— convert the nearest neighbor search to range search.

— Guess a range around Q that contains at least one object say O

* if the current guess does not include any answers, increase range size
until an object found.

— Compute distance d’ between Q and O
— re-execute the range query with the distance d’ around Q.

— Compute distance of Q from each retrieved object. The object at
minimum distance is the nearest neighbor!!!
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Naive Approach
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* Given a query location g, find the nearest object.

* Depth First and Best-First Search using R-trees
* Goal: avoid visiting nodes that cannot contain results
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Basic Pruning Metric: MINDIST

* Minimum distance between g and an MBR.

* mindist(E,,q) is a lower bound of d(o,q) for every
objectoin E;.

* If we have found a candidate NN p, we can prune
every MBR whose mindist > d(p, q).
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MINDIST Property

 MINDIST 1s a lower bound of any k-NN distance
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DF Search — Backtrack to Root and Visit’Ey
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e Question: Which is the minimal set of nodes that
must be visited by any NN algorithm?

* Answer: The set of nodes whose MINDIST is smaller
than or equal to the distance between g and its NN

(e.g., E;, E,, Eg).
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A Better Strategy for KNN search

* A sorted priority queue based on MINDIST;
* Nodes traversed in order;

e Stops when there is an object at the top of the
qgueue; (1-NN found)

* k-NN can be computed incrementally;
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Priority Queue
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Hjaltason and Samet, TODS, 1998

* Keep a heap H of index entries and objects,
ordered by MINDIST.

* |nitially, H contains the root.

* WhileH# ¢
— Extract the element with minimum MINDIST

* If itis an index entry, insert its children into H.
* |f it is an object, return it as NN.

* End while
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 Both DF and BF can be easily adapted to (i)
extended (instead of point) objects and (ii)
retrieval of k (>1) NN.

 BF can be made incremental; i.e., it can report
the NN in increasing order of distance without
a given value of k.

— Example: find the 10 closest cities to HK with
population more than 1 million. We may have to
retrieve many (>>10) cities around Hong Kong in
order to answer the query.
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Generalize to k-NN

* Keep a sorted buffer of at most k& current nearest
neighbors

* Pruning 1s done according to the distance of the
furthest nearest neighbor in this buffer

* Example:

R/

MINDIST P

Actual_dis\‘t\\
[

The k-th object in the buffer
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Face Property

* MBR is an n-dimensional Minimal Bounding
Rectangle used in R trees, which is the minimal
bounding n-dimensional rectangle bounds its
corresponding objects.

 MBR face property: Every face of any MBR
contains at least one point of some object in
the database.
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MBR Face Property — 2D
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Rectangle R

25



CSCI-587

C. Shahabi USC Viterbi

School of Engineering

Improving the KNN Algorithm

* While the MinDist based algorithm is I/O
optimal, its performance may be further

improved by pruning nodes from the priority
queue.
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Properties of MINMAXDIST

* MINMAXDIST 1s the smallest possible upper bound of
distances from the point P to the rectangle R.

* MINMAXDIST guarantees there 1s an object within the R
at a distance to P less than or equal to minmaxdist.

Jo € O,]|(Q,0)|| <MINMAXDIST(Q, R)

« MINMAXDIST 1s an upper bound of the 1-NN
distance

o MINMAXDIST(PR) 1s the minimum over all dimensions
distances from P to the furthest point of the closest face of R.
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MINDIST & MINMAXDIST

MINDIST(P,R) <= NN(P) <= MINMAXDIST(P,R)
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Query Point Q

MinDist(Q,R)
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MinDist & MinMaxDist — 3D
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Pruning 1

* Downward pruning: An MBR R is discarded
If there exists another R’ such that MINDIST(P,R)> MINMAXDIST(P,R’)

R
RI
MINDIST P
________________________________ e
MINMAXDIST .
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Pruning 2

* Downward pruning: An object O 1s discarded

If there exists an R such that Actual dist(P,0) > MINMAXDIST(P,R)

MINMAXDIST .
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Pruning 3

* Upward pruning: An MBR R is discarded

If an object O is found such that MINDIST(P,R) > Actual dist(P,O)

MINDIST P

Actual_dist.

\ "0
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MINDIST vs MINMAXDIST Ordering

* MINDIST: optimistic (the box that 1s closer)

 MINMAXDIST: pessimistic (the box that has at least one object at that
distance)

MBR1

|=
s T

M11
/'

NN is there—""
M12

e Example: MINDIST ordering finds the 1-NN first
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MINDIST vs MINMAXDIST Ordering
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NN is there
e Example: MINMAXDIST ordering finds the 1-NN first
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NN-search Algorithm using the mentionéd
pruning rules (branch and bound)

1. Initialize the nearest distance as infinite distance

2.  Traverse the tree depth-first starting from the root. At each Index node,
sort all MBRs using an ordering metric and put them in an Active
Branch List (ABL).

3.  Apply pruning rules 1 and 2 to ABL
4.  Visit the MBRs from the ABL following the order until it is empty

5. If Leaf node, compute actual distances, compare with the best NN so
far, update if necessary.

6. Atthe return from the recursion, use pruning rule 3
/7.  When the ABL is empty, the NN search returns.
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* Best-First is the “optimal” algorithm in the sense that it
visits all the necessary nodes and nothing more!

* But needs to store a large Priority Queue in main memory.
If PQ becomes large, we have thrashing...

e BB uses small Lists for each node. Also uses MINMAXDIST
to prune some entries
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