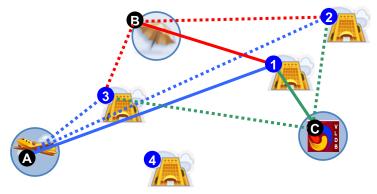


The Spatial Skyline Queries

Instructor: Cyrus Shahabi



Outline

- Motivation
- Problem Definition
- Related Work
- Geometric Properties
- Our Algorithms: VS² and B²S²
- Performance Evaluation
- Conclusion and Future Work

Motivation

• H1 is better than H2

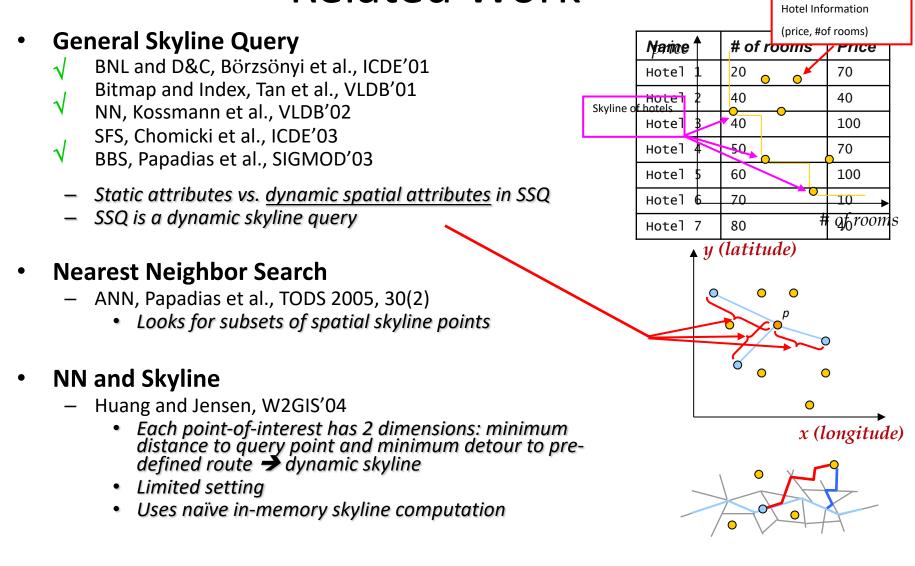
• H1 is closer than H3 to C but farther than H3 to A

• No hotel is better than H1 or H3 or H4

- **Problem:** Finding Hotels close to Airport, Beach, and Conference
- **Query:** What are the candidate *interesting* hotels?
 - A skyline query with dynamic spatial attributes ...
 - Criteria for an interesting hotel: No hotel is *closer* than a candidate hotel to A, B, and C
 - No hotel is better than a candidate hotel in terms of all distances to A, B, and C (i.e., 3 query functions to be optimized together)
- **Applications:** Trip Planning, Crisis Management, Defense and Intelligence, Wireless Sensor Networks

Problem Definition

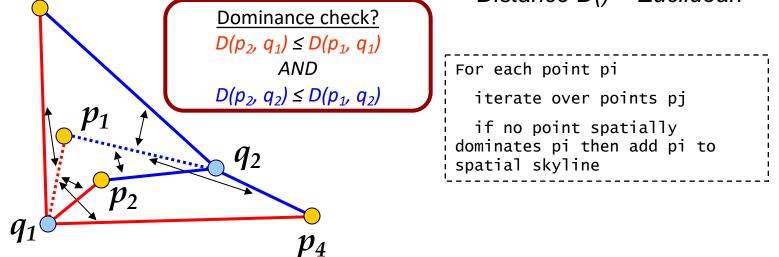
 p_1 **spatially dominates** p_2 with respect to Q iff $D(p_1, q_i) \le D(p_2, q_i)$ for all q_i in Q and $D(p_1, q_j) < D(p_2, q_j)$ for at least one q_j



- Data P = {p₁, p₂, p₃, p₄}
- Query Q = $\{q_1, q_2\}$
- Distance D() = Euclidean
- *p*₂ **spatially dominates** *p*₁ with respect to {*q*₁, *q*₂}
- Dominator Region of p₁
- p₁ spatially dominates p₃
- Dominance Region of p₁
- No dominance relation between p_1 and p_4

Spatial Skyline Query (SSQ): find the data points p_i that are <u>not</u> spatially dominated by any other point p_j with respect to the given query points (here, p_2 and p_4).

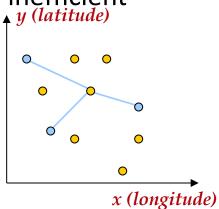
Related Work



 p_3

Naïve Solution

- Data $P = \{p_1, p_2, p_3, p_4\}$
- Query Q = $\{q_1, q_2\}$
- Distance D() = Euclidean

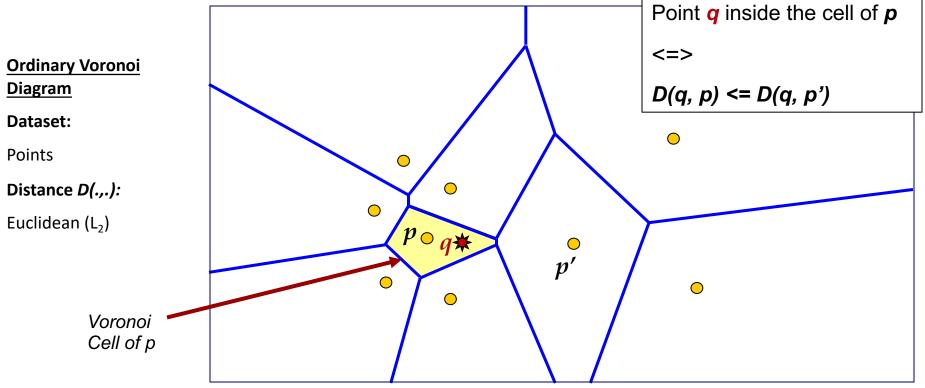


Time Complexity: $O(|P|^2 |Q|)$ |P|: number of data points, |Q|: number of query points

Problem Definition

- Naïve approach
 - Complexity: $O(|P|^2 |Q|)$
 - *P*: number of data points, *Q*: number of query points
- Why a new algorithm is needed:
 - Complexity of Naïve approach is high
 - Each dominance check involves 2/Q/ distance computation operations: increases with more query points
 - General skyline algorithms are either inapplicable or inefficient
 - Due to <u>dynamic</u> <u>spatial</u> attributes
 - Optimization opportunity
 - The geometric properties of space can be exploited

Geometric Properties


- Complexity of Naïve approach: O(|P|² |Q|)
 - *|P|*: number of data points
 - -/Q/: number of query points
- We identify geometric properties to reduce this complexity by <u>reducing</u> the number of :
 - data points to be investigated
 - query points that has no effect on the result
- Less and cheaper dominance checks
- We identify three properties ...

Preliminaries: Voronoi Diagrams

• Given a set of spatial objects, a Voronoi diagram *uniquely* partitions the space into disjoint regions (cells).

• The region including object p includes all locations which are closer to p than to any other object p'.

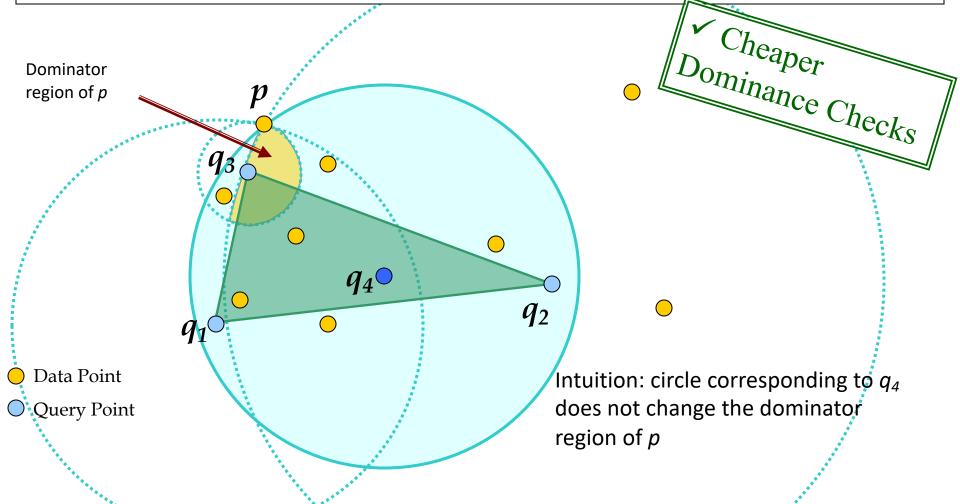
Convex Hull of query points

Data Point

Query Point

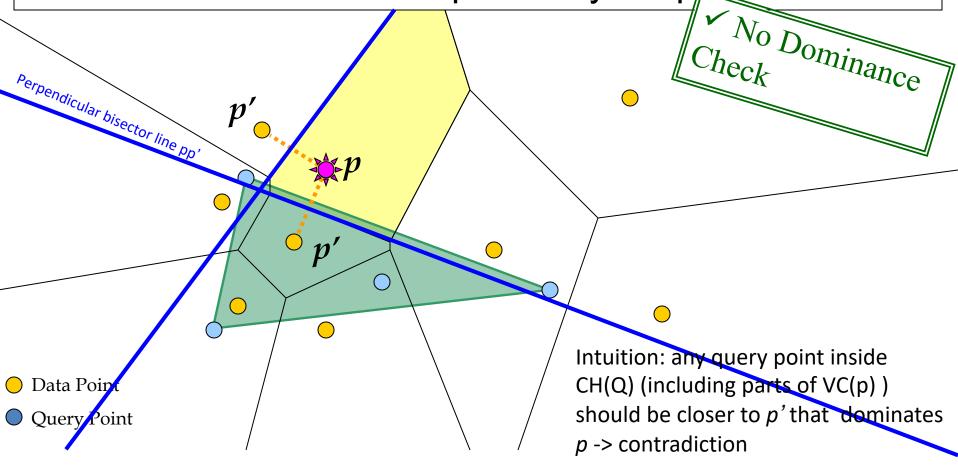
Dominance

Geometric Properties


GP₁: Any point *p* inside the **convex hull** of query points *Q* is a spatial skyline point.

Intuition: circles defining the dominator region of *p* intersect only at *p*

Geometric Properties


GP₂: The set of skyline points does not depend on any query point *q* inside the convex hull of query points *Q*.

Geometric Properties

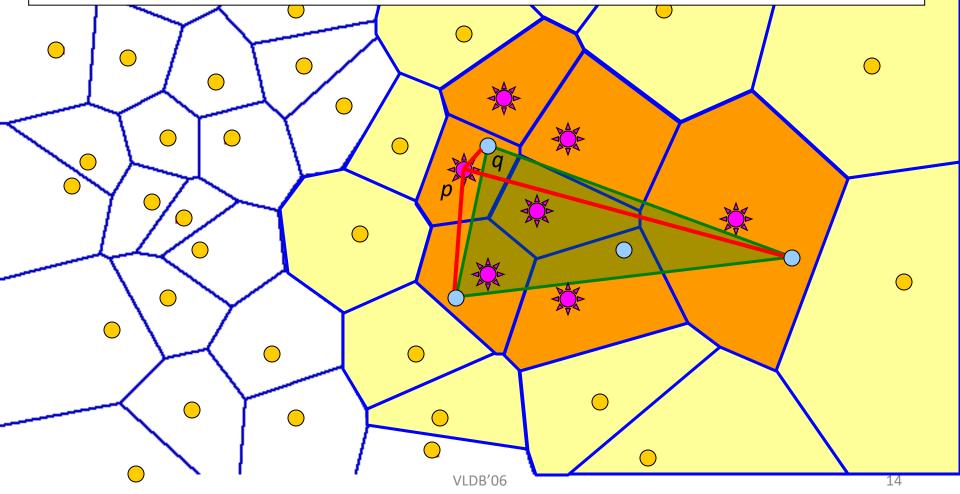
GP₃: Any point *p* whose Voronoi cell **intersects** with the convex hull of Q is a spatial skyline point.

Algorithm: VS²

- VS²: Voronoi-based Spatial Skyline Algorithm
- Utilizes the geometric interpretation of the skyline
 - With <u>no dominance check</u>, adds any data point p whose Voronoi
- GP₁ cell intersects with the convex hull of QGP₃
- Performs <u>cheaper dominance check only on a small subset</u> of points (neighbors of skyline points ~ O(S)) GP₂
- Traverses the Voronoi Diagram* of data points

* Delaunay Graph

Algorithm: VS²

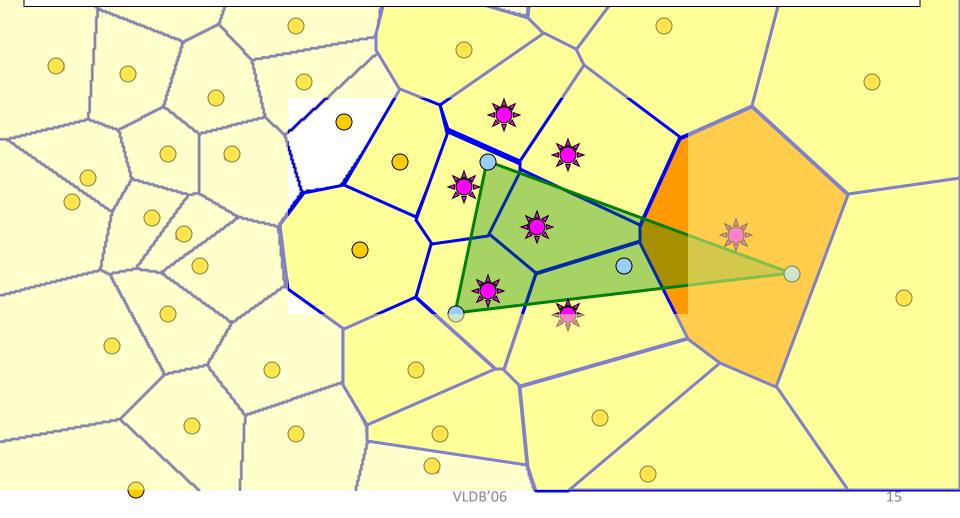


Contents of the heap

• We check the top of heap when all of its neighbors are already in the heap.

• No dominance check so far ...

Check with only the current spatial skyline points



CSCI-587 C. Shahabi

Algorithm: VS²

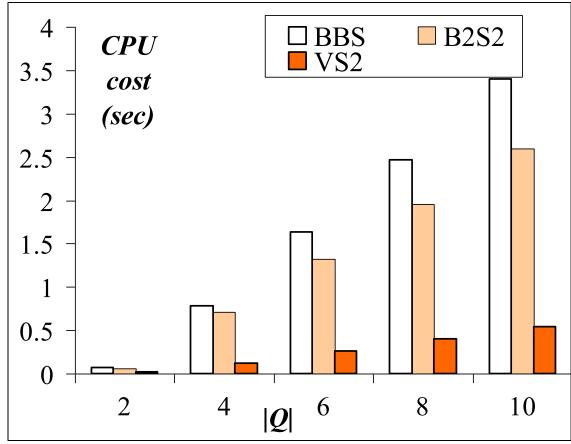
Traversal stops before reaching the dominance region of the current skyline set.
We check only a small number of non-skyline points.

Algorithm: VS²

- Time Complexity: $O(|S|^2 |CH_v(Q)| + \Phi(|P|))$
 - Naïve: O(|P|² |Q|)
- *|S|*: number of skyline points
- /CH_v(Q)/: number of vertices of the convex hull of Q (<= |Q|)
- Φ(/P/): complexity of finding the data point from which VS² starts traversing inside the convex hull of Q (O(log(|P|)) with point location or O(|P|^{1/2}))
- Space Complexity: O(|P|)
 - Space required for ordinary Voronoi Diagram is O(|P|)

Algorithms: B²S²

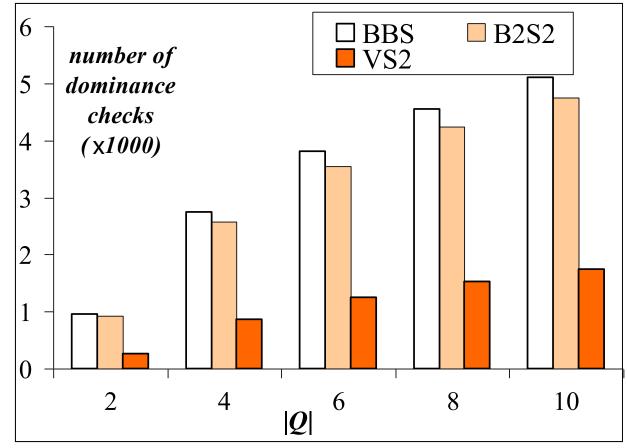
- **B²S²:** Branch-and-Bound Spatial Skyline Algorithm
- Customization of BBS [Papadias et al.] for SSQs
- Uses <u>some</u> of the geometric properties of the skyline (GP₁ and GP₂)
- Similar to BBS traverses an R-tree on data points
- Traversal order: specified by any monotone function (e.g., *mindist(p, CH_v(Q))*)



Performance Evaluation

- Dataset: USGS including one million locations
- R*-tree on data points for BBS and B²S²
- Pre-built Delaunay graph of data points for VS²

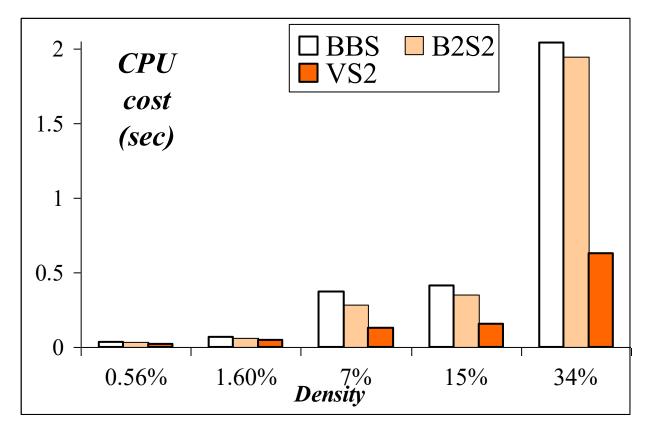
Performance Evaluation



• Max MBR(Q)=0.3%

• The difference in improvement of VS² over BBS increases for larger query sets.

Performance Evaluation



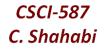
• Variations of B²S² require less dominance checks than BBS.

• Note that each dominance check is cheaper in our VS² and B²S² algorithms.

Performance Evaluation

• Max | MBR(Q) | = 0.5%, |Q| = 6

• VS² is also scalable with respect to the density of data (i.e., number of skyline points)



Conclusion and Future Work

- We introduced the spatial skyline queries.
- We exploited the geometric properties of its solution space.
- We proposed two algorithms:
 - B²S² that uses our properties to customize BBS for SSQs
 - VS² that utilizes a Voronoi diagram to minimize the number of dominance checks
- We proposed two variations of VS² for:
 - continuous spatial skyline query
 - handling non-spatial attributes
- VS² significantly outperforms its competitor approach BBS.

Future Work

- Addressing SSQ in other spaces
- Studying variations of SSQ

References

 Mehdi Sharifzadeh and Cyrus Shahabi, The Spatial Skyline Queries, VLDB 2006, Seoul, Korea, September 2006.