
Instructor: Cyrus Shahabi

VoR-Tree: R-trees with Voronoi Diagrams for Efficient
Processing of Spatial Nearest Neighbor Queries

Outline
• Introduction

– Motivation: I/O-efficient spatial query processing
• Our Index Structure: VoR-tree

– Voronoi Diagram
– R-tree
– VoR-tree

• Query Processing Using VoR-tree
– Related works
– k Nearest Neighbor Query
– k Aggregate Nearest Neighbor Query
– Reverse k Nearest Neighbor Query

• Performance Evaluation
• Summary and Future Directions

VLDB 2010 (Singapore) 2

Motivation

VLDB 2010 (Singapore) 3

n Index-based processing of Nearest Neighbor queries

• Step 1:

Filtering through
iterative pruning

C R-trees

• Step 2:

Refinement through
exploration

D R-trees

• Algorithms utilize aggregate information to minimize I/O operations

q
Search Region of p:
a possible better
result must be inside
this region

candidate result p

• Spatial index provides fast access by hierarchical grouping

Motivation

VLDB 2010 (Singapore) 4

• Step 1:

Filtering through
iterative pruning

C R-trees

• Step 2:

Refinement through
exploration

C Voronoi diagrams

Search Region of p:
a possible better
result must be inside
this region

candidate result p

q

n Index-based processing of Nearest Neighbor queries
Traverse along edges of Delaunay graph to
minimize/maximize a function f …

Voronoi Diagrams

VLDB 2010 (Singapore) 5

Voronoi Cell of p

p
p’

q

• Given a set of spatial objects, a Voronoi diagram uniquely partitions the space into disjoint
regions (cells).

• The region including object p includes all locations which are closer to p than to any other
object p’.

Point q inside the cell of p

<=>
D(q, p) <= D(q, p’)

Ordinary Voronoi
Diagram

Dataset:

Points

Distance D(.,.):

Euclidean (L2)

Voronoi Neighbors of p

R-tree: Classic Spatial Index Structure

N3
N2N1

N5N4

p1

e1
N4 N5N3N2N1

N7N6

R
e3 e4 e5e2

e6 e7

p2 p3 p4 p5 p14p8p7 p10p9 p11 p12 p13p6

6VLDB 2010 (Singapore)

N7

N6

p9

p11

p10

p12

p13

p14

p1

p2

p3

p
7

p8
p4

p5

p6

Data Record of p1

x, y, …

• Hierarchical grouping of
objects into MBRs

• The best NN query
processing algorithms utilize
R-tree

• Algorithms utilize mindist()

VoR-tree = R-tree + Voronoi Diagram

p1

e1
N4 N5N3N2N1

N7N6

R
e3 e4 e5e2

e6 e7

p2 p3 p4 p5 p14p8p7 p10p9 p11 p12 p13p6

7VLDB 2010 (Singapore)

VN(p4) = { p5, p6, p12, p14, p8, p7 }
V(p4) = { a, b, c, d, e, f }
Voronoi Record of p4

p9

p11

p10

p12

p13

p14

p1

p2

p3

p
7

p8
p4

p5

p
6

a
b

c d

e

f

• Voronoi records are stored with the
data of each point

• All R-tree-based algorithms are still
applicable using VoR-tree

• VoR-tree facilitates exploring the
space (e.g., p4-p11)

• We incorporate Voronoi diagram into R-
tree -à VoR-tree

VN(p12)={…p10…}VN(p10)={…p11…} VN(p11)={…}

Query Processing using VoR-tree
C I/O-efficient query processing

– Use the information provided in VoR-tree
to find the result with the least number of
I/O operations

– When a candidate result p is found,
examine only the points inside the search
region of p

DDisk space overhead -> ok for
enterprise applications

VLDB 2010 (Singapore) 8

candidate result p

Search
Region of p

Related Work
• k Nearest Neighbor (kNN)

– Roussopoulos et al., SIGMOD’95
– Korn et al., VLDB’96
– Cheung et al., SIGMOD Record, 1998
– Seidl et al., SIGMOD’98
– Hjaltson et al., TODS 42(2), 1999
– Jung et al., IEEE TKDE 2002

• Reverse k Nearest Neighbor (RkNN)
– Korn et al., SIGMOD’00
– Yang et al., ICDE’01
– Stanoi et al., VLDB’01
– Benetis et al., VLDB Journal, vol. 15, 2006
– Tao et al., VLDB’04
– Wu et al., VLDB’08

• k Aggregate Nearest Neighbor (kANN)
– Papadias et al., ICDE’04
– Papadias et al., TODS 30(2), 2005

• Spatial Skyline
– Borzsonyi et al., ICDE’01
– Tan et al., VLDB’01
– Kossmann et al., VLDB’02
– Chomicki et al., ICDE’03
– Papadias et al., SIGMOD’03
– Sharifzadeh et al., VLDB’06, TODS’09

VLDB 2010 (Singapore) 9

kNN: k Nearest Neighbor Query
• Given: point q and int k
• Goal: find the k closest data

points to q; k points pi in P
where D(q,pi) <= D(q,p) for all
points p in P \ {p1,..,pk}

• R-tree-based Algorithm:
BFS [Hjaltson et al., TODS 1999]

• Our VoR-tree-based Algorithm:
VR-kNN

VLDB 2010 (Singapore) 10

q

p1

p3

p2

P
k = 3
3NN(q) = {p1, p2, p3}

VR-1NN: step 1

p1

e1
N4 N5N3N2N1

N7N6

R
e3 e4 e5e2

e6 e7

p2 p3 p4 p5 p14p8p7 p10p9 p11 p12 p13p6

p9

p11

p10

p12

p13

p14

p1

p2

p3

p
7

p8
p4

p5

p
6

q

N7

N6

minheap H

N7, 2
N6, 0

mindist(N7 , q)

mindist(N,q)= Lower
bound on the distance
between q and any
point in N

11VLDB 2010 (Singapore)

VR-1NN: step 1

p1

e1
N4 N5N3N2N1

N7N6

R
e3 e4 e5e2

e6 e7

p2 p3 p4 p5 p14p8p7 p10p9 p11 p12 p13p6

p9

p11

p10

p12

p13

p14

p1

p2

p3

p
7

p8
p4

p5

p
6

q

N7 minheap H

N1, 17
N2, 7N3

N2N1

N3, 3
N7, 2

N7, 2

12VLDB 2010 (Singapore)

VR-1NN: step 1

p1

e1
N4 N5N3N2N1

N7N6

R
e3 e4 e5e2

e6 e7

p2 p3 p4 p5 p14p8p7 p10p9 p11 p12 p13p6

p9

p11

p10

p12

p13

p14

p1

p2

p3

p
7

p8
p4

p5

p
6

q

minheap H

N3

N2N1

N3, 3
N2, 7
N1, 17

N5N4

N5, 2
N3, 3
N2, 7
N1, 17
N4, 26

13VLDB 2010 (Singapore)

VR-1NN: step 1

VLDB 2010 (Singapore) 14

p1

e1
N4 N5N3N2N1

N7N6

R
e3 e4 e5e2

e6 e7

p2 p3 p4 p5 p14p8p7 p10p9 p11 p12 p13p6

p9

p11

p10

p12

p13

p14

p1

p2

p3

p
7

p8
p4

p5

p
6

q

minheap H

N3

N2N1

N5N4

N3, 3
N2, 7
N1, 17
N4, 26

candidate 1st NN = p14

==> 1st NN = p14

VR-1NN terminates but BFS must examine N3 => D(q, p14) = 5 > mindist(q, N3)

VR-kNN: step 2

VLDB 2010 (Singapore) 15

p1

e1
N4 N5N3N2N1

N7N6

R
e3 e4 e5e2

e6 e7

p2 p3 p4 p5 p14p8p7 p10p9 p11 p12 p13p6

p9

p11

p10

p12

p13

p14

p1

p2

p3

p
7

p8
p4

p5

p
6

q

Lemma: 2nd NN of q is one of Voronoi neighbors of the 1st NN of q.
candidate 2nd NNs = {p4, p8, p13, p12}

==> 1st NN = p14

==> 2nd NN = p4

Finding more NNs by navigating
Voronoi diagram

VR-kNN: step 2

VLDB 2010 (Singapore) 16

p1

e1
N4 N5N3N2N1

N7N6

R
e3 e4 e5e2

e6 e7

p2 p3 p4 p5 p14p8p7 p10p9 p11 p12 p13p6

p9

p11

p10

p12

p13

p14

p1

p2

p3

p
7

p8
p4

p5

p
6

q

Lemma: kth NN of q is Voronoi neighbor of one of 1st, 2nd,…, k-1th NN of q.
candidate 3rd NNs = {p8, p13, p12 , p5, p6, p7}

==> 1st NN = p14

==> 2nd NN = p4

==> 3rd NN = p8

Finding more NNs by navigating
Voronoi diagram

VR-kNN

VLDB 2010 (Singapore) 17

p14

N3

q

Performance Improvements:
n Using Voronoi cells for 1NN

n e.g., no access to N3

n Using Voronoi neighbors for
kNN
n e.g., no access to N2 and N3 for k

< 5

I/O Complexity:
O(Φ(|P|) + k) where Φ(|P|) is the

complexity of finding the 1st

NN of q

p3

N2

N3
N1

qp2

p1p4

f = sum

adist(p1,Q) = 4+2+8 = 14

f = max

adist(p2,Q) = max(7,5,4) = 7

kANN: k Aggregate Nearest Neighbor
• Given: Q={q1, …, qn}, integer k, and

aggregate distance f
• adist(p,Q) = f(D(p,q1), …, D(p,qn))

• Goal: find k data points p with
smallest adist(p,Q)

• f=sum -> the points that minimize
the total distance to Q

• f=max -> the points that minimize
max distance to Q

• Variations: weighted sum, …

18
VLDB 2010 (Singapore)

q2
p1

8
2

4

q3

q1

p2 4

5
7

kANN
• R-tree-based Algorithm:

MBM [Papadias et al, TODS’05]

• Similar to BFS for kNN
• Heuristics to prune nodes

– Lower bounds on adist(p’, Q) :
– adist(p’, Q) = f(D(p’, q1), …) >=

amindist(N, MBR(Q)) =
f(mindist(N, MBR(Q)), …)

– adist(p’, Q) = f(D(p’, q1), …) >=
amindist(N, Q) =

f(mindist(N, q1), …)
• Problem: too conservative

à No optimal coverage of SR

N

MBR(Q)

q2

q1

q3

> adist(p, Q) à do not access N

> adist(p, Q) à do not access N

Assume: candidate result = p

p’

19VLDB 2010 (Singapore)

p'

VR-kANN

• Search Region of p for f=sum
p’ where adist(p’, Q) <= adist(p, Q)

• Co-circular areas for many functions
• VR-kANN’s two steps:

1. Find a point close to the 1st ANN of Q
q in R2 = centroid of Q that minimizes adist() =
center of all SRs

2. Traverse the space using Voronoi diagram to
finalize the result

• To ensure the coverage
amindist(V(p’), Q) <= adist(p,Q)
Use to check that V(p’) is intersecting SR
(p’ may be outside the search region but its

voronoi still overlaps so exploration should
continue)

q2

q1

q3

Assume: candidate result = p

p p’
q

20

VR-kANN

VLDB 2010 (Singapore) 21

q3

q2
q q1

b

• find b, the closest point to
centriod q (use VR-1NN)

• add b’s neighbors into a
minheap H ordered by F()

• add each visited point to
candidate result

• iterate: remove the top, add its
neighbors to H

• STOP condition: return a
candidate a when adist(a,Q) <=
key of top of H (we’ve covered b’s
SR)

• NOTE: key of top of H is lower bound on sum()
for all extracted points. min(amindist(V(p’),Q)) à
we have covered p’s SR

a

c

Contents of the heap

Extracted Points

F(p): lower bound of sum(p’,Q) for p’ in V(p)

Continue to cover more SRs and find more results …

VR-kANN

VLDB 2010 (Singapore) 22

Performance Improvements:
n Using Voronoi cells to cover

SR
n e.g., heuristics used by MBM

[Papadias et al., TODS 30(2), 2005] suggests
to examine N but no access to N
in VR-kANN

I/O Complexity:
O(Φ(|P|) + k) where Φ(|P|) is the

complexity of finding the cell
including centroid q

q2

q1

q3

p

N

MBR(Q)

RkNN: Reverse k Nearest Neighbor Query

• Given: point q and int k
• Goal: find the data points that

have q as one of their k NN;
points p in P where D(q,p) <=
D(q,pk) where pk is k-th NN of p

• R-tree-based Algorithm:
TPL [Tao et al., VLDB’04]

• VR-RkNN: Uses two filters based on:
– L1: k-th RNN of q is in less than k distance from q
– L2 [Stanoi et al., VLDB’01]: RkNN of q is one of q’s kNNs in each

partition S
• Briefly, VR-RkNN locates q in VD, navigate to the

points less than k points away from q, stop when q’s
kNN in each sector is found

P

R1NN(q) = {p1}
R2NN(q) = {p1, p2}

qp1

p3 = 1NN(p1)

p2

p4 = 2NN(p2)

S

Spatial Skyline Query [VLDB’06, TODS’09]

• Given: Q={q1, …, qn}
• Goal: find data points p for which

there is no point closer than p to all qi’s
• R-tree-based Algorithm:

B2S2 [Sharifzadeh et al., VLDB’06]

• Voronoi-based Algorithm:
VS2 [Sharifzadeh et al., VLDB’06]

• VR-S2: similar to VS2 and VR-kANN
• Improvement over B2S2 and VS2

– Fixing the stop condition:
• If amindist(V(p), Q) <= adsit (top, Q)

then we need to examine P
– I/O-optimality
– Ability to report in the order of given

function

q2

q3

q1

p1

p2

24

Performance Evaluation

VLDB 2010 (Singapore) 25

n Real-world datasets (data points):
n USGS including one million locations in U.S.
n NE including 124K locations in New York, Philadelphia and Boston

n Methodology: issuing 1000 NN queries of each type with
random query points

n Evaluating VoR-tree-based algorithms
n Number of accessed disk pages (I/O cost)

n Parameters
n Size of result set (k) for kNN, RkNN, and kANN
n Number of query points (|Q|) for kANN and SSQ
n Extent of query points (size of MBR(Q)) for kANN and SSQ

n Competitor approaches:
n BFS [Hjaltson et al., TODS 1999] for kNN
n MBM [Papadias et al., TODS 30(2), 2005] for kANN
n TPL [Tao et al., VLDB’04] for RkNN

Performance Evaluation

0
5
10
15
20
25
30
35

1 4 16 64 256
k

VR-kNN BFS

VLDB 2010 (Singapore) 26

n Dataset: USGS
n I/O cost of VR-kNN
n Competitor approach:

n BFS that utilizes an R-tree
on data points

N
um

be
r o

f a
cc

es
se

d
pa

ge
s

• VR-kNN examines less
number of disk pages when k
grows

• Up to 18% improvement for
large k

Performance Evaluation

0

10

20

30

40

50

60

1 4 16 64 256k

VR-kANN MBM

VLDB 2010 (Singapore) 27

n Dataset: USGS
n I/O cost of VR-kANN
n Competitor approach:

n MBM that utilizes an R-tree
on data points

N
um

be
r o

f a
cc

es
se

d
pa

ge
s

• Up to 64% improvement for VR-
kANN

• VR-kANN’s I/O is almost half of
MBM’s for small k

• for large k, they converge

Performance Evaluation

1

10

100

1000

10000

100000

1 4 16 64
k

VR-RkNN TPL

VLDB 2010 (Singapore) 28

n Dataset: USGS
n I/O cost of VR-RkNN
n Competitor approach:

n TPL that utilizes an R-tree
on data points

N
um

be
r o

f a
cc

es
se

d
pa

ge
s

• Logarithmic scale

• VR-RkNN’s I/O is much less than TPL
(0.1% even for small k)

• TPL uses a very conservative filter
because the best theoretical filter is very
complex to compute so it collects large
candidate sets. VR-RkNN instead used
Voronoi neighborhood information.

• TPL examines almost all pages for large k

Summary and Future Directions
• We designed VoR-tree = R-tree + Voronoi

diagram
• We developed I/O-efficient algorithms for NN

queries
• We showed that our algorithms outperform

their R-tree-based competitors
• Future Work:

– Utilizing VoR-tree for other spatial spaces
– Extending algorithms for non-point datasets

VLDB 2010 (Singapore) 29

References

• M. Sharifzadeh and C. Shahabi, " VoR-Tree: R-
trees with Voronoi Diagrams for Efficient
Processing of Spatial Nearest Neighbor
Queries", VLDB 2010, Singapore, Sep 2010.

30

