
Reverse kNN search in Arbitrary
Dimensionality

Instructor: Cyrus Shahabi

Algorithms for finding NN
• Elementary methods:

• More advanced methods:

Search
Algorithm

Indexing
Data

Structure

NN
solution

BF DFS R-tree R*-tree

Search
Algorithm

Branch &
Bound

Methods

Indexing
Data

Structure

NN
solution

Mindist
Maxdist
Minmaxdist

Reverse Nearest Neighbors Queries

What are the fire locations I’m nearest to?

Which houses I’m the closest restaurant to?

RNN Definition
• A data point p is the reverse nearest neighbor of query point q, if there

is no point p’ such that dist(p’, p)< dist(q, p), i.e. q is the NN of p.

NN(p2)=NN(p3)=q
RNN(q)= {p2, p3}

• Is RNN a symmetric relation?

p2

p1

p3

q

p4

p5

Vicinity circles

Related Work

Methods

Main idea

RNN
Algorithms

Pre-
computing

KM YL

Filter/
refinement

SAA SFT

KM
• Original RNN method

For all p:
1. Pre-compute NN(p)
2. Represent p as a vicinity circle
3. Index the MBR of all circles by an R-tree

(Named RNN-tree)
4. RNN(q)= all circles that contain q

• Needs two trees: RNN-tree & R-tree

p3
p4

p2

q
p1

R-tree

MBR MBR

RNN-tree

MBR MBR

p5

KM (Cont.)
• YL: Merges the trees

• What happens if we insert p5?
RNN(p5)=?

1. Find all points that have p5 as their new NN

2. Update the vicinity circles of those points in the index
3. Compute NN(p5) and insert the corresponding

circle in the index

• Drawbacks?

p3
p4

p2

p1

Techniques that rely on pre-processing cannot deal efficiently with updates

S1

S6

S2 S3

S4S5

SAA
• Elimination of the need for pre-computing all NNs in filter/ refinement

methods
• SAA:

– Divide the space around query into
six equal regions

– Find NN(q) in all regions (candidate keys)
(prove by contradiction: p1 rNN(q) but p2 not!

– Either (i) or (ii) holds for each candidate key p
• (i) p is in RNN(q)
• (ii) No RNN(q) in Si

– RNN(q)= {p6}

• Any Drawbacks?

qp2p1

p3

p4

p5

p7

p6

Filter

Refine

The number of regions increases exponentially with the dimensionality

q

a

b

Since the angle between 𝑒𝑑𝑔𝑒$% and 𝑒𝑑𝑔𝑒$& is smaller than
60 degree, then the 𝑒𝑑𝑔𝑒%& is NOT the largest edges in the
triangle of abq.

Further, since NN(q) = b, i.e., 𝑒𝑑𝑔𝑒$& < 𝑒𝑑𝑔𝑒$%. Thus,
𝑒𝑑𝑔𝑒$& is also NOT the largest edges in the triangle abq.

Therefore, 𝑒𝑑𝑔𝑒$% should be the largest edge! And thus,
NN(a) is definitely NOT q.

SFT
1. Find the kNNs of the query q (k candidates)
2. Eliminate the points that are closer to other

candidates than q.
3. Apply Boolean range queries to determine

the actual RNNs
• A Boolean range query terminates as the first

data point is found

• Drawbacks?

N1

q

Filter

Refine

p1

p7

p6
p5

p4

p2 p3

Boolean range for p2

Boolean range for p6

False misses
Choosing a proper k

• Concluding former methods:

Dynamic
data

Arbitrary
dimensionality

Exact result

KM, YL No Yes Yes

SAA Yes No Yes

SFT Yes Yes No

• SAA is good for 2d geographical applications à we’ll use it later
• This paper: how to come up with a “pruning” idea to avoid opening

useless boxes in r-tree for RNN?

Half-plane pruning
• Draw perpendicular bisector of pq
• Can p’ be an RNN of q?

• If p1, p2,…, pn are n data points, then any node whose MBR falls inside
Ui=1..n (pi ,q) cannot contain any RNN result.

• E.g., points inside N2 would have either p1 or p2 as their
NN, hence they are not RNN of q

T

• Pruning an R-tree MBR:

• Drawbacks?

processing time in terms of bisector trimming for computing
Computation of intersections does not scale with dimensionality

• Approximating the residual MBR

• An MBR can be pruned if its residual region is empty

• The approximation is a superset of the real residual region

• We can prune an MBR if its approximate residual is empty

• Good news:

processing time for computing
No more hyper-polyhedrons to make the intersection computation complex

TPL Algorithm
• The big picture

– Uses best-first search
– Utilizes one R-tree as the data structure
– Includes filtering/ refinement phases
– Uses candidate points to prune entries
– Filters visited entries to obtain the set Scnd of candidates
– Adds pruned entries to set Srfn

– Srfn is used in the refinement step to eliminate false hits

Search
Algorithm

Branch &
Bound

Methods

Indexing
Data

Structure

RNN
solution

TPL Example

• * Figures of this example are obtained from [2]

q

N1

N2

N3

N6

N10

N11

N12
N4

N5
N5N2N1 N3 N4 N6

N10 N11 N12

p1

p2

p5

p7

p5 p7 p1 p3
p2 p6

contents omitted

contents omitted

p6

p8

p4

....p4 p8

data R-tree

p3

Filtering step

Action Heap Scnd Srfn

Visit root {N10, N11, N12} {} {}

q

N1

N2

N3

N6

N10

N11

N12
N4

N5
N5N2N1 N3 N4 N6

N10 N11 N12

p1

p2

p5

p7

p5 p7 p1 p3
p2 p6

contents omitted

contents omitted

p6

p8

p4

....p4 p8

data R-tree

p3

q

N1

N2

N3

N6

N10

N11

N12
N4

N5
N5N2N1 N3 N4 N6

N10 N11 N12

p1

p2

p5

p7

p5 p7 p1 p3
p2 p6

contents omitted

contents omitted

p6

p8

p4

....p4 p8

data R-tree

p3

Action Heap Scnd Srfn

Visit N10 {N3, N11, N2, N1, N12} {} {}

Action Heap Scnd Srfn

Visit N3 {N11, N2, N1, N12} {p1} {p3}

q

N1

N2

N3

N6

N10

N11

N12
N4

N5
N5N2N1 N3 N4 N6

N10 N11 N12

p1

p2

p5

p7

p5 p7 p1 p3
p2 p6

contents omitted

contents omitted

p6

p8

p4

....p4 p8

data R-tree

p3

Action Heap Scnd Srfn

Visit N11 {N5, N2, N1, N12} {p1} {p3, N4, N6 }

q

N1

N2

N3

N6

N10

N11

N12
N4

N5
N5N2N1 N3 N4 N6

N10 N11 N12

p1

p2

p5

p7

p5 p7 p1 p3
p2 p6

contents omitted

contents omitted

p6

p8

p4

....p4 p8

data R-tree

p3

Action Heap Scnd Srfn

Visit N5 {N2, N1, N12} {p1, p2} {p3, N4, N6, p6}

q

N1

N2

N3

N6

N10

N11

N12
N4

N5
N5N2N1 N3 N4 N6

N10 N11 N12

p1

p2

p5

p7

p5 p7 p1 p3
p2 p6

contents omitted

contents omitted

p6

p8

p4

....p4 p8

data R-tree

p3

Action Heap Scnd Srfn

Visit N1 {N12} {p1, p2, p5} {p3, N4, N6, p6, N2,
p7}

q

N1

N2

N3

N6

N10

N11

N12
N4

N5
N5N2N1 N3 N4 N6

N10 N11 N12

p1

p2

p5

p7

p5 p7 p1 p3
p2 p6

contents omitted

contents omitted

p6

p8

p4

....p4 p8

data R-tree

p3

Action Heap Scnd Srfn

{} {p1, p2, p5} {p3, N4, N6, p6, N2,
p7, N12}

q

N1

N2

N3

N6

N10

N11

N12
N4

N5
N5N2N1 N3 N4 N6

N10 N11 N12

p1

p2

p5

p7

p5 p7 p1 p3
p2 p6

contents omitted

contents omitted

p6

p8

p4

....p4 p8

data R-tree

p3

Refinement Heuristics
• Let Prfn be the set of points and Nrfn be the set of nodes in Srfn

• A candidate point can be eliminated if it is closer to another candidate point than
to the query

• A point p from Scnd can be discarded as a false hit if either of the following hold:
(i) there is a point such that

(ii) There is a node MBR such that

• A point p from Scnd can be reported as an actual result if the following conditions
hold:
(i) There is no point such that
(ii) For every node

• If none of the above works, visit all node MBRs where
and use the mentioned heuristics considering

the newly visited entries

Action Scnd Srfn Actual results

{p1, p2, p5} {p3, N4, N6, p6, N2, p7, N12} {}

Invalidate p1 {p2, p5} {N4, N6, N2, N12} {}

Validate p5 {p2} {N4, N6, N2, N12} {p5}

Remove N6, N2 {p2} {N4, N12} {p5}

q

N1

N2

N3

N6

N10

N11

N12
N4

N5
N5N2N1 N3 N4 N6

N10 N11 N12

p1

p2

p5

p7

p5 p7 p1 p3
p2 p6

contents omitted

contents omitted

p6

p8

p4

....p4 p8

data R-tree

p3

q

N1

N2

N3

N6

N10

N11

N12
N4

N5
N5N2N1 N3 N4 N6

N10 N11 N12

p1

p2

p5

p7

p5 p7 p1 p3
p2 p6

contents omitted

contents omitted

p6

p8

p4

....p4 p8

data R-tree

p3

Action Scnd Srfn Actual results

{p2} {N4, N12} {p5}

Access N4 {p2} {p4, p8, N12} {p5}

Invalidate p2 {} {N12} {p5}

RkNN pruning
• Return all points that have q as one of their k nearest neighbors

• Let be a subset of . Each of the
subsets, prunes the area

kTPL Algorithm
• Same filtering as TPL
• Same refining with the following exceptions:

– A point can be pruned if k points are found within distance dist(p,q) from p
– A counter is associated with each point (initialized to k) and decreases when such a

point is found
– A candidate is eliminated if counter= 0
– No prior knowledge of number of points in a node, so no application of

in pruning
– A point p can be pruned if a node N is found such that

and

Experiments
• RNN queries on real data

Conclusion
• TPL is good in that it

– Supports arbitrary values of k
• KM

– Can deal efficiently with database updates
• KM

– Is applicable to data of dimensionality more than two
• SAA

– Retrieves exact results
• SFT

– Results in fast results!

References
1. “Reverse kNN Search in Arbitrary Dimensionality”. Y. Tao, D. Papadias,

X. Lian.
2. A presentation by Jalal Kazemitabar in csci587 Fall’2010

