

Time Parameterized Queries in Spatio Temporal Databases

Instructor: Cyrus Shahabi

Outline

- Introduction
- Related work
- TP Queries
 - TP Window Query
 - TP K Nearest Neighbor Query
 - TP Join Query
- Conclusion

Introduction

- Conventional Queries
- Continuos Queries
- Time Parameterized Queries

Conventional Queries

- These are the traditional *'instantaneous'* queries that are evaluated only once to return a single result .
- Are these type of queries reliable in dynamic environments?
 - No!
- Why?
 - The results of a conventional query may be invalidated very soon due to the movements of objects and queries
 - E.g., Which are my nearest gas stations now?

Continuous Queries

- What is Continuous Queries?
 - Moving objects only
 - Moving queries only
 - Both
- How to deal with such queries? Updates!
 - When to update?
- Due to their dynamic nature , the result of any query is strongly related to the temproal context.

Time Parameterized Queries

- Time Parameterized queries (TP) , whenever a query is issued , a TP returns
 - The actual result that satisfies the corresponding spatial query.
 - The validity period/expiration time of the result.
 - The change that cause the expiration of the results.

Time Parameterized Queries

• Time Parameterized Query

Time Parameterized Queries

- Instead of Updates:
 - Here the objects dynamic behaviour does not necessarily require updates, but can be stored as a function of time using appropriate indexes.
- All TP queries could be reduced to:
 - Some form of NN search
- Could be applied in
 - Moving object
 - Moving query
 - Both

Related Work

- Time Parameterized R-tree (TPR tree)
 - TPR-tree is an extension of an R-tree that can answer prediction queries on dynamic objects.
- Branch and Bound (BaB) Algorithm
 - Using R-tree for NN queries
 - Bound: Min-dist, minmax-dist
 - Different searching manner:
 - Depth first (DF) traversing
 - Best first (BF) traversing

Time Parameterized tree

- Key Features:
 - A dynamic object is represented with an MBR that bounds its extents at the current time and each dynamic object has a velocity vector.
 - Future MBRs are not stored explicitly but computed based on current extents and velocity vectors
 - As in a traditional R-tree the extents are such that the MBR tightly encloses all entries in the node at current time.

Time Parameterized tree

• Different edge velocities will cause the object to grow or shrink with time.

Time Parameterized(TP) queries

- Introduction
- TP Window Query
- TP K Nearest Neighbor Query
- TP Join Query

Time Parameterized(TP) queries

- Intro: Output form <R,T,C>
 - R- set of objects satisfying the query (current result)
 - T- is the expiry time of the results
 - C- set of objects that will affect R at time T (<T,C> TP component)

Time Parameterized(TP) queries

- Influence Time
 - Some objects influence the query at current time, but not in the future
 - Some objects are not currently in the result, but they may influence the query in the future.

TP window query

- To find the influence time $T_{INF}(o,q)$ of an object o, with the query window q, we need the intersection period $[T_S, T_E)$ during which o will intersect q.

- u -> [0,1)

TP window query

• What is the intersection time for u,v,w ?

-v > [1,3) $\mathbf{\Phi} \mathbf{v}$ axis **∙**v axis 1010v(3)q(3)v(1) 6 6 q(1)4 4 u(1) w dissappears u(3)2 2 x axisx axis 10 8 0 6 0 2 6 8 2 4 (b) At time 1 (c) At time 3

TP window query

- For the i-th dimension:
 - Notation:
 - Object: MBR- [o_{iL}, o_{iR}] Velocity-[o.V_{iL}, o.V_{iR}]
 - Query: MBR- [q_{iL}, q_{iR}] Velocity-[q.V_{iL}, q.V_{iR}]
- Disappearance Time (o.T_{iDSP})
 - $o.T_{iDSP} = (o_{iR} o_{iL}) / (o.V_{iL} o.V_{iR})$
 - The intersection between query and objects should happen before they disappear.
 - The influence time $T_{inf}(o,q)$ should be no later than
 - Min(o.T_{DSP}, q.T_{DSP})

TP window query

- Core task:
 - Find intersects $[T_s, T_e)$ between object and query
 - Object o and query intersects if and only if they intersect along all dimensions
- Computation: (for dimension i)
- If objects do not intersect then:
 - T_{iLR}: Time the leftmost point of object meet the rightmost point of query
 - T_{iRL} : Time the rightmost point of object meet the leftmost point of query
 - T_{is} = min (T_{iLR}, T_{iRL})
 - $T_{ie} = min (max(T_{iLR}, T_{iRL}), o.T_{DSP}, q.T_{DSP})$
- If objects already intersect then $T_{is} = 0$, and $T_{ie}=min(T_{iLR}, T_{iRL}, o.T_{DSP}, q.T_{DSP})$
- $[T_s, T_e) = \cap [T_{is}, T_{ie})$

TP window query

- Important Notation:
 - Intersection Period: $[T_s, T_e]$: the time that object and query intersect
 - Influence time T_{INF} (o,q):
 - If o does not currently intersect the query
 - $T_{INF} (o,q) = T_s$
 - If o is currently intersecting the query
 - $T_{INF} (o,q) = T_e$
 - The expiry time of the current result is the minimum influence time of all objects

Window Query processing

- Both Best-FS and DFS can be used for processing TP queries.
- Algorithm:
 - Start with R = Null, T = infinity, C = Null
 - For each object o
 - If o satisfy q, then $R = R \cup \{o\}$
 - If T_{INF}(o,q) < T
 - C={o}
 - $T = T_{INF}(o,q)$
 - Else if T_{INF}(o,q) = T
 - C = C U{o}

Example:

• Assuming their velocity is 1.

TP window query – Intermediate Node

- Influence time of the intermediate Entry E corresponds to the minimum possible influence time of any object in the subtree of E
- If E does not intersect with q, then T_{INF}(E,q) is the time E starts intersecting with q – because this is also the earliest time when any of the objects inside E can intersect (influence) q

TP window query -- Intermediate Node

USC Viterbi

• If E intersects q, then two cases:

TP NN query

- Start with single NN
 - Influence time is no longer intersection period.
 - Instead, it is the time the object becomes the NN result.
 - $-T_{INF}$ is the minimum t that satisfies:
 - Dist(o(t), q(t)) < Dist (P_{NN}(t), q(t))
 - P_{NN} is the current NN of q.

TP NN query

- Influence time of the Intermediate Entry E
 - Use mindist as the dist between q and E

TP NN query

• Simpler Calculation (underestimates *mindist* (to ensure the correctness of BaB algorithms).

containing the point

mindist at current time

TP join query

- A Join query returns all pairs of objects from two datsets that satisfy some spatial condition. (e.g., Intersection)
- A join result can change in the future when,
 - A pair of objects in the current result ceases to satisfy the join condition
 - New objects start satisfying the join condition
- TP join can be regarded as a closest pair query by treating T_{INF}(01,02), instead of T_{INF}(q,0)

TP join query

• Influence time of object pairs

	A ₁	A ₂	A_3	A_4	A_5
B_1	3	8	8	8	8
<i>B</i> ₂	8	8	1	8	8
B_3	8	8	8	4	2

 The expiry time is the minimum influence time (i.e., T_{INF}(A₃,B₂)=I).

Conclusion

- Introduction of the novel concept of timeparameterized queries.
- Techniques for transforming the most common spatial queries to their TP counterparts.
- Development of efficient processing methods.

• Drawbacks?

References

 Tao, Y. & Papadias, D. <u>Time-parameterized</u> <u>queries in spatio-temporal databases</u>.
 SIGMOD Conference, 2002, 334-345.A presentation by Penny Pan in csci587 Fall'2010

Practice

- Queries / objects are aligned with integer coordinates
 - All arrows mean1 grid/time velocity
- Question:
 - What is the
 Influence time
 of all objects?
 What is the
 Query result
 Using TP strategy
 during time [0,3)?

