LR

. Spatial Index Structures

L M:,:g

Cyrus Shahabi

Computer Science Department
University of Southern California
shahabi@usc.edu

>

Outline

e —

LA

® .« Introduction
S8« Spatial Indexing
= R-Tree
= R*-Tree
' = Quad Trees

c. srl‘a'lrr!ml’




Introduction

= Spatial objects
- Points, lines, rectangles, regions, ...
= Hierarchical data structures

— Based on recursive decomposition, similar to divide and
conquer method, like B-tree.

= Why not B-Tree?
— More than one dimension
— Concept of closeness relies on all the dimensions of the
spatial data
.= Spatial index structures demo
- http://www.cs.umd.edu/~brabec/quadtree/index.html

Spatial Indexing

= Mapping spatial object into point
— In either same, lower, or higher dimensional spaces
— Good for storage purposes
— Problems with queries like finding the nearest objects

» Bucketing methods
— Based on spatial occupancy
— Decomposing the space from which the data is drawn
+ Minimum bounding rectangle (MBR) : e.g., R-Tree
+ Disjoint cells: e.g., R*-Tree
. Bl.ocl.<s of uniform size } greater degree of
« Distribution of the data: e.g., quadtree data-independence

} data-dependent

Fj-u ‘::"
c. srl‘a'lrr!ml’




R-Tree

[proposed in 1984 by Guttman]

“ « Based on Minimum Bounding Rectangle
(mM)=(1,3)

»bounding rectangles could overlap each others (e.g., R3 vs R4)
»>an object is only associated with one bounding rectangle

R-Tree

[proposed in 1984 by Guttman]

= Height-balanced tree similar to B-tree for k-dimensions

= Every leaf node contains between m (m <M/2) and M index
records, unless it is the root

= For each index record (I, tuple-identifier) in a leaf node, I is the
MBR that contains the n-dimensional data object represented by
the indicated tuple

= Every non-leaf node has between m and M children unless it is
the root

= For each entry (1, child-pointer) in a non-leaf node, | is the MBR
that spatially contains the rectangles in the child node.

= All leaves appear on the same level
. = The root node has at least two children unless it is a leaf

F?u ‘::"
c. srl‘a'lrr!ml’




Different variant:
*Exhaustive
Install X SplitNode Quadratic
= e|inear
~ Adjust all related entries  «Packed
*Hilbert Packed
....etC.

AdjustTree

(page 52 in Guttman’s paper)

Pick first entry for each group
Run PickSeeds

F:u ‘::"
c. srl‘a'lrr!ml’




F:u ‘::"
c. srl‘a'lrr!ml’

PickSeeds

PS1 [Calculate inefficiency of grouping entries
together]

For each pair of E1 and E2, compose a
rectangle R including E1 and E2

Calculate d = area(R) - area(E1) - area(E2)

8 PS2 [Choose the most wasteful pair ]

Choose the pair with the largest d

Pick first entry for each group
(PickSeeds)

Select entry to assign
(PickNext)




“i— " Processes of Quadratic Spilt
(page 52 in Guttman’s paper)

Pick first entry for each group
(PickSeeds)

PN1 [Determine cost of putting each entry in each

| group] For each entry E

| calculate d1 = the increased MBR area required for G1
calculate d2 = the increased MBR area required for G2

| PN2 [Find entry with greatest preference for one group]
Choose the entry with the maximum difference
| between d1 and d2

c sl

= — " Processes of Quadratic Spilt

(page 52 in Guttman’s paper)

Pick first entry for each group
(PickSeeds)

Select entry to assign
(PickNext)

Fj-u ‘::"
c. srl‘a'lrr!ml’



Pick first entry for each group
(PickSeeds)

Select entry to assign
(PickNext)

Pick first entry for each group
(PickSeeds)

Select entry to assign
(PickNext)

F:u ‘::"
c. srl‘a'lrr!ml’




Processes of Quadratic Spilt
(page 52 in Guttman’s paper)

Pick first entry for each group
(PickSeeds)

Select entry to assign
(PickNext)

'

yie o o Build a R-Tree for these spatial data

s Hint: You could use the Spatial index structures demo
B application step by step

Fj-ﬁ ‘::"
c. srl‘a'lrr!ml’




_—

Main Drawbacks of R-Tree

' il = R-tree is not unique, rectangles depend on how
T objects are inserted and deleted from the tree.
"« In order to search some object you might have to
go through several rectangles or the whole
database
— Why?
— Solution?

Fj-ﬁ ::"
c. srl‘a'lrr!ml’



R*-Tree

- = Overcome problems with R-Tree
= |f node overlaps with several rectangles insert the node in all
, = Decompose the space into disjoint cells

.

R*-Tree Properties

» R+-tree and cell-trees used approach of discomposing
space into cells
— R+-trees deals with collection of objects bounded by rectangles

— Cell tree deals with collection of objects bounded by convex
polyhedron

= R+-trees is extension of k-d-B-tree

= Retrieval times are smaller

= When summing the objects, needs eliminate duplicates
= Again, it is data-dependent

F-u ‘::"
c. srl‘a'lrr!ml’

10



Quad Trees

» Region Quadtree
— The blocks are required to be disjoint
Have standard sizes (squares whose sides are power of two)
At standard locations

Based on successive subdivision of image array
into four equal-size quadrants

If the region does not cover the entire array, subdivide into
quadrants, sub-quadrants, etc.

— A variable resolution data structure

) /_j
US

" Example of Region Quaditree

Fj-u ‘::"
c. srl‘a'lrr!ml’

11



PR Quadtree

= PR (Point-Region) quadtree
= Regular decomposition (similar to Region quadtree)

, = Independent of the order in which data points are inserted into it
= ®: if two points are very close, decomposition can be very deep

Example of PR Quadtree

(100,100)

Toronto

Seattle

Toronto Buffalo Denver
(62,77) (8265 (5:45)

(100,0)

— . A Chicago Omaha
Subdivide into quadrants until the two (3542) (21.35) L —

points are located in different regions (905) (85.15)

12



PM Quadtree

= PM (Polygonal-Map) quadtree family
- PM1 quadtree, PM2 quadtree, PM3 quadtree, PMR quadtree, ... etc.

= PM1 quadtree
— Based on regular decomposition of space
— Vertex-based implementation
— Criteria
+ At most one vertex can lie in a region represented by a quadtree leaf

« Ifaregion contains a vertex, it can contain no partial-edge that does not
include that vertex

« [faregion contains no vertices, it can contain at most one partial-edge

e O

" PM1 quadtree

BICE AN

PM2 quadtree

B G2

5

13



(100100) . Each node in a PM quaditree

is a collection of partial edges
(and a vertex)

. Each point record has two
field (x,y)

. Each partial edge has four
field (starting_point,
ending_point, left region, right
region)

(100,0)

Question?

= Question?

Fj-u ‘::"
c. srl‘a'lrr!ml’

14



> Py /ﬁ
B
e

.l B-Tree: Definition

A B-Tree of order M is a height-balanced tree
1. All leaves are on the same level
2. All nodes have at most M children
3. All internal nodes the root have at least M/2 children

=m

A new index entry

Has room

F?u ‘::"
c. srl‘a'lrr!ml’

15



