
Session 7: Object-Relational Databases (overview)
CSCI-585, Cyrus Shahabi

• Relational databases (2nd generation) were designed for

traditional banking-type applications with well-structured,
homogenous data elements (vertical & horizontal homogeneity)
and a minimal fixed set of limited operations (e.g., set & tuple-
oriented operations).

• New applications (e.g., CAD, CAM, CASE, OA, and CAP),
however, require concurrent modeling of both data and
processes acting upon the data.

• Hence, a combination of database and software-engineering
disciplines lead to the 3rd generation of database management
systems: Object Database Management Systems, ODBMS.

• Note that a classic debate in database community is that do we
need a new model or relational model is sufficient and can be
extended to support new applications.

• People in favor of relational model argue that:
• New versions of SQL (e.g., SQL-92 and SQL3) are designed

to incorporate functionality required by new applications
(UDT, UDF, …).

• Embedded SQL can address almost all the requirements of
the new applications.

• “Object people”, however, counter-argue that in the above-
mentioned solutions, it is the application rather than the inherent
capabilities of the model that provides the required
functionality.

• Object people say there is an impedance mismatch between
programming languages (handling one row of data at a time)

and SQL (multiple row handling) which makes conversions
inefficient.

• Relational people say, instead of defining new models, let’s
introduce set-level functionality into programming languages.

• What do you think?
• Read “Evolution of Data Management” by Jim Gray.
• Read “Object-Relational DBMS – The Next Wave” by Michael

Stonebraker. (Both members of National Academy of
Engineering.)

• Other problems with RDBMS:
• Short-lived transactions
• Schema changes are difficult: most organizations are locked

into their existing database structures. Taylor in 1992 said:
Organizations are unable to make these changes because they
cannot afford the time and expense required modifying their
information systems (sounds familiar? Y2K, Euro, …).

• Poor at navigational access (moving between
records/objects), and strong in content-based associative
access (e.g., navigate your family tree with “people” relation
in SQL!).

