Session 7: Object-Relational Databases (overview)
CSCI-585, Cyrus Shahabi

Relational databases (2" generation) were designed for
traditional banking-type applications with well-structured,
homogenous data elements (vertical & horizontal homogeneity)
and a minimal fixed set of limited operations (e.g., set & tuple-
oriented operations).

New applications (e.g., CAD, CAM, CASE, OA, and CAP),

however, require concurrent modeling of both data and

processes acting upon the data.

Hence, a combination of database and software-engineering

disciplines lead to the 3" generation of database management

systems: Object Database Management Systems, ODBMS.

Note that a classic debate in database community is that do we

need a new model or relational model is sufficient and can be

extended to support new applications.

People in favor of relational model argue that:

* New versions of SQL (e.g., SQL-92 and SQL3) are designed
to incorporate functionality required by new applications
(UDT, UDF, ...).

 Embedded SQL can address almost all the requirements of
the new applications.

“Object people”, however, counter-argue that in the above-

mentioned solutions, it is the application rather than the inherent

capabilities of the model that provides the required

functionality.

Object people say there is an impedance mismatch between

programming languages (handling one row of data at a time)



and SQL (multiple row handling) which makes conversions

inefficient.

Relational people say, instead of defining new models, let’s

introduce set-level functionality into programming languages.

What do you think?

Read “Evolution of Data Management” by Jim Gray.

Read “Object-Relational DBMS — The Next Wave” by Michael

Stonebraker. (Both members of National Academy of

Engineering.)

Other problems with RDBMS:

» Short-lived transactions

» Schema changes are difficult: most organizations are locked
into their existing database structures. Taylor in 1992 said:
Organizations are unable to make these changes because they
cannot afford the time and expense required modifying their
information systems (sounds familiar? Y2K, Euro, ...).

» Poor at navigational access (moving between
records/objects), and strong in content-based associative
access (e.g., navigate your family tree with “people” relation
in SQLY).



