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ABSTRACT
Users of decision support system typically submit batches
of range-sum queries simultaneously rather than issuing in-

dividual, unrelated queries. We propose a wavelet based
technique that exploits I/O sharing across a query batch
to evaluate the set of queries progressively and eÆciently.
The challenge is that now controlling the structure of errors
across query results becomes more critical than minimizing
error per individual query. Consequently, we de�ne a class

of structural error penalty functions and show how they are
controlled by our technique. Experiments demonstrate that
our technique is eÆcient as an exact algorithm, and the pro-
gressive estimates are accurate, even after less than one I/O
per query.

1. INTRODUCTION
Range aggregate queries can be used to provide database
users a high level view of massive or complex datasets. These

queries have been widely studied, but much of the research
has focused on the evaluation of individual range queries.
However, in many applications, whether the users are hu-
mans or data mining algorithms, range aggregate queries
are issued in structured batches.

For example, data consumers often specify a coarse partition
of the domain of a data set, and request aggregate query re-
sults from each cell of this partition. This provides a data
synopsis which is used to identify interesting regions of the
data domain. Users then drill-down into the interesting re-

gions by partitioning them further and requesting aggregate
query results on the new cells. The data consumer is in-
terested in both the individual cell values that are returned
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and the way the query results change between neighboring
cells.

It is possible to evaluate a batch of range aggregate queries

by repeatedly applying any exact, approximate, or progres-
sive technique designed to evaluate individual queries. While

exible, this approach has two major drawbacks:

1. I/O and computational overhead are not shared be-
tween queries.

2. Approximate techniques designed to minimize single-
query error cannot control structural error in the result
set. For example, it is impossible to minimize the error

of the di�erence between neighboring cell values.

Both of these issues require treating the batch as a single
query, not as a set of unrelated queries. Item 2 is particularly
important. An OLAP system user searching for \interest-
ing" areas in a dataset might be more concerned with �nding
large cell to cell changes in a measure than accurately iden-
tifying the actual cell values. In this situation the structure

of the errors is more important than the total size of the er-
rors. The particular structural error of interest may change
from query to query: some queries may need to minimize
the sum of square errors, others may be interested in �nd-
ing \temporal surprises", and others may be searching for

local maxima. If only a subset of results are currently being
rendered on the screen, these should be prioritized. Ideally,
the structural error penalty function could be part of a query
submitted to an approximate query answering system. The
system then produces its best approximate result for that
penalty function.

1.1 Related Work
Extensive research has been done developing techniques for
exact [2, 3, 8, 12, 14], approximate [4, 6, 10, 15], and pro-
gressive [9, 11, 18] evaluation of single range-sum queries.
While experimental results suggest that these techniques

are very e�ective, they do not address resource sharing be-
tween queries or control of structural error in query batches.
Multi-query optimization in OLAP has been addressed [19].
The primary focus is on sharing of resources and scans, and
selection of precomputed group-bys. These exact methods
produce considerable savings, but are based on the assump-

tion that some relation must be scanned in order to answer



the batch of queries. This will not be the case when relations

are stored using pre-aggregation techniques such as pre�x-
sums [8], wavelets [14], or general Iterative Data Cubes [12].

Proposed techniques for online aggregation [7] provide a way
to simultaneously answer a batch of queries using progres-
sive approximations of the underlying dataset. Priority can

be placed on di�erent cells, giving users control over a form
of structural error. For appropriate data this technique pro-
vides accurate answers quickly, but the entire relation must
be viewed before results become exact.

Wavelets are often used for data compression, and have been

proposed as a tool for producing pre-computed synopses
of datasets to support approximate query answering [17].
Wavelet-based precomputed synopses for relational algebra
[1] provide approximate batch query results, but give no con-
trol over structural error in ad hoc queries. As with any data
compression based technique, this is only e�ective when the

data are well approximated by wavelets. This paper takes
a fundamentally di�erent approach, and uses wavelets to
approximate queries, not data.

1.2 Contributions
This paper explores how query approximation can be used
as an alternative to data approximation to provide eÆcient

progressive query answering tuned to an arbitrary penalty
function. The major contributions of this paper are

� Batch-Biggest-B, an exact wavelet-based query eval-
uation strategy that exploits I/O sharing to provide

fast exact query results using a data structure that
can be updated eÆciently.

� The introduction of structural error for batch queries,

and the de�nition of structural error penalty functions.
This generalizes common error measures such as sum
of square errors (SSE) and Lp norms.

� A progressive version of Batch-Biggest-B that can
accept any penalty function speci�ed at query time,
and will minimize the worst case and average penalty
at each step of the computation.

Finally, we note that nowhere do our methods rely on the
fact that we use the wavelet transform to preprocess the
data. We can use any linear transformation of the data that
has a left inverse as a storage strategy. We can use the left
inverse to rewrite query vectors to their representation in

the transformation domain, giving us an evaluation strategy.
Examples of linear storage/evaluation strategies include full
query precomputation, no precomputation, and pre�x-sum
precomputation [8]. In fact, any Iterative Data Cube [12]
is a linear storage/evaluation strategy. Batch-Biggest-B
can be used with any structural error penalty to turn any

of these single-query exact evaluation strategies into an I/O
eÆcient progressive evaluation method for batch queries.

Why use wavelets then? Wavelets provide an update ef-
�cient storage format for which range-queries can be an-
swered quickly. Furthermore, as pointed out in [14], query

vectors for polynomial range-sums have excellent low I/O

wavelet approximations, making progressive approximations

fast and accurate. As an added bene�t, these evaluation
methods are complementary to powerful new wavelet-based
approximate storage strategies [5].

1.3 Preliminaries
We study evaluation of aggregate queries on a database in-
stance D of a schema F with d numeric attributes ranging
from zero to N � 1. We work with multi-dimensional arrays
of real numbers, or functions, indexed by the domain of F ,

Dom(F ). The set of such functions is a vector space with a
natural inner product, ha;bi =

P
x2Dom(F )

a[x]b[x], for any

two arrays a and b. For any set R � Dom(F ), �
R

denotes

the characteristic function of R: �
R
[x] = 1 if x 2 R and is

zero otherwise.

Following [6, 15], this paper uses the data frequency distri-

bution to represent a database as a vector. This is a vector
� indexed by Dom(F ); for any tuple x = (x0; : : : ; xd�1) 2

Dom(F ), we de�ne �[x] as the number of times x occurs
in D. We denote the wavelet transform of a multidimen-
sional array a[x] by â[�]. Because the wavelet transform is
invertible, the wavelet transform of the data frequency dis-
tribution, �̂[�], can be used to evaluate any query on the

database D.

This paper studies query evaluation using a version of the
wavelet representation stored on disk. One can think of �̂
as a materialized view of D. For simplicity, we adopt a sim-
ple I/O cost model, even though there are many ways to

store and access this view. We assume that the values of
�̂ are held in either array-based or hash-based storage that
allows constant-time access to any single value. We ignore
the possibility that several useful values may be allocated
on the same disk block, and hence retrieved for free. Simi-
larly, we ignore the potential savings arising from intelligent

bu�er management. A thorough analysis of wavelet data
disk layout strategies and their limits is part of our contin-
uing research. It can be addressed naturally by extending
the framework used in this paper.

2. MINIMIZING SSE
In this section we show how wavelets can be used to evaluate
a batch of range aggregate queries progressively, minimizing

the sum of square errors at each step. This technique is ef-
�cient as an exact method, shares I/O optimally, and uses
data structures that can be updated quickly. It is based on
ProPolyne [14], a technique for the progressive evaluation of
single polynomial range-sum queries, and reuses much of its
machinery. We begin by exhibiting the technique for range

Count queries using Haar wavelets. This simple example
captures the heart of the matter. Generalization to polyno-
mial range-sum queries using other wavelets is discussed in
Section 3.

2.1 Progressive COUNT Queries
Given a rectangular range R � Dom(F ), the range Count
query Count(R;D) = j�RDj simply counts the number of

tuples in D that fall in R. Recalling that � denotes the data
frequency distribution of D, we can write

Count(R;D) =
X
x2R

�[x] =
X

x2Dom(F )

�
R
[x]�[x]



In other words, the Count query is just the inner prod-

uct of a (simple) query vector with an (arbitrarily complex)
data vector. The Haar wavelets are orthogonal, so the Haar
transform preserves inner products. Thus we can write

Count(R;D) =
X

�2\Dom(F )

c�
R
[�]�̂[�] (1)

giving a formula for query evaluation in the wavelet domain.
The functions �

R
are very simple, and it has been shown

that c�
R

has at most O(2d logdN) nonzero coeÆcients, and
they can be computed quickly [13, 14, 17]. Thus Equation 1
can be used to evaluate Count queries in time O(2d logdN).
When storing an entire relation in the wavelet basis, a new
tuple can be inserted in time O(logdN) [13], making this

method competitive with the best known pre-aggregation
techniques (see [12] for an overview).

Wavelets have been used successfully for data approxima-
tion, and are often thought of as a lossy compression tool.
While this approach works to provide an approximate query

answering scheme on some datasets, there is no reason to
expect than an arbitrary relation would have a good wave-
let approximation. We focus instead on using wavelets for
query approximation. In particular, when evaluating the
sum in Equation 1 we add the terms where c�

R
is largest

�rst, expecting the smaller terms to contribute less to the

�nal outcome. At each step, the partial sum we have com-
puted is just the inner product of the data vector with an
approximate query vector. Experimental results have shown
that this particular evaluation order provides accurate, data-
independent progressive estimates in practice [14]. As a con-

sequence of Theorems 1 and 2 this evaluation order stands
on �rm theoretical ground: at each step it minimizes the
average error over random data vectors, and it minimizes
the maximum possible error.

2.2 Multiple Queries
Now consider the problem of simultaneously evaluating a
batch of Count queries for ranges R0; : : : ; Rs�1 progres-

sively, minimizing SSE at each step. Assume that we have
computed and stored the transformed data vector �̂ in a
data structure that allows constant time access to any value.
One simple solution is to use s instances of the single query
evaluation technique, and advance them in a round-robin
fashion. This turns out to waste a tremendous amount of

I/O, since many data wavelet coeÆcients will be needed for
more than one query. This also ignores the fact that some
wavelet coeÆcients may not be tremendously important for
any particular query, but are important for the batch as a
whole.

We address both of these problems by introducing an I/O
sharing technique and showing how it can be adapted to
evaluate queries progressively. For each range Ri, compute
the list of nonzero wavelet coeÆcients of �

Ri
, merge these

lists into a master list, then iterate over this master list, re-
trieving each needed data coeÆcient from storage, and using
it to advance the computation of each query that needs it.
The I/O savings from this technique can be considerable in
practice. For example, Section 6 describes one batch of 512
range queries covering 15.7 million records in a database

of temperature observations. Using multiple instances of

the single query evaluation technique required 923,076 re-

trievals. Using this I/O sharing technique, all 512 queries
were evaluated exactly after 57,456 retrievals.

Note that this requires all of the nonzero wavelet coeÆcients
of the query function to be in main memory, but there are
relatively few of these when compared to the number of

nonzero wavelet coeÆcients of the data vector. Range-sum
queries have very sparse wavelet representations, and this is
independent of the underlying database. Nevertheless, it is
of practical interest to avoid simultaneous materialization of
all of the query coeÆcients and reduce workspace require-
ments.

To evaluate queries progressively, we just need to build a
heap from the master list that orders wavelets by their \im-
portance" for the query. Instead of iterating over the master
list, we repeatedly extract the most important element from
this heap, retrieve the corresponding data wavelet coeÆcient

from storage, and use it to advance each of the individual
queries in the batch.

But how can we quantify the importance of a wavelet? Since
our goal is to control SSE, we consider the importance of
a wavelet �0 to be the worst case error that arises from not

retrieving �̂[�0] on a database with
P

j�̂[�]j = 1. This worst
case will occur when the entire data vector is concentrated
at �0, and j�̂[�0]j = 1. In this situation, ignoring �0 leads to
an SSE of

SSE =

s�1X
i=0

jd�
Ri
[�
0
]j
2 def
= �(�

0
)

which we take as the de�nition of the importance function

of �0. This de�nition is intuitive- wavelets that are irrelevant

for the batch of queries have zero importance, wavelets that
have signi�cant coeÆcients for many queries will have high
importance.

We use this importance function to de�ne Batch-Biggest-
B, a progressive query evaluation strategy given in Figure

1. The progressive estimates serve as approximate query
results during the computation. Once the computation is
complete, they hold the exact query results.

Because it evaluates queries by retrieving the B coeÆcients
with highest importance before retrieving the (B +1)th co-

eÆcient, this is called a biggest-B strategy. Theorems 1 and
2 show that there is no other linear approximation of the
batch of queries using B wavelets that has smaller expected
or worst case SSE than our B-step progressive estimate.
Once size is de�ned correctly, biggest is in fact best.

3. MORE GENERAL QUERIES
The strategy outlined above works for much more general
queries. The critical feature of Count queries is that they
are vector queries: the result is the scalar product of a query

vector with a data vector. Consider the following range ag-
gregate queries for a �xed range R � Dom(F ) and how they
can be recast as vector queries:



Batch-Biggest-B

Preprocessing: Compute the wavelet transform of the
data density function and store with reasonable random-

access cost.

Input: a batch of range-sum queries and an importance
function.

1. For each query in the batch, initialize its progressive
estimate to be zero.

2. Compute the wavelet transform of each query in the
batch, and construct a list of its nonzero wavelet co-
eÆcients.

3. Merge these lists into a master list.

4. Compute the importance of each wavelet in the mas-
ter list, and build a max-heap from the set.

5. Extract the maximum element from the heap, re-
trieve the corresponding data wavelet coeÆcients,
and use it to increment the progressive estimate of

each query in the batch according to Equation 2. Re-
peat until heap is empty.

Figure 1: The Batch-Biggest-B algorithm for pro-
gressive evaluation of batch vector queries.

1. Count queries

Count(R;D) =
X
x2R

�[x]

=
X

Dom(F )

�
R
[x]�[x]

= h�
R
;�i

2. Sum queries

Sum(R;Attribute i; D) =
X
x2R

xi�[x]

=
X

Dom(F )

xi�
R
[x]�[x]

= hxi�
R
;�i

3. Sums of products

SumProduct(R;Attribute i;Attributej ; D)

=
X

Dom(F )

xixj�
R
[x]�[x]

= hxixj�
R
;�i

Many other aggregate query results can be derived from vec-
tor queries. The three vector queries above can be used
to compute Average and Variance of any attribute, as
well as the Covariance between any two attributes. It
is pointed out in [16] that a vast array of statistical tech-

niques can be applied at the range level using these three
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Figure 2: Approximation of a typical Range-Sum
query function with 25 Db4 Wavelets

vector queries. For example, it is possible to perform princi-
pal component analysis, ANOVA, hypothesis testing, linear
regression, and much more.

Queries 1 - 3 are very similar. They belong to a powerful

class of vector queries that is suÆciently regular to allow
eÆcient query evaluation strategies.

De�nition 1. A polynomial range-sum of degree Æ is
a vector query of the form q[x] = p(x)�

R
(x) where p is a

polynomial in the attributes of F , and R is a hyper-rectangle
in Dom(F ), and p has degree at most Æ in any variable.

All vector queries can be evaluated in the wavelet domain
just as Count queries are evaluated using Equation 1. In

particular, for any vector query q and basis of orthogonal
wavelets we can write

hq;�i =
X

q̂[�]�̂[�] = hq̂; �̂i (2)

We now show that this equation can be used to evaluate

polynomial range-sums progressively and quickly.

3.1 Progressive Polynomial Range-Sums
We can evaluate polynomial range-sum queries progressively
almost exactly as we did in Section 2. The key di�erence is
that we can no longer use Haar wavelets and achieve results
eÆciently. However, Equation 2 holds for any orthogonal
wavelets. It has been shown that using Daubechies wavelets

with �lter length 2Æ+2, any polynomial range-sum of degree
less than or equal to Æ will have less than ((4Æ+2)d logdN)
nonzero wavelet coeÆcients. These coeÆcients can be com-
puted in time O((4Æ+2)d logdN) [14]. Once the data vector
has been transformed and stored, new tuples can be inserted
in time O((2Æ + 1)d logdN). Thus Equation 2 can be used

as the basis for an exact polynomial range-sum evaluation
strategy that has poly-logarithmic query and update cost.
Compare these costs with those for Count queries where
Æ = 0.

As with Count queries, polynomial range-sums are approxi-

mated very well by a small number of wavelets. To illustrate



0
20

40
60

80
100

120

0
20

40
60

80
100

120

−50

0

50

100

150

200

Figure 3: Approximation of a typical Range-Sum
query function with 150 Db4 Wavelets
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Figure 4: Query function for typical Range-Sum
(Computed Exactly using 837 Db4 Wavelets)

this, Figures 2 to 4 display the progressive approximation

of a typical degree one polynomial range-sum query vector,
q[x1; x2] = x1�

R
[x1; x2] where R = f(25 � x2 � 40)^ (55 �

x1 � 128)g. This query function could arise when request-
ing the total salary paid to employees between age 25 and
40, who make at least 55K per year. Figure 2 displays an
approximation using 25 Db4 wavelets. Note that it cap-

tures the basic size and shape of the function, but the range
boundaries are inexact, and there is some spillover due to the
fact that periodic wavelets were used. Figure 3 displays an
approximation using 150 wavelets. Here the range bound-
aries are much sharper, and the periodic spillover smaller.

The most striking feature is a Gibbs phenomenon near the
range boundaries. Finally, Figure 4 displays the query func-
tion reconstructed exactly using 837 wavelets.

3.2 Multiple Polynomial Range-Sums
Now consider the problem of simultaneously evaluating a
batch of polynomial range-sums pi[x]�

Ri
[x]; i 2 [0; s � 1] .

Notice that the de�nition of the importance function � in

Section 2 did not depend on the fact that we used Haar

wavelets. It only depends on the penalty function, SSE.

By the same arguments, we can de�ne the importance of a
wavelet � by

�(�) =

s�1X
i=0

j\pi�
Ri
(�)j

2

and use the algorithm Batch-Biggest-B to evaluate the
queries progressively. Theorems 1 and 2 show that this
yields the best progressive evaluation strategy for controlling
SSE. The experimental results in Section 6 show that this
technique produces very accurate answers after retrieving a
small number of wavelet coeÆcients from the database.

4. STRUCTURAL ERROR
Users submit a batch of queries because they are looking
for interesting relationships between di�erent query results.
Some users may be looking for temporal trends or dramatic
jumps. Others may be looking for local maxima. It is often
the case that not all of the query results are used at once

(e.g., they do not all �t on the screen), and the user is only
interested in results that are \near the cursor". In all of
these cases, the user is interested in the structure of the
query results. If the query results are approximate, the user
is concerned with the structure of the error. Errors that
impede the task at hand should be penalized, those that

are irrelevant should be tolerated if this improves eÆciency.
This section provides several speci�c examples of structural
error penalty functions, along with formal de�nitions.

Consider the following scenario. We work with a database

of global temperature observations, and the user has par-
titioned the latitude, longitude and time dimensions into
ranges to submit a query in order to �nd:

Q1 Ranges with the highest average temperatures, or

Q2 An accurate view of a set of high-priority items cur-
rently in use, and a reasonable sketch of the other re-

sults, or

Q3 Any ranges that are local minima, with average tem-
perature below that of any neighboring range.

An exact result set can be used to provide any of this infor-
mation, but an approximate result set that works well for
one problem may work poorly for another. For example,

if each query cell is approximated with no more than 20%
relative error, it is possible to do a reasonable job answering
Q1, but cannot be trusted to provide meaningful answers for
Q3. We now capture this intuition by introducing structural
error penalty functions.

De�nition 2. A structural error penalty function is

a non-negative homogeneous convex function p on error vec-
tors with the property that p(0) = 0 and p(�x) = p(x). As a
special case, a quadratic structural error penalty func-
tion is a positive semi-de�nite Hermitian quadratic form on
error vectors, p(�) =

P
Pij�i�j .

This de�nition includes many well known metrics, including

Lp norms and Sobolev norms. It is important to allow the



quadratic form to be semi-de�nite, as it provides the 
exi-

bility to say that some errors are irrelevant. We now revisit
queries (Q1-Q3) above to see how each one implies a di�er-
ent quadratic penalty function. To simplify the discussion,
we assume that the data are dense, so AVERAGE queries
reduce to weighted SUM queries.

P1 Minimize the sum of square errors, p(�) =
P

j�[i]j2 , to
allow the user to accurately identify any ranges with
a high average temperature.

P2 Minimize a cursored sum of square errors that makes
the high-priority cells (say) 10 times more important
than the other cells to produce very accurate answers
for the high-priority cells, while still substantially pe-

nalizing large errors for the remaining cells. p(�) =
10
P

i2H
j�[i]j2+

P
i=2H

j�[i]j2 whereH is the set of high-
priority ranges.

P3 Minimize the sum of square errors in the discrete Lapla-
cian to penalize any false local extrema.

Linear combinations of quadratic penalty functions are still
quadratic penalty functions, allowing them to be mixed ar-

bitrarily to suit the needs of a particular problem.

5. MINIMIZING STRUCTURAL ERROR
An approximate batch query answering technique should
aim to minimize an appropriate structural error penalty
function. It is impossible to do this on a query-by query
basis with a pre-computed synopsis of the data. A pre-
computed synopsis must be \tuned" to a particular penalty

function and a particular query workload. In this section
we demonstrate that using an online approximation of the
query batch leads to a much more 
exible scheme. We intro-
duce a query approximation strategy which �nds the \best"
query approximation for any penalty function and restric-
tion on the number of records to be retrieved from secondary

storage.

One crucial point about the biggest-B progressive query
evaluation strategies in Sections 2 and 3 is that the impor-
tance function only depends on the penalty function. In fact,
SSE is a quadratic penalty function, pSSE(�) =

P
�2i . Using

this notation, we see that the importance function used to
control SSE was just �(�) = pSSE(q̂0[�]; : : : ; q̂s�1[�]) where
qi are the query vectors for a batch of s queries. In other
words, �(�) is the penalty of the vector (q̂0[�]; : : : ; q̂s�1[�]).
We can use this de�nition for any penalty function:

De�nition 3. For a penalty function p the p-weighted
biggest-B approximation of a batch of queries q0; : : : ;qs�1
is the progressive estimate given by Batch-Biggest-B after
B steps using the importance function

�p(�)
def
= p(q̂0[�]; : : : ; q̂s�1[�])

For example, Figure 3 shows the query vector for the SSE-
weighted biggest-150 approximation of the query vector de-
picted in Figure 4. Having de�ned the strategy we propose

to use, we now de�ne the competition.

De�nition 4. A B-term approximation of a batch of

vector queries q0; : : : ;qs�1 is an approximation of the batch
of queries using only B data wavelet coeÆcients. That is,
given some set � of wavelets with j�j = B, the B-term

approximation is given by hqi;�i �
P

�2� q̂i[�]�̂[�] for 0 �
i < s.

B-term approximations arise from choosing an arbitrary pro-
gression order to evaluate a vector query. The theorems that
follow state that, in a certain sense, the biggest-B approxi-
mations give the best B-term approximations.

5.1 Minimizing the Worst Case
When choosing a progression order to evaluate a batch of
queries, it is important to understand how large the struc-
tural error penalty can be at each step. The next result
shows that biggest-B approximations provide the smallest
possible worst-case error, making the progression order used

by Batch-Biggest-B optimal. The proof of this result also
provides a sharp, easily computed bound on the structural
error penalty of any B-term approximation.

Theorem 1. Assume that
P

j�̂[�]j is known. Given a

batch of vector queries q0; : : : ;qs�1 and a quadratic penalty

function p, the worst case penalty for the p-weighted biggest-

B approximation is less than or equal to the worst case

penalty for any other B-term approximation.

Proof. For any B-term approximation that uses wave-
lets in the set �, let �0 be the most important unused wave-
let: �0 =2 � and �p(�) > �p(�

0) implies � 2 �. Now the error

vector � is given by � = Q��̂ where the matrix Q� has
Q�[i; �] = q̂i[�] if � 62 �, and is zero otherwise. Denoting

K =
P

j�̂[�]j, Jensen's inequality allows us to write

p(�) = p(Q��̂)

= p(
X
�=2�

j�̂[�]j sgn(�̂[�])Q�[�; �])

� K
�1
X
�=2�

j�̂[�]jp(KQ�[�; �])

= K
��1
X
�=2�

j�̂[�]jp(Q�[�; �])

= K
��1
X
�=2�

j�̂[�]j�p(�)

� K
�
�p(�

0
)

where � is the degree of homogeneity of the penalty function.
In fact, equality is obtained when �̂ is entirely concentrated
on �0.

Thus the worst case error for any B-term approximation is
given by

Eworst-case(�) = max
�=2�

�p(�) = K
�
�p(�

0
)

So if � is not a biggest-B strategy, there is an � 2 � with
�p(�) < �p(�

0). Substituting �0 for � in � we obtain a strategy

that is at least as good as �. A �nite number of these



substitutions produces a biggest-B strategy which is at least

as good as �.

Since norms are examples of structural error penalty func-
tions, Theorem 1 immediately implies the following

Corollary 1. The p-weighted biggest-B approximation

minimizes the worst case Lp error for 1 � p � 1.

In other words, many of the standard penalty functions

used to measure the magnitude of vectors can be used with
Batch-Biggest-B to minimize the worst case error.

5.2 Minimizing the Average Penalty
Now we turn our attention to analysis of average penalty.

When discussing the average penalty of a B-term approxi-
mation, we mean the expected penalty of the approximation
on a randomly selected database. Surprisingly, it turns out
that the best strategy for controlling worst case error is also
the best strategy for controlling the average error.

Theorem 2. Let data vectors be randomly selected from

the set SN
d
�1 = f� j

P
�[x]2 = 1g with uniform distri-

bution and let p(�) = �TA� be a quadratic penalty func-

tion. The expected penalty incurred by using the p-weighted
biggest-B approximation of a query batch is less than or equal

to the expected penalty incurred using any other B-term ap-

proximation.

Proof. Take any B-term approximation that uses wave-

lets in the set �. For any data vector � 2 SN
d�1 we write

the error vector as in the proof of Theorem 1: � = Q��̂.The

penalty of this error is given by a quadratic form in �̂

p(�0; : : : ; �s�1) = �̂
T
Q
T

�AQ��̂
def
= �̂

T
R�̂

and we can compute the expected penalty by integrating

over the unit sphere SN
d�1 equipped with the rotation-

invariant Lebesgue measure, dP , normalized to make it a

probability space. The argument that follows relies on the
fact, stated formally in Equation 3, that rotations do not
change this measure.

E�[p] =

Z
SN

d
�1

�̂
T
R�̂ dP (�)

We now use the fact that for any unitary matrix U and any
function f on the sphereZ

S

f(U�) dP (�) =

Z
S

f(�) dP (�) (3)

This is just a formal statement of the fact that rotations do
not change the measure- the probability is uniformly dis-
tributed on the sphere. Noticing the �̂ = W� where W is
the unitary matrix for the wavelet transform, Equation 3 we
write

E�[p] =

Z
SN

d
�1

�̂
T
R�̂ dP (�̂)

Because R is symmetric, it can be diagonalized. There is a

diagonal matrix D and a unitary matrix U such that R =
UTDU . Using Equation 3 once more, we see that

E�[p] =

Z
SN

d
�1

�̂
T
D�̂ dP (�̂)

=

N
d
�1X

i=0

D[i; i]

Z
SN

d
�1

j�̂[i]j
2
dP (�̂)

= (N
d
� 1)

�1
trace(D)

where the last equality follows from the fact that on any
n-sphere Z

Sn

x
2
i dP =

1

n

nX
k=0

Z
Sn

x
2
k dP =

1

n

Now D and R are similar matrices, trace(D) = trace(R), so

E�[p] = (N
d
� 1)

�1
trace(R)

By the de�nition of R, trace(R) =
P

� 62�

P
i;j
q̂i[�]Aij q̂j [�],

which is clearly minimized by placing those � whereP
i;j
q̂i[�]Aijq̂j [�] is largest in �. This is exactly what the

p-weighted biggest-B strategy does.

We use the two theorems above to justify the statement
that the biggest-B approximation is also the best-B approxi-

mation. Notice also that the proof of Theorem 1 provides a
guaranteed upper bound for observed error penalty. The
proof of Theorem 2 provides an estimate of the average

penalty.

6. EXPERIMENTAL RESULTS
We have implemented Batch-Biggest-B for polynomial
range-sums and tested it on empirical datasets. We present
a sample of results from trials on a dataset of temperature
observations around the globe at various altitudes during

March and April 2001. The dataset has 15.7 million records
and 5 dimensions: latitude, longitude, altitude, time, and
temperature. The queries executed partitioned entire data
domain into 512 randomly sized ranges, and sum the tem-
perature in each range. The key observations follow.

Observation 1: I/O sharing is considerable. The query
batch partitioned the entire data domain. In order to an-
swer the queries directly from a table, all 15.7 million records
would need to be scanned. The Db4 wavelet representa-
tion of this dataset has over 13 million nonzero coeÆcients.

Repeatedly using the single-query version of ProPolyne re-
quires the retrieval of 923076 wavelet coeÆcients, approxi-
mately 1800 wavelets per range. Using Batch-Biggest-B

to compute these queries simultaneously (and exactly) re-
quires the retrieval of 57456 wavelets, approximately 112
wavelets per range. Thus Batch-Biggest-B provides an

eÆcient exact algorithm by exploiting I/O sharing across
queries.

In each of these cases notice that only a small fraction of
the data wavelet coeÆcients need to be retrieved. This has
nothing to do with the underlying dataset. It is simply a

quanti�cation of the fact that ProPolyne is an eÆcient exact
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Figure 6: Progressive SSE Penalty for two progres-
sive query strategies.

algorithm- most of the data wavelet coeÆcients are irrele-
vant for the query. Another way to say this is that most of
the query wavelet coeÆcients are zero. See [14] for details.

As mentioned in Section 1.2, Batch-Biggest-B can be used
with other transformation based techniques. Using pre�x-
sums to compute each of these queries requires the retrieval
of 8192 precomputed values. When using Batch-Biggest-

B to share this retrieval cost between ranges, only 512 pre�x-
sums are retrieved.

Observation 2: Progressive estimates become accurate quickly.

Figure 5 shows the mean relative error of progressive esti-
mates versus the number of coeÆcients retrieved. We see

that after retrieving only 128 wavelets, the mean relative
error is below 1%. Note the log scale on both axes. Thus we
have accurate results after retrieving less than one wavelet

for each submitted query.

Observation 3: Choosing the right penalty function makes a

di�erence. Our implementation accepts arbitrary quadratic
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Figure 7: Progressive cursored SSE Penalty for two
progressive query strategies.

penalty functions. Figures 6 and 7 display progressive re-
sults of query evaluation when minimizing SSE and when
minimizing a cursored SSE that prioritizes errors in a set of
20 neighboring ranges 10 times more than it penalizes errors

in the other ranges. The horizontal axis of each chart dis-
plays the number of wavelets retrieved. Figure 6 shows the
normalized SSE for each of these runs. Normalized SSE is
the SSE divided by the sum of squares of query results. We
see that the trial minimizing SSE has substantially and con-

sistently lower SSE than the trial minimizing the cursored
SSE. Figure 7 displays the normalized cursored SSE for the
same two trials. Here we see that the trial minimizing the
cursored SSE leads to substantially lower penalty.

7. CONCLUSION
This paper presented a framework for progressive answering
of multiple range-sum queries. Two major problems arise
in this setting that are not present when evaluating single

range-sums: I/O should be shared as much as possible, and
the progressive approximation should control the structure
of the error according to a penalty function speci�ed by the
user. We addressed both of these issues with the introduc-
tion of Batch-Biggest-B and the proof in Theorems 1 and
2 that using the penalty function to weigh the importance

of retrieving a particular item from storage leads to optimal
estimates.

These results immediately raise several questions. Foremost
among these is the need to generalize importance functions

to disk blocks rather than individual tuples. Such a gener-
alization is a step in the development of optimal disk layout
strategies for wavelet data. Combining this analysis with
workload information will lead to techniques for smart bu�er
management. We also plan to investigate the use of these
techniques to deliver progressive implementations of rela-

tional algebra as well as commercial OLAP query languages.
Finally, we want to study the limits of linear algebraic query
evaluation and approximation techniques. In particular, it
would be interesting to know whether or not it is possible to
design transformations speci�cally for the range-sum prob-
lem that perform signi�cantly better than the wavelets used

here.
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