
Instructor: Cyrus Shahabi

The Spatial Skyline Queries

Outline

• Motivation
• Problem Definition
• Related Work
• Geometric Properties
• Our Algorithms: VS2 and B2S2

• Performance Evaluation
• Conclusion and Future Work

2VLDB’06

Motivation

• Problem: Finding Hotels close to Airport, Beach, and Conference
• Query: What are the candidate interesting hotels?

– A skyline query with dynamic spatial attributes …
– Criteria for an interesting hotel: No hotel is closer than a candidate hotel to A,

B, and C
• No hotel is better than a candidate hotel in terms of all distances to A, B, and C (i.e., 3 query

functions to be optimized together)

• Applications: Trip Planning, Crisis Management, Defense and Intelligence, Wireless Sensor
Networks

• H1 is better than H2

• H1 is closer than H3 to C
but farther than H3 to A

• No hotel is better than
H1 or H3 or H4

4

2

1

B

C

3

A

3VLDB’06

Problem Definition
• Data P = {p1, p2, p3, p4}

• Query Q = {q1, q2}

• Distance D() = Euclidean

• p2 spatially dominates p1
with respect to {q1, q2}

• Dominator Region of p1

• p1 spatially dominates p3

• Dominance Region of p1

• No dominance relation
between p1 and p4

p1

p3

Spatial Skyline Query (SSQ): find the data points pi that are not spatially dominated
by any other point pj with respect to the given query points (here, p2 and p4).

p4

q1

q2p2

p1 spatially dominates p2 with respect to Q iff
D(p1 , qi) ≤ D(p2, qi) for all qi in Q and
D(p1 , qj) < D(p2, qj) for at least one qj

Spatial
Skyline
Points

4VLDB’06

Related Work
• General Skyline Query

§ BNL and D&C, Börzsönyi et al., ICDE’01
§ Bitmap and Index, Tan et al., VLDB’01
§ NN, Kossmann et al., VLDB’02
§ SFS, Chomicki et al., ICDE’03
§ BBS, Papadias et al., SIGMOD’03

– Static attributes vs. dynamic spatial attributes in SSQ
– SSQ is a dynamic skyline query

• Nearest Neighbor Search
– ANN, Papadias et al., TODS 2005, 30(2)

• Looks for subsets of spatial skyline points

• NN and Skyline
– Huang and Jensen, W2GIS’04

• Each point-of-interest has 2 dimensions: minimum
distance to query point and minimum detour to pre-
defined route è dynamic skyline

• Limited setting
• Uses naïve in-memory skyline computation

Price# of roomsName
7020Hotel 1

4040Hotel 2

10040Hotel 3

7050Hotel 4

10060Hotel 5

1070Hotel 6

4080Hotel 7 # of rooms

price

Hotel Information

(price, #of rooms)

Skyline of hotels

x (longitude)

y (latitude)

p

Ö
Ö

Ö

Naïve Solution

For each point pi

iterate over points pj

if no point spatially
dominates pi then add pi to
spatial skyline

• Data P = {p1, p2, p3, p4}

• Query Q = {q1, q2}

• Distance D() = Euclidean

p1

p3

p4

Time Complexity: O(|P|2 |Q|)
|P|: number of data points, |Q|: number of query points

Dominance check?
D(p2, q1) ≤ D(p1, q1)

AND
D(p2, q2) ≤ D(p1, q2)

p2
q1

q2

6VLDB’06

Problem Definition
• Naïve approach

– Complexity: O(|P|2 |Q|)
|P|: number of data points, |Q|: number of query points

• Why a new algorithm is needed:
– Complexity of Naïve approach is high

• Each dominance check involves 2|Q| distance computation
operations: increases with more query points

– General skyline algorithms are either inapplicable or inefficient
• Due to dynamic spatial attributes

– Optimization opportunity
• The geometric properties of space can

be exploited

M S

x (longitude)

y (latitude)

7VLDB’06

Geometric Properties

• Complexity of Naïve approach: O(|P|2 |Q|)
– |P|: number of data points
– |Q|: number of query points

• We identify geometric properties to reduce this
complexity by reducing the number of :
– data points to be investigated
– query points that has no effect on the result

• Less and cheaper dominance checks
• We identify three properties …

8VLDB’06

Preliminaries: Voronoi Diagrams

Voronoi
Cell of p

p
p’

q

• Given a set of spatial objects, a Voronoi diagram uniquely partitions the space into disjoint
regions (cells).

• The region including object p includes all locations which are closer to p than to any other
object p’.

Point q inside the cell of p

<=>
D(q, p) <= D(q, p’)

Ordinary Voronoi
Diagram

Dataset:

Points

Distance D(.,.):

Euclidean (L2)

9VLDB’06

Geometric Properties

Data Point

Query Point

p

GP1: Any point p inside the convex hull of query
points Q is a spatial skyline point.

Intuition: circles defining the
dominator region of p intersect only
at p

Convex Hull of
query points

ü No Dominance
Check

Geometric Properties

p

q1
q2

q3

q4

GP2: The set of skyline points does not depend on any
query point q inside the convex hull of query points Q.

Intuition: circle corresponding to q4
does not change the dominator
region of p

Data Point

Query Point

Dominator
region of p

ü Cheaper Dominance Checks

Geometric Properties

p

GP3: Any point p whose Voronoi cell intersects with
the convex hull of Q is a spatial skyline point.

Data Point

Query Point

p’

Intuition: any query point inside
CH(Q) (including parts of VC(p))
should be closer to p’ that dominates
p -> contradiction

p’

ü No Dominance
CheckPerpendicular bisector line pp’

Algorithm: VS2

• VS2: Voronoi-based Spatial Skyline Algorithm
• Utilizes the geometric interpretation of the skyline

– With no dominance check, adds any data point p whose Voronoi
cell intersects with the convex hull of Q

– Performs cheaper dominance check only on a small subset of
points (neighbors of skyline points ~ O(S))

• Traverses the Voronoi Diagram* of data points

* Delaunay Graph

GP1
GP3

GP2

13VLDB’06

Algorithm: VS2

• Voronoi cell of point intersects with CH(Q) (GP3: no dominance check)• Voronoi Diagram of data points is given.• First, the convex hull of query points is computed.• Traversal is started from NN of qi towards minimizing a monotone function
• Use a minheap for traversal
• Check current point as all of its Voronoi neighbors have been traversed.
• point inside CH(Q) à GP1: The first skyline point was found.
• Apply dominance check as neither the point is in the CH(Q) nor its VC intersects
with CH(Q) (GP2: cheaper dominance check)
• Check with only the current spatial skyline points
• Each iteration extracts the Voronoi neighbors of the current point.
• Voronoi cell of point intersects with CH(Q) (GP3: no dominance check)
• No dominance check so far …
• point inside CH(Q) (GP1: no dominance check)• Voronoi cell of point intersects with CH(Q) (GP3: no dominance check)• Voronoi cell of point intersects with CH(Q) (GP3: no dominance check)

p
q

Contents of the heap

Top of the heap

• We check the top of heap when all of its neighbors are already in the heap.

14VLDB’06

Algorithm: VS2

• Traversal stops before reaching the dominance region of the current skyline set.
• We check only a small number of non-skyline points.

15VLDB’06

Algorithm: VS2

• Time Complexity: O(|S|2 |CHv(Q)| + Φ(|P|))
– Naïve: O(|P|2 |Q|)

• |S|: number of skyline points
• |CHv(Q)|: number of vertices of the convex hull of Q

(<= |Q|)
• Φ(|P|): complexity of finding the data point from

which VS2 starts traversing inside the convex hull of Q
(O(log(|P|)) with point location or O(|P|1/2))

• Space Complexity: O(|P|)
– Space required for ordinary Voronoi Diagram is O(|P|)

16VLDB’06

Algorithms: B2S2

• B2S2: Branch-and-Bound Spatial Skyline Algorithm
• Customization of BBS [Papadias et al.] for SSQs
• Uses some of the geometric properties of the skyline

(GP1 and GP2)
• Similar to BBS traverses an R-tree on data points
• Traversal order: specified by any monotone function

(e.g., mindist(p, CHv(Q)))

17VLDB’06

Performance Evaluation

• Dataset: USGS including one million locations
• R*-tree on data points for BBS and B2S2

• Pre-built Delaunay graph of data points for VS2

18VLDB’06

Performance Evaluation

0
0.5
1
1.5
2
2.5
3
3.5
4

2 4 6 8 10|Q|

CPU
cost
(sec)

BBS B2S2
VS2

•Max MBR(Q)=0.3%

•The difference in improvement of VS2 over BBS increases for larger query sets.

19VLDB’06

Performance Evaluation

0

1

2

3

4

5

6

2 4 6 8 10
|Q|

number of
dominance

checks
(x1000)

BBS B2S2
VS2

•Variations of B2S2 require less dominance checks than BBS.
•Note that each dominance check is cheaper in our VS2 and B2S2 algorithms.

20VLDB’06

Performance Evaluation

0

0.5

1

1.5

2

0.56% 1.60% 7% 15% 34%
Density

CPU
cost
(sec)

BBS B2S2
VS2

•Max |MBR(Q)| = 0.5%, |Q| = 6
•VS2 is also scalable with respect to the density of data (i.e., number of skyline points)

21VLDB’06

Conclusion and Future Work
• We introduced the spatial skyline queries.
• We exploited the geometric properties of its solution space.
• We proposed two algorithms:

– B2S2 that uses our properties to customize BBS for SSQs
– VS2 that utilizes a Voronoi diagram to minimize the number of dominance checks

• We proposed two variations of VS2 for:
– continuous spatial skyline query
– handling non-spatial attributes

• VS2 significantly outperforms its competitor approach BBS.

Future Work
• Addressing SSQ in other spaces
• Studying variations of SSQ

22VLDB’06

References

• Mehdi Sharifzadeh and Cyrus Shahabi, The
Spatial Skyline Queries, VLDB 2006, Seoul,
Korea, September 2006.

23

