
Instructor: Cyrus Shahabi

VoR-Tree: R-trees with Voronoi Diagrams for Efficient 
Processing of Spatial Nearest Neighbor Queries



Outline
• Introduction

– Motivation: I/O-efficient spatial query processing
• Our Index Structure: VoR-tree

– Voronoi Diagram
– R-tree
– VoR-tree

• Query Processing Using VoR-tree
– Related works
– k Nearest Neighbor Query
– k Aggregate Nearest Neighbor Query
– Reverse k Nearest Neighbor Query

• Performance Evaluation
• Summary and Future Directions

VLDB 2010 (Singapore) 2



Motivation
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n Index-based processing of Nearest Neighbor queries

• Step 1:

Filtering through 
iterative pruning

C R-trees

• Step 2:

Refinement through 
exploration

D R-trees

• Algorithms utilize aggregate information to minimize I/O operations

q
Search Region of p: 
a possible better 
result must be inside 
this region

candidate result p

• Spatial index provides fast access by hierarchical grouping



Motivation
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• Step 1:

Filtering through 
iterative pruning

C R-trees

• Step 2:

Refinement through 
exploration

C Voronoi diagrams

Search Region of p: 
a possible better 
result must be inside 
this region

candidate result p

q

n Index-based processing of Nearest Neighbor queries
Traverse along edges of Delaunay graph to 
minimize/maximize a function f …



Voronoi Diagrams
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Voronoi Cell of p

p
p’

q

• Given a set of spatial objects, a Voronoi diagram uniquely partitions the space into disjoint 
regions (cells).

• The region including object p includes all locations which are closer to p than to any other 
object p’.

Point q inside the cell of p

<=>
D(q, p) <= D(q, p’)

Ordinary Voronoi 
Diagram

Dataset:

Points

Distance D(.,.):

Euclidean (L2)

Voronoi Neighbors of p



R-tree: Classic Spatial Index Structure
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6VLDB 2010 (Singapore)

N7

N6

p9

p11

p10

p12

p13

p14

p1

p2

p3

p
7

p8
p4

p5

p6

Data Record of p1

x, y, …

• Hierarchical grouping of 
objects into MBRs

• The best NN query 
processing algorithms utilize 
R-tree

• Algorithms utilize mindist()



VoR-tree = R-tree + Voronoi Diagram

p1

e1
N4 N5N3N2N1

N7N6

R
e3 e4 e5e2

e6 e7

p2 p3 p4 p5 p14p8p7 p10p9 p11 p12 p13p6

7VLDB 2010 (Singapore)

VN(p4) = { p5, p6, p12, p14, p8, p7 }
V(p4) = { a, b, c, d, e, f }
Voronoi Record of p4
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• Voronoi records are stored with the 
data of each point

• All R-tree-based algorithms are still 
applicable using VoR-tree

• VoR-tree facilitates exploring the 
space (e.g., p4-p11)

• We incorporate Voronoi diagram into R-
tree  -à VoR-tree

VN(p12)={…p10…}VN(p10)={…p11…} VN(p11)={…}



Query Processing using VoR-tree
C I/O-efficient query processing

– Use the information provided in VoR-tree 
to find the result with the least number of 
I/O operations

– When a candidate result p is found, 
examine only the points inside the search 
region of p

DDisk space overhead -> ok for 
enterprise applications
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candidate result p

Search 
Region of p
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kNN: k Nearest Neighbor Query
• Given: point q and int k
• Goal: find the k closest data 

points to q; k points pi in P
where D(q,pi) <= D(q,p) for all 
points p in P \ {p1,..,pk}

• R-tree-based Algorithm:
BFS [Hjaltson et al., TODS 1999]

• Our VoR-tree-based Algorithm:
VR-kNN
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q

p1

p3

p2

P
k = 3
3NN(q) = {p1, p2, p3}



VR-1NN: step 1
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mindist(N7 , q)

mindist(N,q)= Lower 
bound on the distance 
between q and any 
point in N
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VR-1NN: step 1
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VR-1NN: step 1
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VR-1NN: step 1
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candidate 1st NN = p14

==> 1st NN = p14

VR-1NN terminates but BFS must examine N3 =>  D(q, p14) = 5 > mindist(q, N3)



VR-kNN: step 2

VLDB 2010 (Singapore) 15

p1

e1
N4 N5N3N2N1

N7N6

R
e3 e4 e5e2

e6 e7

p2 p3 p4 p5 p14p8p7 p10p9 p11 p12 p13p6

p9

p11

p10

p12

p13

p14

p1

p2

p3

p
7

p8
p4

p5

p
6

q

Lemma: 2nd NN of q is one of Voronoi neighbors of the 1st NN of q. 
candidate 2nd NNs = {p4, p8, p13, p12}

==> 1st NN = p14

==> 2nd NN = p4

Finding more NNs by navigating 
Voronoi diagram



VR-kNN: step 2
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Lemma: kth NN of q is Voronoi neighbor of one of 1st, 2nd,…, k-1th NN of q. 
candidate 3rd NNs = {p8, p13, p12 , p5, p6, p7}

==> 1st NN = p14

==> 2nd NN = p4

==> 3rd NN = p8

Finding more NNs by navigating 
Voronoi diagram



VR-kNN
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p14

N3

q

Performance Improvements:
n Using Voronoi cells for 1NN

n e.g., no access to N3

n Using Voronoi neighbors for 
kNN
n e.g., no access to N2 and N3 for k 

< 5

I/O Complexity:
O(Φ(|P|) + k) where Φ(|P|) is the 

complexity of finding the 1st

NN of q

p3

N2

N3
N1

qp2

p1p4



f = sum

adist(p1,Q) = 4+2+8 = 14

f = max

adist(p2,Q) = max(7,5,4) = 7

kANN: k Aggregate Nearest Neighbor
• Given: Q={q1, …, qn}, integer k, and 

aggregate distance f
• adist(p,Q) = f(D(p,q1), …, D(p,qn))

• Goal: find k data points p with 
smallest adist(p,Q)

• f=sum -> the points that minimize 
the total distance to Q

• f=max -> the points that minimize 
max distance to Q

• Variations: weighted sum, …

18
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kANN
• R-tree-based Algorithm:

MBM [Papadias et al, TODS’05]

• Similar to BFS for kNN
• Heuristics to prune nodes

– Lower bounds on adist(p’, Q) :
– adist(p’, Q) = f(D(p’, q1), …) >= 

amindist(N, MBR(Q)) =
f(mindist(N, MBR(Q)), …)

– adist(p’, Q) = f(D(p’, q1), …) >=      
amindist(N, Q) =

f(mindist(N, q1), …)
• Problem: too conservative

à No optimal coverage of SR

N

MBR(Q)

q2

q1

q3

> adist(p, Q)      à do not access N

> adist(p, Q)     à do not access N

Assume: candidate result = p

p’
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p'

VR-kANN

• Search Region of p for f=sum
p’ where adist(p’, Q) <= adist(p, Q)

• Co-circular areas for many functions
• VR-kANN’s two steps:

1. Find a point close to the 1st ANN of Q
q in R2 = centroid of Q that minimizes adist() = 
center of all SRs

2. Traverse the space using Voronoi diagram to 
finalize the result

• To ensure the coverage 
amindist(V(p’), Q) <= adist(p,Q)
Use to check that V(p’) is intersecting SR 
(p’ may be outside the search region but its 

voronoi still overlaps so exploration should 
continue)

q2

q1

q3

Assume: candidate result = p

p p’
q
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VR-kANN

VLDB 2010 (Singapore) 21

q3

q2
q q1

b

• find b, the closest point to 
centriod q (use VR-1NN)

• add b’s neighbors into a 
minheap H ordered by F()

• add each visited point to 
candidate result

• iterate: remove the top, add its 
neighbors to H

• STOP condition: return a 
candidate a when adist(a,Q) <= 
key of top of H (we’ve covered b’s
SR)

• NOTE: key of top of H is lower bound on sum() 
for all extracted points. min(amindist(V(p’),Q))  à
we have covered p’s SR

a

c

Contents of the heap

Extracted Points

F(p): lower bound of sum(p’,Q) for p’ in V(p)

Continue to cover more SRs and find more results …



VR-kANN
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Performance Improvements:
n Using Voronoi cells to cover 

SR
n e.g., heuristics used by MBM 

[Papadias et al., TODS 30(2), 2005] suggests 
to examine N but no access to N 
in VR-kANN

I/O Complexity:
O(Φ(|P|) + k) where Φ(|P|) is the 

complexity of finding the cell 
including centroid q

q2

q1

q3

p

N

MBR(Q)



RkNN: Reverse k Nearest Neighbor Query

• Given: point q and int k
• Goal: find the data points that 

have q as one of their k NN; 
points p in P where D(q,p) <= 
D(q,pk) where pk is k-th NN of p

• R-tree-based Algorithm:
TPL [Tao et al., VLDB’04]

• VR-RkNN: Uses two filters based on:
– L1: k-th RNN of q is in less than k distance from q
– L2 [Stanoi et al., VLDB’01]: RkNN of q is one of q’s kNNs in each 

partition S
• Briefly, VR-RkNN locates q in VD, navigate to the 

points less than k points away from q, stop when q’s 
kNN in each sector is found

P

R1NN(q) = {p1}
R2NN(q) = {p1, p2}

qp1

p3 = 1NN(p1)

p2 

p4 = 2NN(p2)

S



Spatial Skyline Query [VLDB’06, TODS’09]

• Given: Q={q1, …, qn}
• Goal: find data points p for which

there is no point closer than p to all qi’s
• R-tree-based Algorithm:

B2S2 [Sharifzadeh et al., VLDB’06]

• Voronoi-based Algorithm:
VS2 [Sharifzadeh et al., VLDB’06]

• VR-S2: similar to VS2 and VR-kANN
• Improvement over B2S2 and VS2

– Fixing the stop condition: 
• If amindist(V(p), Q) <= adsit (top, Q) 

then we need to examine P
– I/O-optimality
– Ability to report in the order of given 

function

q2

q3

q1

p1

p2
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Performance Evaluation
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n Real-world datasets (data points):
n USGS including one million locations in U.S.
n NE including 124K locations in New York, Philadelphia and Boston

n Methodology: issuing 1000 NN queries of each type with 
random query points

n Evaluating VoR-tree-based algorithms
n Number of accessed disk pages (I/O cost)

n Parameters
n Size of result set (k) for kNN, RkNN, and kANN
n Number of query points (|Q|) for kANN and SSQ
n Extent of query points (size of MBR(Q)) for kANN and SSQ

n Competitor approaches:
n BFS [Hjaltson et al., TODS 1999] for kNN
n MBM [Papadias et al., TODS 30(2), 2005] for kANN
n TPL [Tao et al., VLDB’04] for RkNN



Performance Evaluation
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n Dataset: USGS
n I/O cost of VR-kNN
n Competitor approach:

n BFS that utilizes an R-tree 
on data points

N
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• VR-kNN examines less 
number of disk pages when k 
grows

• Up to 18% improvement for 
large k



Performance Evaluation
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n Dataset: USGS
n I/O cost of VR-kANN
n Competitor approach:

n MBM  that utilizes an R-tree 
on data points
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• Up to 64% improvement for VR-
kANN

• VR-kANN’s I/O is almost half of 
MBM’s for small k

• for large k, they converge



Performance Evaluation
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n Dataset: USGS
n I/O cost of VR-RkNN
n Competitor approach:

n TPL that utilizes an R-tree 
on data points
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• Logarithmic scale

• VR-RkNN’s I/O is much less than TPL 
(0.1% even for small k)

• TPL uses a very conservative filter 
because the best theoretical filter is very 
complex to compute so it collects large 
candidate sets. VR-RkNN instead used 
Voronoi neighborhood information.

• TPL examines almost all pages for large k



Summary and Future Directions
• We designed VoR-tree = R-tree + Voronoi 

diagram
• We developed I/O-efficient algorithms for NN 

queries
• We showed that our algorithms outperform 

their R-tree-based competitors
• Future Work:

– Utilizing VoR-tree for other spatial spaces
– Extending algorithms for non-point datasets
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