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Algorithms for finding NN
• Elementary methods:

• More advanced methods:
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Reverse Nearest Neighbors Queries

What are the fire locations I’m nearest to?

Which houses I’m the closest restaurant to?



RNN Definition
• A data point p is the reverse nearest neighbor of query point q, if there 

is no point p’ such that dist(p’, p)< dist(q, p), i.e. q is the NN of p.

NN(p2)=NN(p3)=q
RNN(q)= {p2, p3}

• Is RNN a symmetric relation?
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KM
• Original RNN method

For all p:
1. Pre-compute NN(p)
2. Represent p as a vicinity circle
3. Index the MBR of all circles by an R-tree

(Named RNN-tree)
4. RNN(q)= all circles that contain q

• Needs two trees: RNN-tree & R-tree
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p5

KM (Cont.)
• YL: Merges the trees

• What happens if we insert p5?
RNN(p5)=?

1. Find all points that have p5 as their new NN 

2. Update the vicinity circles of those points in the index
3. Compute NN(p5) and insert the corresponding

circle in the index

• Drawbacks?

p3
p4

p2

p1
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S1

S6
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SAA
• Elimination of the need for pre-computing all NNs in filter/ refinement 

methods
• SAA:

– Divide the space around query into 
six equal regions

– Find NN(q) in all regions (candidate keys)
(prove by contradiction: p1 rNN(q) but p2 not!

– Either (i) or (ii) holds for each candidate key p
• (i) p is in RNN(q)
• (ii) No RNN(q) in Si

– RNN(q)= {p6}

• Any Drawbacks?
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The number of regions increases exponentially with the dimensionality



q

a

b

Since the angle between 𝑒𝑑𝑔𝑒$% and 𝑒𝑑𝑔𝑒$& is smaller than 
60 degree, then the 𝑒𝑑𝑔𝑒%& is NOT the largest edges in the 
triangle of abq.

Further, since NN(q) = b, i.e., 𝑒𝑑𝑔𝑒$& < 𝑒𝑑𝑔𝑒$%. Thus, 
𝑒𝑑𝑔𝑒$& is also NOT the largest edges in the triangle abq.

Therefore, 𝑒𝑑𝑔𝑒$% should be the largest edge! And thus, 
NN(a) is definitely NOT q.



SFT
1. Find the kNNs of the query q (k candidates)
2. Eliminate the points that are closer to other 

candidates than q.
3. Apply Boolean range queries to determine 

the actual RNNs
• A Boolean range query terminates as the first 

data point is found

• Drawbacks?
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• Concluding former methods:

Dynamic 
data

Arbitrary 
dimensionality

Exact result

KM, YL No Yes Yes

SAA Yes No Yes

SFT Yes Yes No

• SAA is good for 2d geographical applications à we’ll use it later
• This paper: how to come up with a “pruning” idea to avoid opening 

useless boxes in r-tree for RNN?



Half-plane pruning
• Draw perpendicular bisector of pq
• Can p’ be an RNN of q?

• If p1, p2,…, pn are n data points, then any node whose MBR falls inside 
Ui=1..n (pi ,q) cannot contain any RNN result.

• E.g., points inside N2 would have either p1 or p2 as their 
NN, hence they are not RNN of q

T



• Pruning an R-tree MBR:

• Drawbacks?

processing time in terms of bisector trimming for computing 
Computation of intersections does not scale with dimensionality



• Approximating the residual MBR



• An MBR can be pruned if its residual region is empty

• The approximation is a superset of the real residual region

• We can prune an MBR if its approximate residual is empty

• Good news:

processing time for computing 
No more hyper-polyhedrons to make the intersection computation complex



TPL Algorithm
• The big picture

– Uses best-first search
– Utilizes one R-tree as the data structure
– Includes filtering/ refinement phases
– Uses candidate points to prune entries
– Filters visited entries to obtain the set Scnd  of candidates
– Adds pruned entries to set Srfn

– Srfn is used in the refinement step to eliminate false hits
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TPL Example

• * Figures of this example are obtained from [2]
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Filtering step

Action Heap Scnd Srfn

Visit root {N10, N11, N12} {} {}
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Action Heap Scnd Srfn

Visit N3 {N11, N2, N1, N12} {p1} {p3}
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Action Heap Scnd Srfn

Visit N11 {N5, N2, N1, N12} {p1} {p3, N4, N6 }
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Action Heap Scnd Srfn

Visit N5 {N2, N1, N12} {p1, p2} {p3, N4, N6, p6}
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Action Heap Scnd Srfn

Visit N1 {N12} {p1, p2, p5} {p3, N4, N6, p6, N2, 
p7}
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Action Heap Scnd Srfn

{} {p1, p2, p5} {p3, N4, N6, p6, N2, 
p7, N12}
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Refinement Heuristics
• Let Prfn be the set of points and Nrfn be the set of nodes in Srfn

• A candidate point can be eliminated if it is closer to another candidate point than 
to the query

• A point p from Scnd can be discarded as a false hit if either of the following hold:
(i) there is a point such that 

(ii) There is a node MBR  such that 

• A point p from Scnd can be reported as an actual result if the following conditions 
hold:
(i) There is no point                       such that
(ii) For every node       

• If none of the above works, visit all node MBRs where
and use the mentioned heuristics considering 

the newly visited entries



Action Scnd Srfn Actual results

{p1, p2, p5} {p3, N4, N6, p6, N2, p7, N12} {}

Invalidate p1 {p2, p5} {N4, N6, N2, N12} {}

Validate p5 {p2} {N4, N6, N2, N12} {p5}

Remove N6, N2 {p2} {N4, N12} {p5}
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Action Scnd Srfn Actual results

{p2} {N4, N12} {p5}

Access N4 {p2} {p4, p8, N12} {p5}

Invalidate p2 {} {N12} {p5}



RkNN pruning
• Return all points that have q as one of their k nearest neighbors

• Let be a subset of . Each of the 
subsets, prunes the area



kTPL Algorithm
• Same filtering as TPL
• Same refining with the following exceptions:

– A point can be pruned if k points are found within distance dist(p,q) from p
– A counter is associated with each point (initialized to k) and decreases when such a 

point is found
– A candidate is eliminated if counter= 0
– No prior knowledge of number of points in a node, so no application of

in pruning
– A point p can be pruned if a node N is found such that

and 



Experiments
• RNN queries on real data



Conclusion
• TPL is good in that it

– Supports arbitrary values of k
• KM

– Can deal efficiently with database updates
• KM

– Is applicable to data of dimensionality more than two
• SAA

– Retrieves exact results
• SFT

– Results in fast results!
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